A beginner's guide to the landscape of GPTs

Ravi Kunjwal

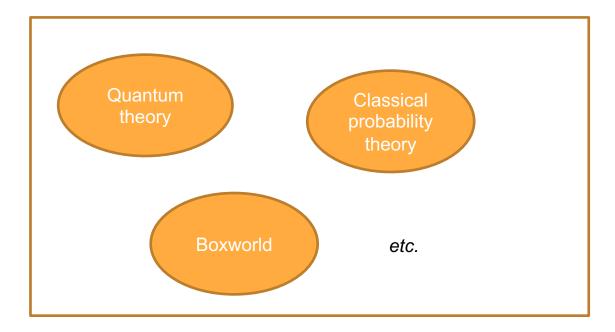
Centre for Quantum Information & Communication (QuIC) Université libre de Bruxelles, Brussels, Belgium

June 30, 2022 Workshop Quantum Information and the Frontiers of Quantum Theory, Lyon, France

Outline

- Motivation
- Operational Theory
- Generalized Probabilistic Theories (GPTs)
- Further reading

To better understand the *probabilistic* features of quantum theory within a broad landscape of probabilistic theories


• Quantum predictions are intrinsically probabilistic, *cf.* Born rule

- Quantum predictions are intrinsically probabilistic, *cf.* Born rule
- Quantum theory *requires* these probabilities, *cf.* Bell-Kochen-Specker, Gleason's theorems

- Quantum predictions are intrinsically probabilistic, *cf.* Born rule
- Quantum theory *requires* these probabilities, *cf.* Bell-Kochen-Specker, Gleason's theorems
- That is, the structure of quantum measurements enforces the theory's probabilistic character

- Quantum predictions are intrinsically probabilistic, *cf.* Born rule
- Quantum theory *requires* these probabilities, *cf.* Bell-Kochen-Specker, Gleason's theorems
- That is, the structure of quantum measurements enforces the theory's probabilistic character
- Probabilities, however, do not *require* quantum theory, *cf.* classical probabilistic theories, but also more generally

- Quantum predictions are intrinsically probabilistic, *cf.* Born rule
- Quantum theory *requires* these probabilities, *cf.* Bell-Kochen-Specker, Gleason's theorems
- That is, the structure of quantum measurements enforces the theory's probabilistic character
- Probabilities, however, do not *require* quantum theory, *cf.* classical probabilistic theories, but also more generally
- A general framework for probabilistic theories? GPTs!

What sorts of questions can GPTs answer?

Foundational

Foundational

quantum foundations sans interpretational baggage (mostly); a form of operationalism

Foundational

- quantum foundations sans interpretational baggage (mostly); a form of operationalism
- information-theoretic axiomatizations of quantum theory, e.g., Hardy 2001 (quant-ph/0101012), Masanes-Müller 2011 (arXiv:1004.1483)

Foundational

- quantum foundations sans interpretational baggage (mostly); a form of operationalism
- information-theoretic axiomatizations of quantum theory, e.g., Hardy 2001 (quant-ph/0101012), Masanes-Müller 2011 (arXiv:1004.1483)
- quantum-like phenomena beyond quantum theory, e.g., Barrett 2007 (quantph/0508211)

Applied

Applied

understanding the limits of information processing and computation, e.g., Barrett 2007 (quant-ph/0508211), Lee-Barrett 2015 (arXiv:1412.8671)

Applied

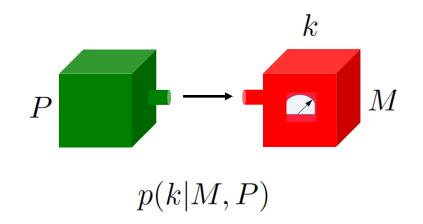
- understanding the limits of information processing and computation, e.g., Barrett 2007 (quant-ph/0508211), Lee-Barrett 2015 (arXiv:1412.8671)
- understanding nonclassicality beyond quantum theory (nonlocality, contextuality, incompatibility, etc.)

Applied

- understanding the limits of information processing and computation, e.g., Barrett 2007 (quant-ph/0508211), Lee-Barrett 2015 (arXiv:1412.8671)
- understanding nonclassicality beyond quantum theory (nonlocality, contextuality, incompatibility, etc.)
- bow much 'quantumness' do quantum protocols really require?

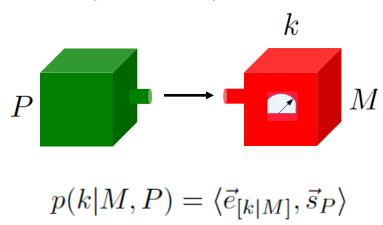
Not an exhaustive list!

Physical / mathematical as another axis of motivations

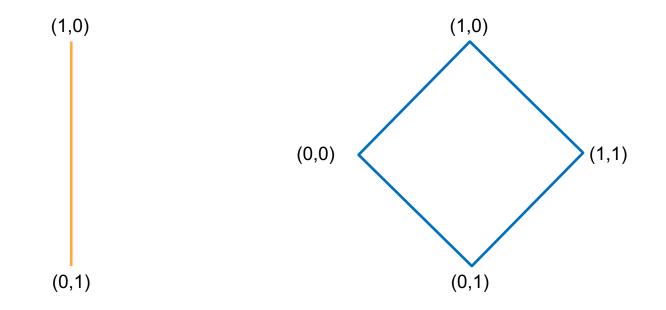

This tutorial:

Bottom-up, physical perspective, motivated by quantum foundations, not targeting specific results (too many of them!)

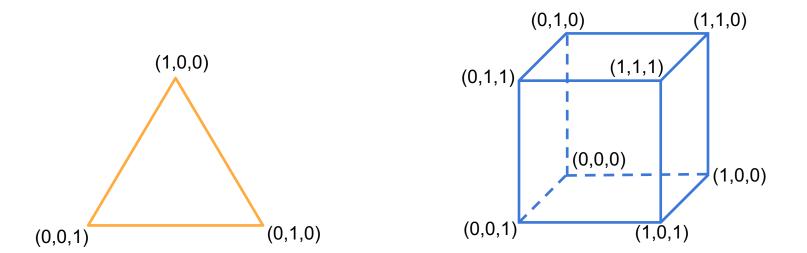
Motivation I Operational Theory


Operational Theory

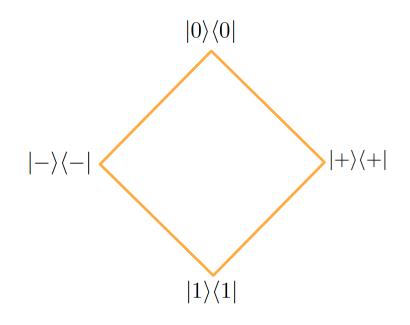
Operational primitives, blackbox view, care about observed data

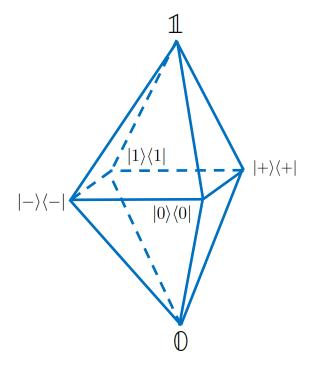

Generalized Probabilistic Theory (GPT)

obtained by quotienting the operational theory w.r.t. its operational equivalences

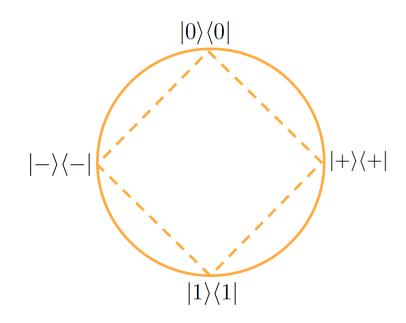


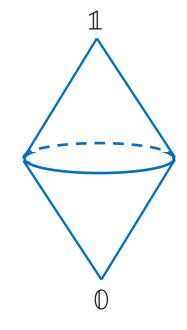
Continue on the board

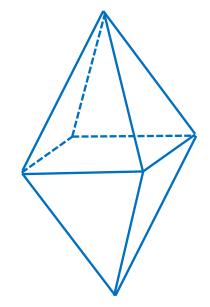

Examples of GPTs: simplicial (bit)



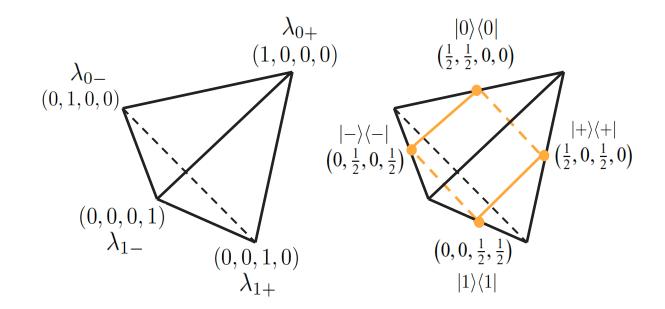
Examples of GPTs: simplicial (trit)




Examples of GPTs: non-simplicial (stabilizer rebit)


Examples of GPTs: non-simplicial (rebit)

Examples of GPTs: non-simplicial (gbit)



A classification of GPTs according to their (non)classicality

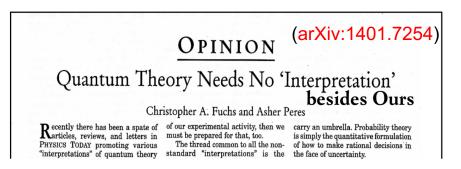
Simplicial	Simplex-embeddable	Not simplex-embeddable
("strictly classical")	("weakly nonclassical")	("strongly nonclassical")
Simplex + Dual	Simplex + Dual + Restriction	All other GPTs
Unique convex decomposition	Non-unique convex decomposition	
All measurements compatible	Incompatible measurements, <i>etc.</i>	Generalized contextuality!
	But no contextuality!	[Ref: Schmid <i>et al.</i> , arXiv:1911.10386]

Simplex-embeddability of stabilizer rebit as a GPT

Effect space similarly embedded within a 4-dimensional hypercube with 2⁴ vertices

Limitations of the GPT formalism

Limitations of the GPT formalism


The framework assumes an implicit 'Heisenberg cut', not obvious it can do justice to extended Wigner Friend scenarios of the Frauchiger-Renner type (see, however, arXiv: 1904.06247)

Limitations of the GPT formalism

- The framework assumes an implicit 'Heisenberg cut', not obvious it can do justice to extended Wigner Friend scenarios of the Frauchiger-Renner type (see, however, arXiv: 1904.06247)
- Operationalism as a pragmatic tool vs. operationalism as a philosophy of physics

Limitations of the GPT formalism

- The framework assumes an implicit 'Heisenberg cut', not obvious it can do justice to extended Wigner Friend scenarios of the Frauchiger-Renner type (see, however, arXiv: 1904.06247)
- Operationalism as a pragmatic tool vs. operationalism as a philosophy of physics
- > Doesn't resolve interpretational issues but does provide a useful 'outside' perspective

Motivation | Operational theory | Generalized Probabilistic Theory (GPT) | Further reading

Further reading

- Quantum theory: informational foundations and foils, Chiribella and Spekkens, introductory chapter (arXiv:1805.11483), and chapters 4,5,6,8
- Some negative remarks on operational approaches to quantum theory, Fuchs and Stacey (Ch. 8 above), (arXiv:1401.7254)
- Probabilistic theories and reconstructions of quantum theory, Müller (arXiv:2011.01286)
- Generalized Probabilistic Theories without the no-restriction hypothesis, Janotta and Lal (arXiv:1302.2632)
- Experimentally bounding deviations from quantum theory in the landscape of generalized probabilistic theories, Mazurek *et al.* (arXiv:1710.05948)

Motivation | Operational theory | Generalized Probabilistic Theory (GPT) | Further reading

Further reading

- Quantum mechanics as quantum information (and only a little more), Fuchs (arXiv:quantph/0205039)
- Information processing in generalized probabilistic theories, Barrett (arXiv:quantph/0508211)
- The computational landscape of general physical theories, Barrett et al. (arXiv:1702.08483)
- Characterization of noncontextuality in the framework of generalized probabilistic theories (arXiv:1911.10386)
- Multi-agent paradoxes beyond quantum theory (arXiv: 1904.06247)

Merci!