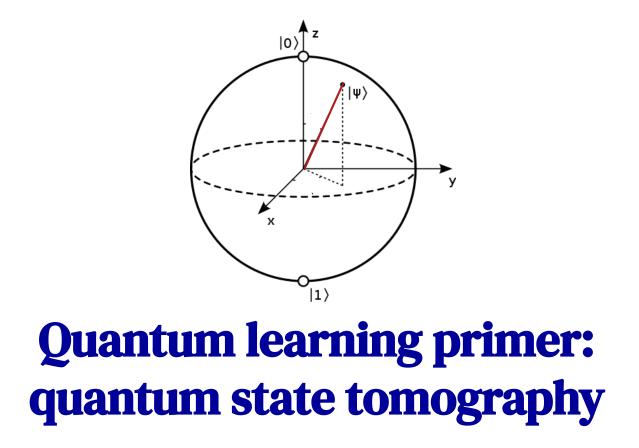
How to learn your quantum state (and how not to)

 $\begin{array}{l} \textbf{Yihui Quek} \\ \textbf{Stanford} \rightarrow \textbf{Berlin} \end{array}$

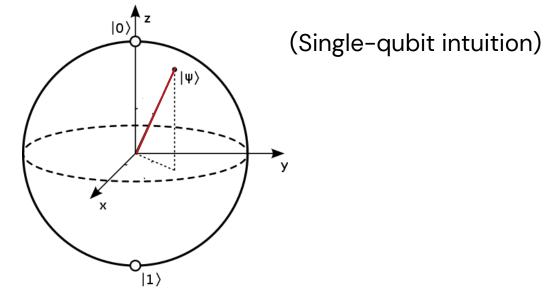
y quekpottheories

yihuiquek3.14@gmail.com



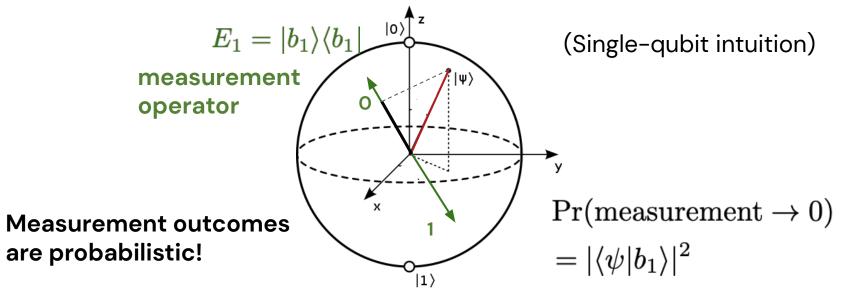
a fundamental task in any quantum experiment

Task (pure-state version): Given physical system in unknown quantum state $|\psi\rangle$, estimate $|\psi\rangle$.



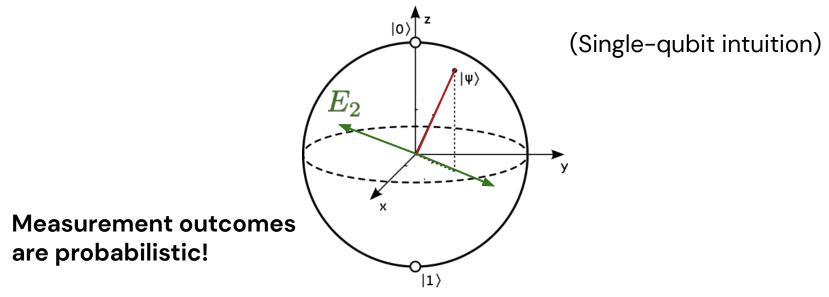
a fundamental task in any quantum experiment

Task (pure-state version): Given physical system in unknown quantum state $|\psi\rangle$, estimate $|\psi\rangle$ from results of repeated measurements.



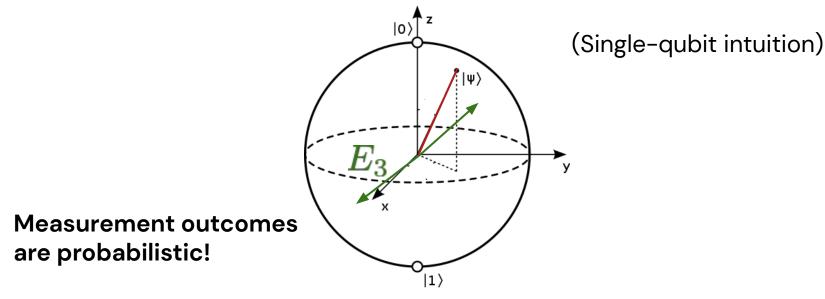
a fundamental task in any quantum experiment

Task (pure-state version): Given physical system in unknown quantum state $|\psi\rangle$, estimate $|\psi\rangle$ from results of repeated measurements.



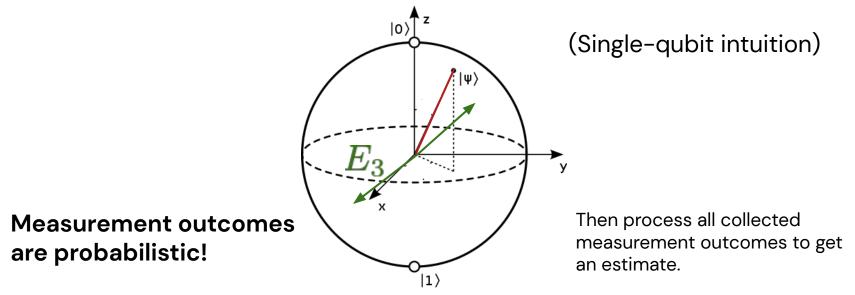
a fundamental task in any quantum experiment

Task (pure-state version): Given physical system in unknown quantum state $|\psi\rangle$, estimate $|\psi\rangle$ from results of repeated measurements.



a fundamental task in any quantum experiment

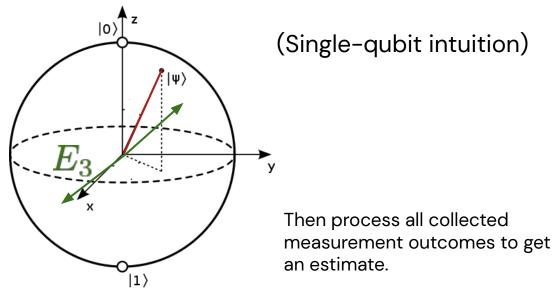
Task (pure-state version): Given physical system in unknown quantum state $|\psi\rangle$, estimate $|\psi\rangle$ from results of repeated measurements.



a fundamental task in any quantum experiment

Task (pure-state version): Given physical system in unknown quantum state $|\psi\rangle$, estimate $|\psi\rangle$ from results of repeated measurements.

For many qubits/mixed states, same story. **Problem:** Need many measurements



Task:

Given identical copies of an unknown n-qubit quantum state ρ , approximate the <u>full</u> density matrix of ρ (2ⁿ x 2ⁿ).

Task:

Given identical copies of an unknown n-qubit quantum state ρ , approximate the <u>full</u> density matrix of ρ (2ⁿ x 2ⁿ). # copies of the state that need to be prepared and measured

11

Full quantum state tomography is sample-inefficient. Task: Given identical copies of an unknown # copies of the n-qubit quantum state p, approximate state that need to [HHJ+, OW the <u>full</u> density matrix of ρ (2ⁿ x 2ⁿ). be prepared and STOC'16] measured $2^{O(n)}$ necessary and sufficient.

Bad for experiments: **exponential in n** (number of qubits)!

Are there efficient ways to learn quantum states?

Exponential in n (number of qubits)

Are there efficient ways to learn quantum states?

Exponential in n (number of qubits)

Ideas:

- 1) Assume the quantum circuit that produces the state* is "simple".
 - a) Clifford circuits?
 - b) Easily simulable \rightarrow easily learnable?

*Actually, output distributions of circuits

Are there efficient ways to learn quantum states?

Exponential in n (number of qubits)

Ideas:

- 1) Assume the quantum circuit that produces the state* is "simple".
 - a) Clifford circuits?
 - b) Easily simulable \rightarrow easily learnable?
- 2) Change the definition of `learning', so that one only needs to learn `some properties' of the state.

Aaronson, 2007. The learnability of quantum states *Proc. R. Soc. A*.4633089–3114

*Actually, output distributions of circuits

Learnability of the output distributions of local quantum circuits

Jonas Haferkamp^{*} Freie Universität Berlin Helmholtz-Zentrum Berlin jonas.haferkamp@t-online.de

Dominik Hangleiter University of Maryland NIST dominik.hangleiter@gmail.com

Alexander Nietner Freie Universität Berlin Freie Universität Berlin a.nietner@fu-berlin.de yquek@stanford.edu

> Jean-Pierre Seifert Technical University Berlin FhG SIT Darmstadt jeanpierreseifert@gmail.com

> > November 27, 2021

Yihui Quek

Stanford University

Fraunhofer Heinrich Hertz Institute jense@zedat.fu-berlin.de Marios Ioannou

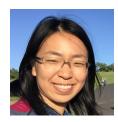
Jens Eisert Freie Universität Berlin

Helmholtz-Zentrum Berlin

Freie Universität Berlin marios_ioannou@outlook.com

> Marcel Hinsche Freie Universität Berlin hinsche.marcel@gmail.com

Ryan Sweke Freie Universität Berlin rsweke@gmail.com



Abstract

There is currently a large interest in understanding the potential advantages quantum devices can offer for probabilistic modelling. To this end, in this work we investigate the probably approximately correct (PAC) learnability of the discrete distributions obtained by measuring, in the computational basis, the output states of local quantum circuits. More specifically, we study both (a) generator learning and (b) evaluator learning. For both problems, one is given some type of oracle access to the

arXiv: 2110.05517 + ongoing work

Quantum Born machines: the next big thing in QML?

Quantum Born machines: the next big thing in QML?

nature > npj quantum information > articles >

Article Open Access Published: 27 May 2019 A generative modeling a benchmarking and traini quantum circuits

Marcello Benedetti, Delfina Garcia-Pintos, Oscar Perdomo, Vicente Leyton-Ortega, Yunseong Nam & Alejandro Perdomo-Ortiz

npj Quantum Information 5, Article number: 45 (2019) Cite this article 10k Accesses 94 Citations 19 Altmetric Metrics

Brian Coyle , Daniel Mills, Vincent Danos & Elham Kashefi

npi Quantum Information 6. Article number: 60 (2020) Cite this article

Yihui Quek | How to learn your quantum state (ar 6288 Accesses | 31 Citations | 19 Altmetric | Metrics

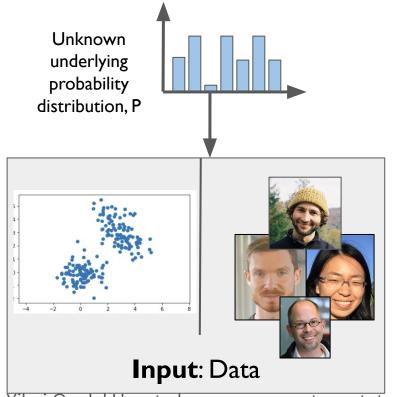
Article

Quantum Born machines are a type of generative model.

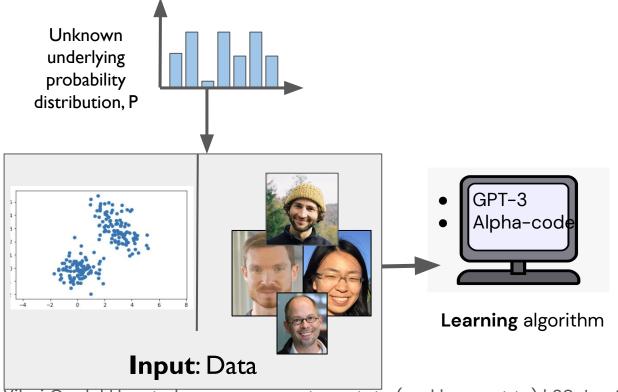
<u>Generative</u> modelling: learning to <u>generate samples</u> from an unknown distribution

More formally in: [KMR+94] Kearns et al. On the learnability of discrete distributions. 1994

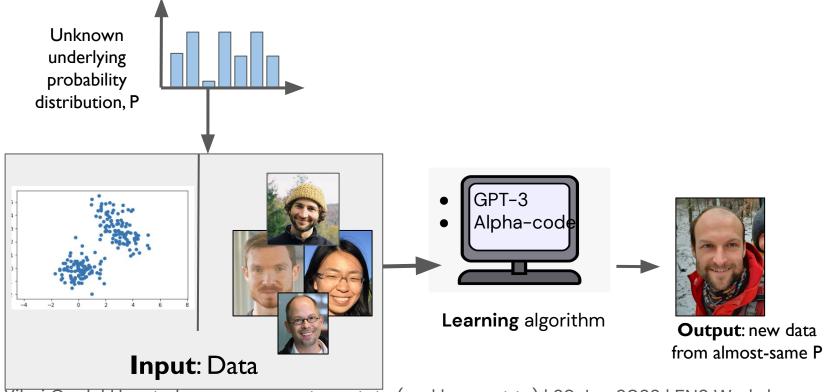
Generative modelling (classical) – real footage



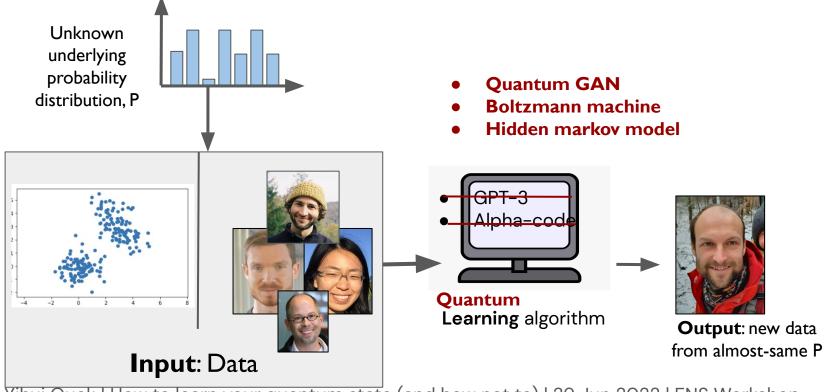
Generative modelling (classical) – real footage



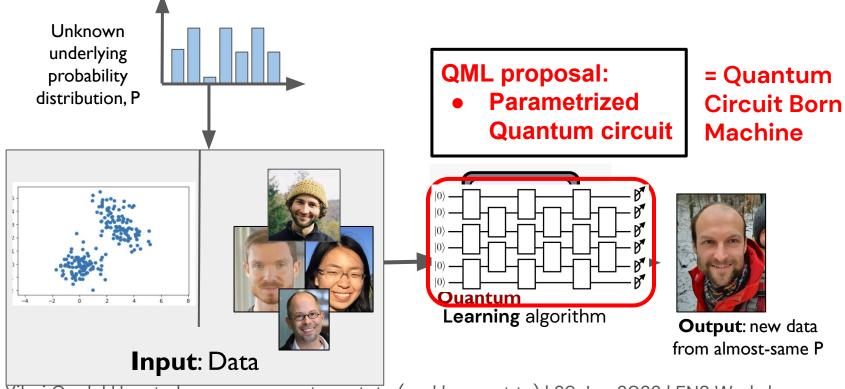
Generative modelling (classical) – real footage

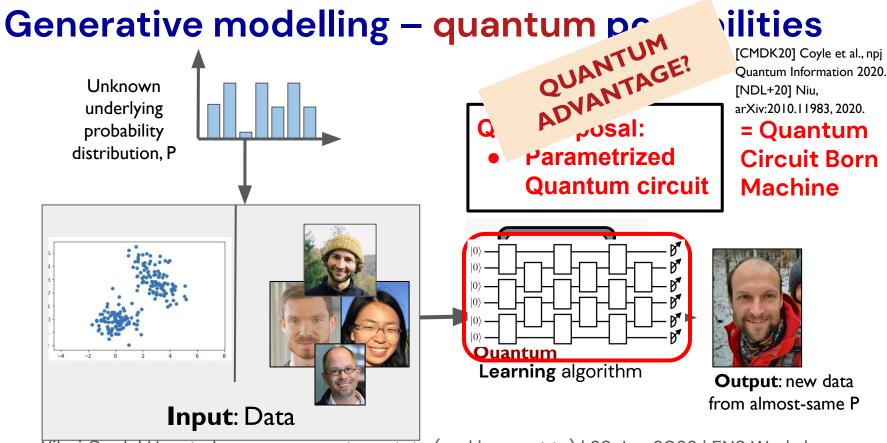


Generative modelling – quantum possibilities

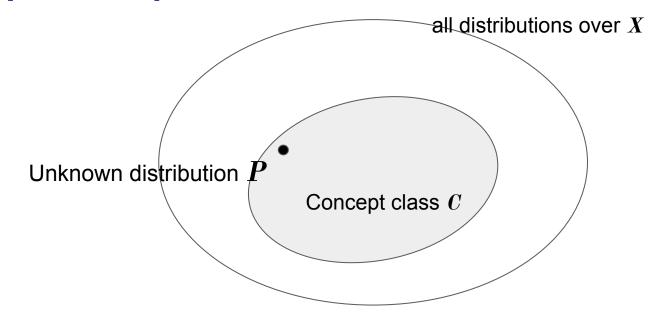


Generative modelling – quantum possibilities

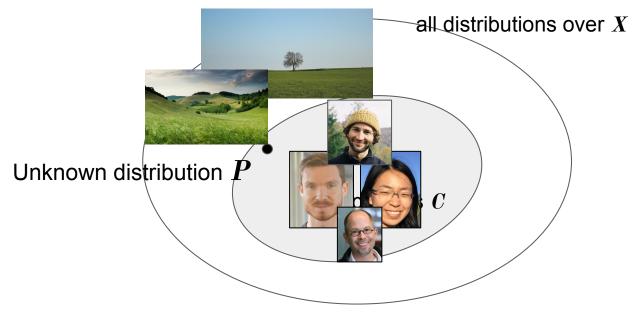




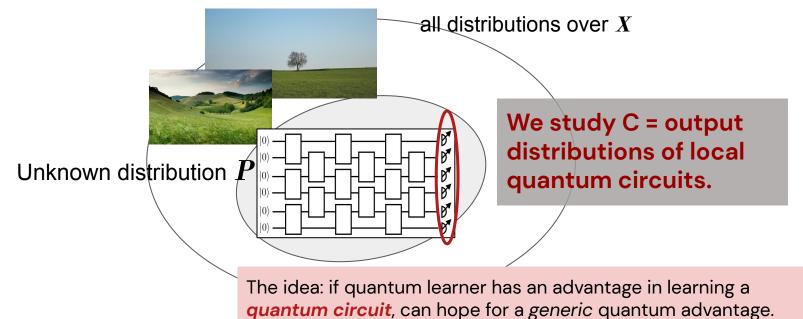
Observe that the class of distributions C is an important prior



Observe that the class of distributions C is an important prior

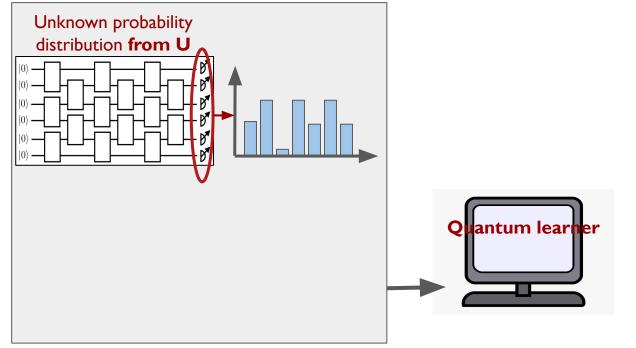


Observe that the class of distributions C is an important prior

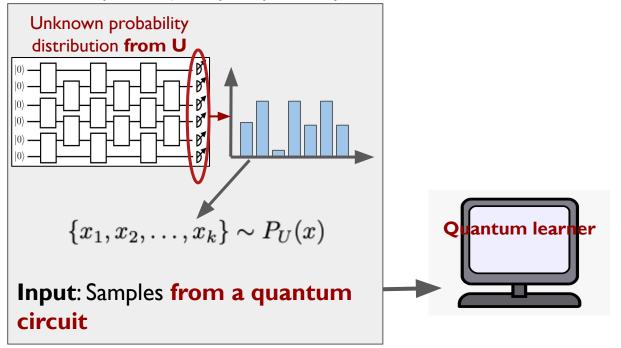


NEW input: Not just *any old* probability distribution, but...

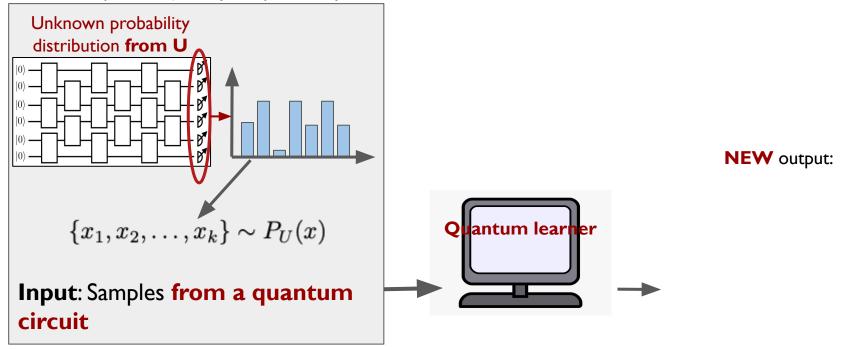
NEW input: Not just *any old* probability distribution, but...



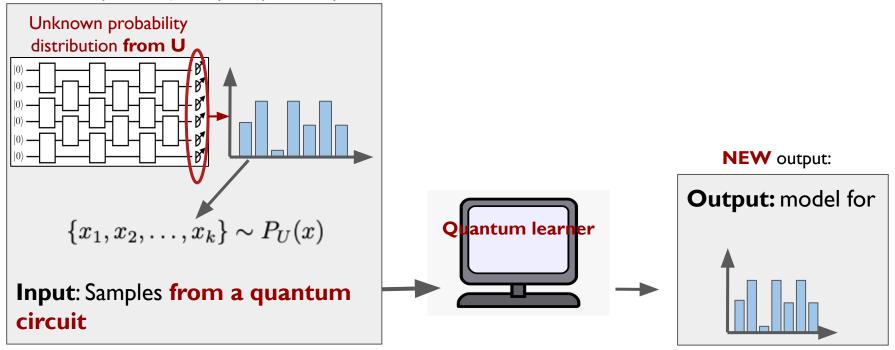
NEW input: Not just *any old* probability distribution, but...

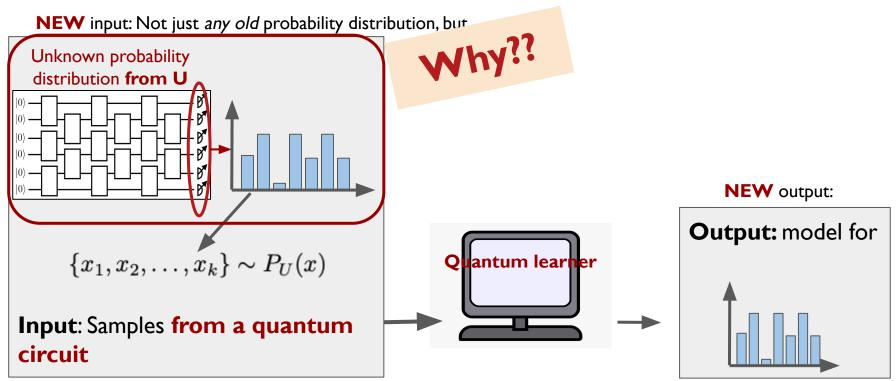


NEW input: Not just *any old* probability distribution, but...

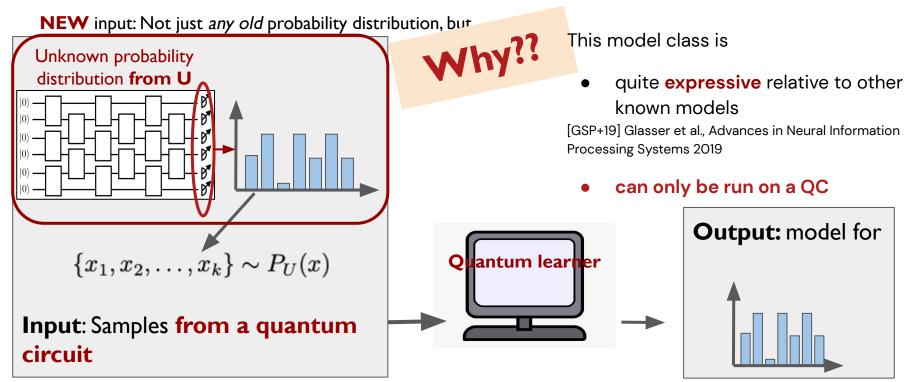


NEW input: Not just *any old* probability distribution, but...



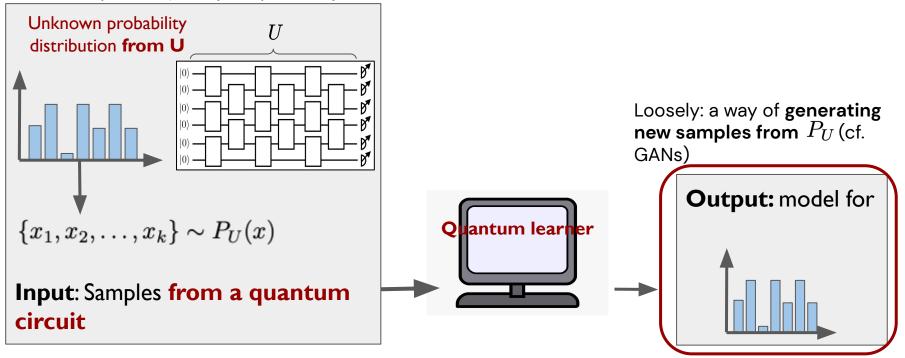


Our setting: quantum generative modelling



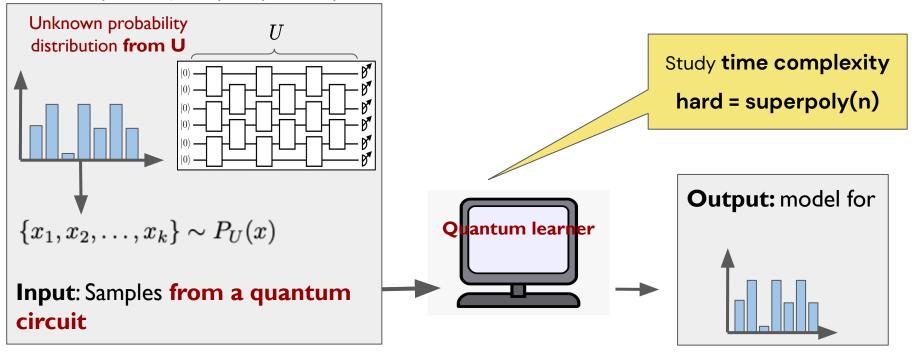
Our setting: quantum generative modelling

NEW input: Not just *any old* probability distribution, but...

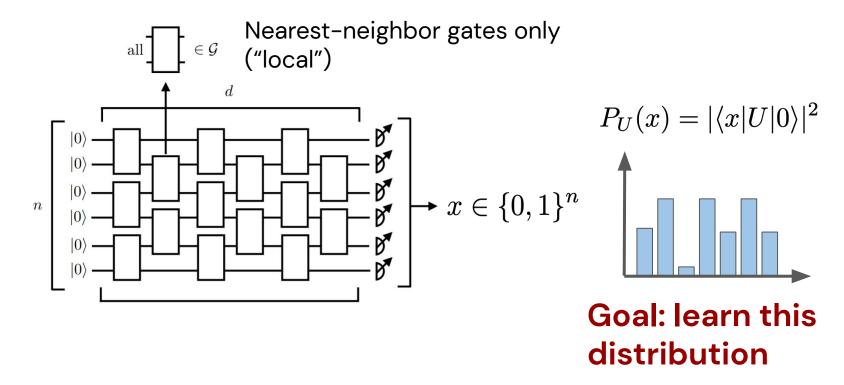


Our setting: quantum generative modelling

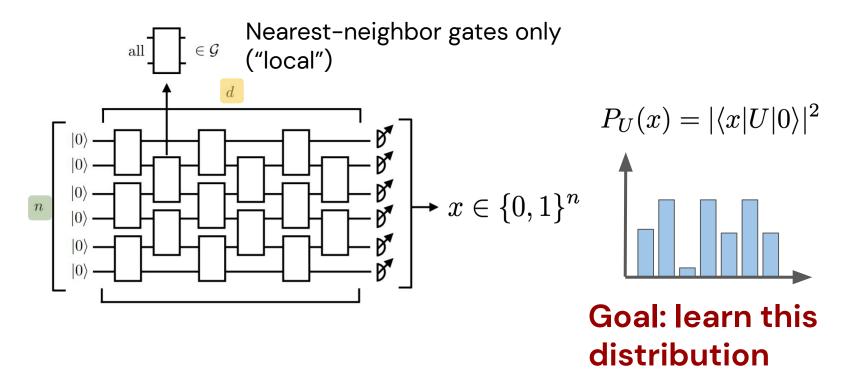
NEW input: Not just *any old* probability distribution, but...

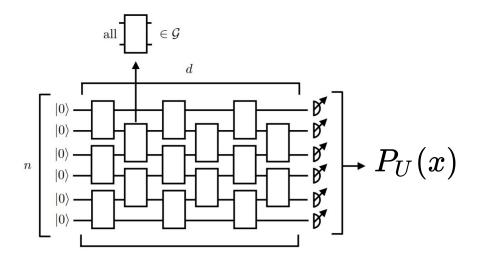


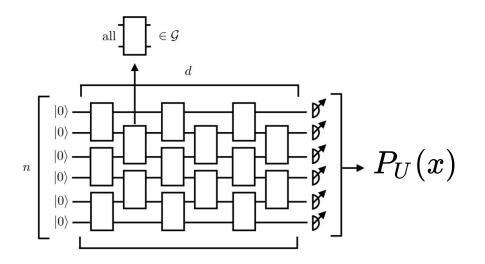
The distributions we wish to learn



The distributions we wish to learn

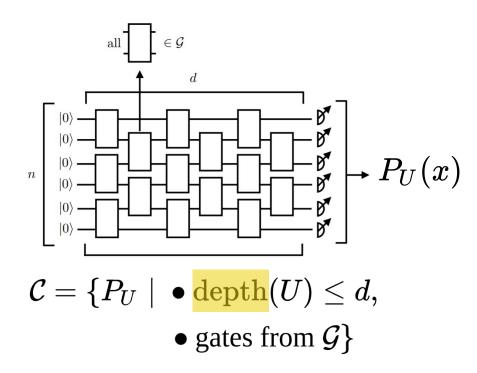






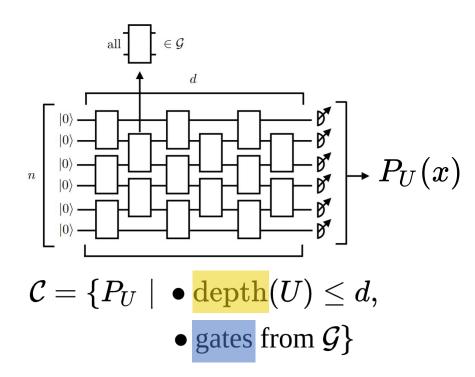
Two extremes:

- Depth d = 1:
 C = { product distributions over {0,1}ⁿ } (easy)
- Depth d → ∞ (and universal gates):
 C = { all distributions over {0,1}ⁿ } (hard)



Two extremes:

- Depth d = 1:
 C = { product distributions over {0,1}ⁿ } (easy)
- Depth d → ∞ (and universal gates):
 C = { all distributions over {0,1}ⁿ } (hard)



Two extremes:

Depth d = 1:
 C = { product distributions over {0,1}ⁿ } (easy)

Depth d → ∞ (and universal gates):
 C = { all distributions over {0,1}ⁿ } (hard)

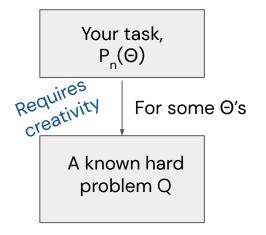
(in terms of n = problem size)

How to lower-bound the complexity of your task

Your task, P_n(Θ)

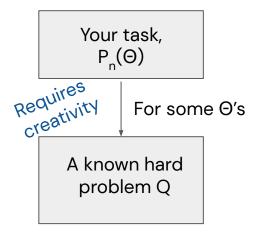
(in terms of n = problem size)

How to lower-bound the complexity of your task



How to lower-bound the complexity of your task

care about)



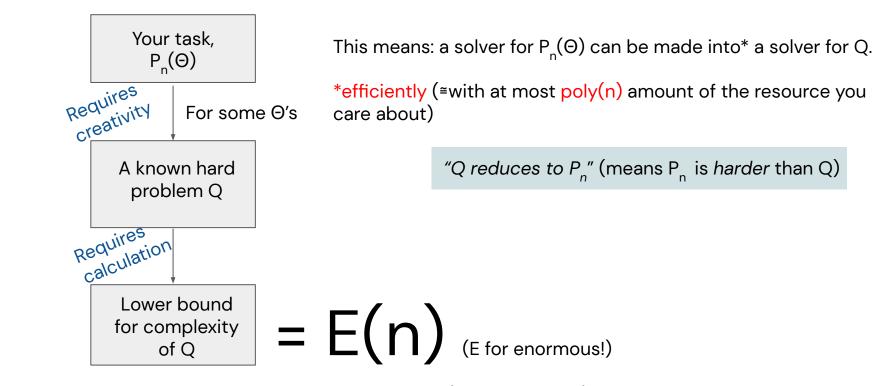
This means: a solver for $P_n(\Theta)$ can be made into* a solver for Q. *efficiently (≅with at most poly(n) amount of the resource you

"Q reduces to P_n " (means P_n is harder than Q)

(in terms of n = problem size)

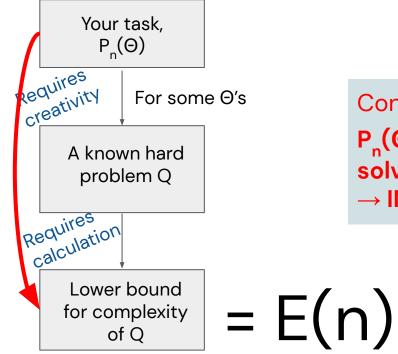
How to lower-bound the complexity of your task

(in terms of n = problem size)

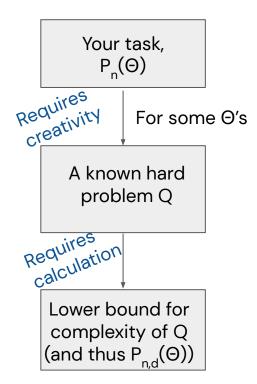


(in terms of n = problem size)

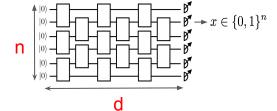
How to lower-bound the complexity of your task



Conclusion: $P_n(\Theta)$ requires complexity E(n) to solve in the worst-case. \rightarrow INEFFICIENT (if E is enormous)



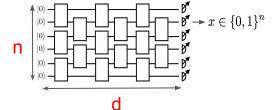
 Θ = {a quantum gateset, a circuit depth} P_n(Θ) = learn the output distributions of depth-d quantum circuits on n qubits with only nearest-neighbor gates

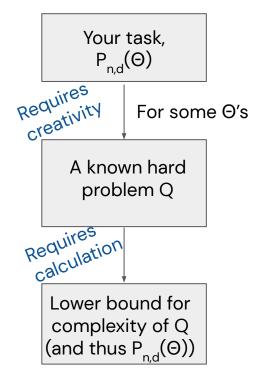




 $\Theta = \{a \text{ quantum gateset}, a \text{ circuit depth}\}$

 $P_{n,d}(\Theta)$ = generative modelling for local quantum circuits





$$\begin{split} \Theta &= \{ \text{a quantum gateset, a circuit depth} \} \\ \mathsf{P}_{\mathsf{n},\mathsf{d}}(\Theta) &= \text{generative modelling for local quantum circuits} \\ \\ \Theta &= \text{Cliffords} + 1\text{T at depth } d = n^{\Omega(1)} \end{split}$$

Q = Learning Parities with Noise

Cliffords embed parities

Parities:

$$\mathbb{P}_{\text{parities}}(\vec{x} || y) = \begin{cases} \frac{1}{2^{k}} & \text{if } y = \vec{x} \cdot \vec{s} \\ 0 & \text{else} \end{cases}$$

where s is a secret k-bit string.

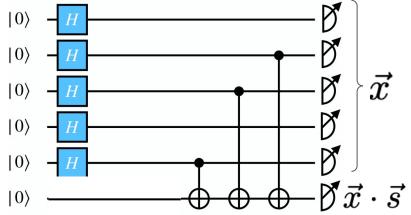
Cliffords embed parities

Parities:

$$\mathbb{P}_{\text{parities}}(\vec{x} || y) = \begin{cases} \frac{1}{2^{k}} & \text{if } y = \vec{x} \cdot \vec{s} \\ 0 & \text{else} \end{cases}$$

where s is a secret k-bit string.

Quantum circuit:



Cliffords + 1T embed noisy parities

Noisy Parities: flip the last bit with probability η

$$\mathbb{P}_{\text{noisy parities}}(\vec{x} \| y) = \begin{cases} \frac{1}{2^k} \cdot (1 - \eta) & \text{if } y = \vec{x} \cdot \vec{s} \\ \frac{1}{2^k} \cdot \eta & \text{else} \end{cases}$$

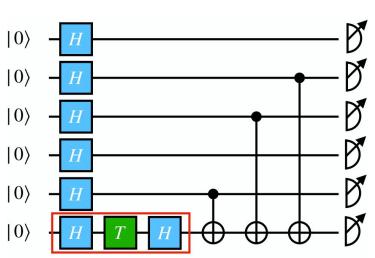
where s is a secret k-bit string.

Cliffords + 1T embed noisy parities

Noisy Parities: flip the last bit with probability η

 $\mathbb{P}_{\text{noisy parities}}(\vec{x}||y) = \begin{cases} \frac{1}{2^{k}} \cdot (1-\eta) & \text{if } y = \vec{x} \cdot \vec{s} \\ \frac{1}{2^{k}} \cdot \eta & \text{else} \end{cases}$

where s is a secret k-bit string.



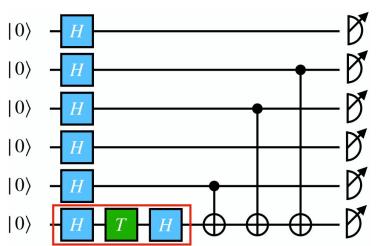
Cliffords + 1T embed noisy parities

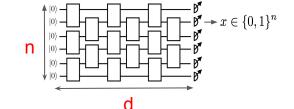
Noisy Parities: flip the last bit with probability η

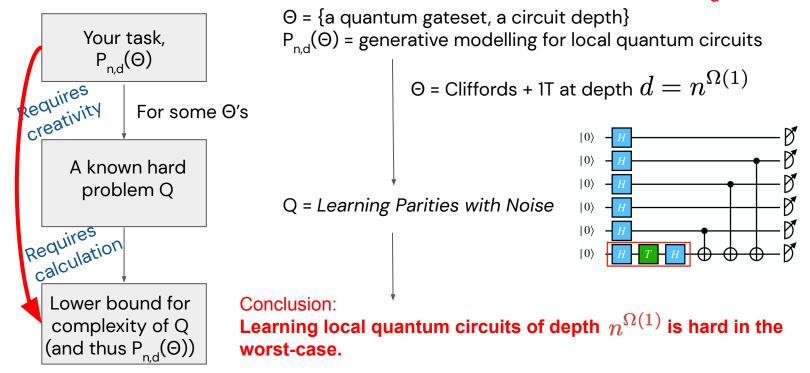
 $\mathbb{P}_{\text{noisy parities}}(\vec{x}||y) = \begin{cases} \frac{1}{2^{k}} \cdot (1-\eta) & \text{if } y = \vec{x} \cdot \vec{s} \\ \frac{1}{2^{k}} \cdot \eta & \text{else} \end{cases}$

where s is a secret k-bit string.

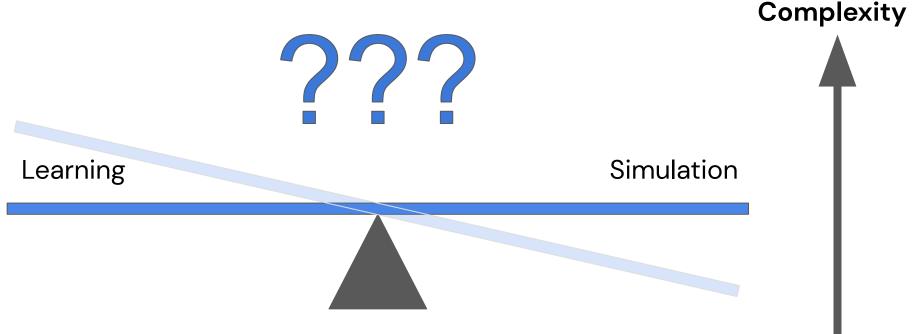
Computational complexity theory assumption: *Noisy parities is HARD (superpolynomial) to learn from samples*



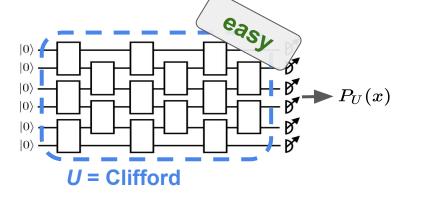


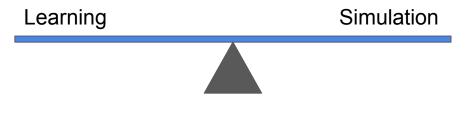


Learnability vs simulatability: the case of Cliffords

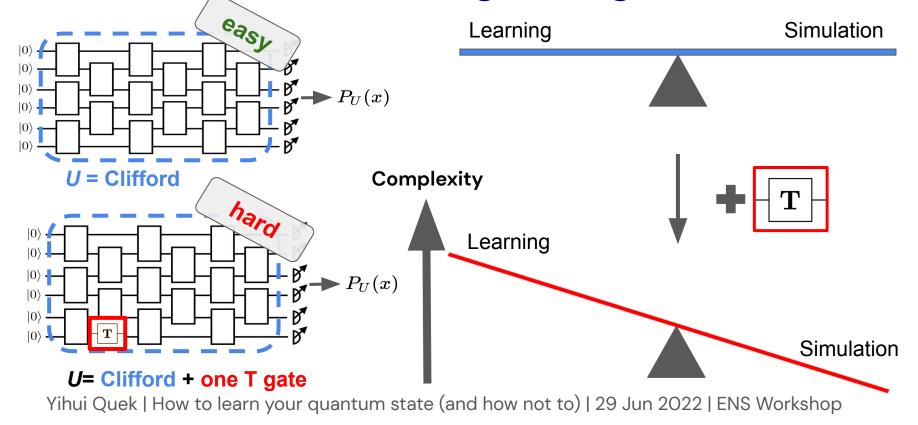


In our distribution-learning setting



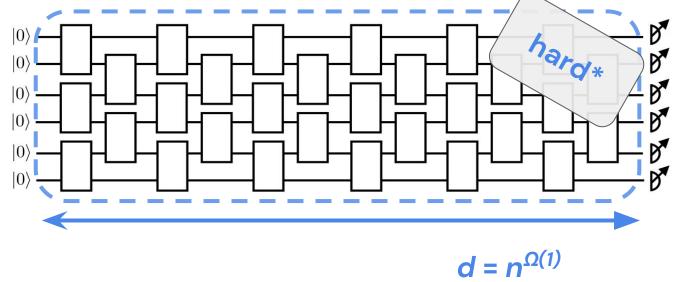


In our distribution-learning setting

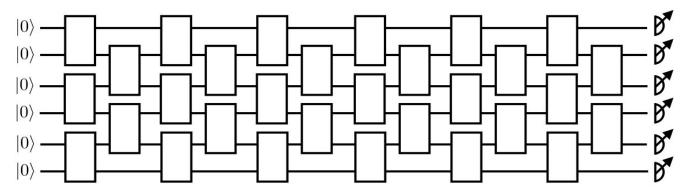


Proof: Embed a *pseudo-random function* into the output distribution

(see: [KMR+94] Kearns et al. On the learnability of discrete distributions. 1994)

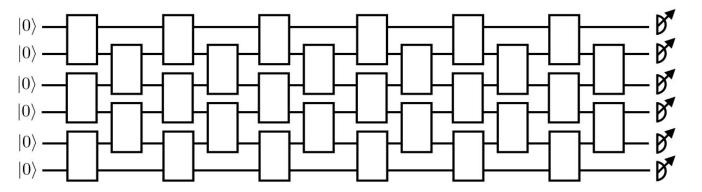


We also considered statistical queries (SQ) – a *weaker* form of sampling.



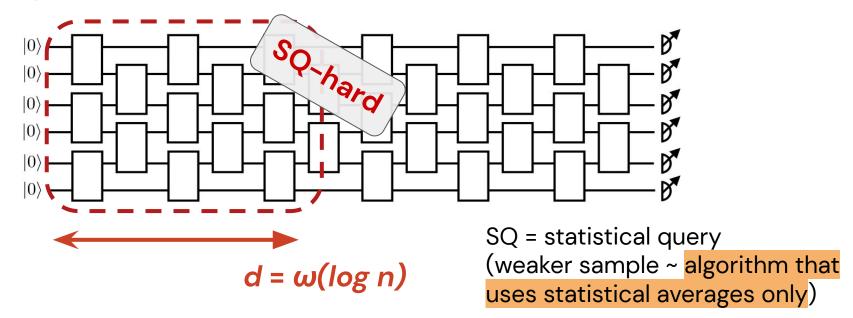
SQ = learner doesn't treat samples individually but only sees statistical averages $\mathbb{E}_{x \sim P_U}[\phi(x)] - e.g. \phi$ is gradient) This is what many algorithms actually do!

We also considered statistical queries (SQ) – a *weaker* form of sampling. Expect hardness at lower depths.



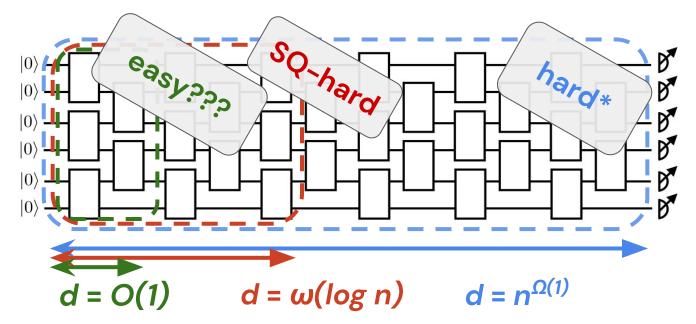
SQ = learner doesn't treat samples individually but only sees statistical averages $\mathbb{E}_{x \sim P_U}[\phi(x)] - e.g. \phi$ is gradient) This is what many algorithms actually do!

Proof: embed *Learning Parities* (easy from samples – *exponentially hard* from statistical queries).



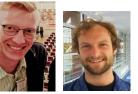
What we DON'T know so far

Learning **shallow** *d=O(1)* circuit output distributions??



arXiv: 2110.05517

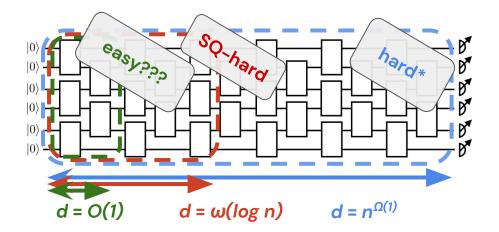
Part I takeaways



arXiv: 2110.05517

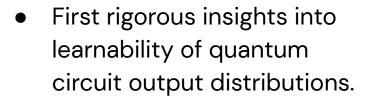
Part I takeaways

• First rigorous insights into learnability of quantum circuit output distributions.

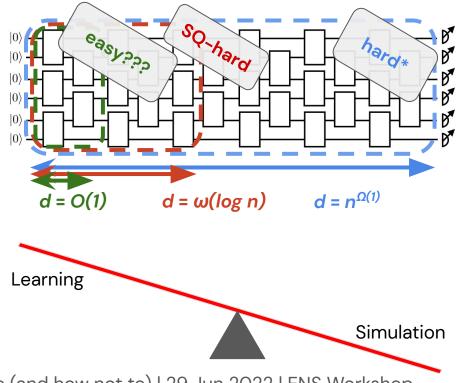


arXiv: 2110.05517

Part I takeaways



• A single T-gate makes distribution learning of Cliffords hard.



Back to the big picture.

Are there efficient ways to learn quantum states?

Ideas:

- 1) Assume the quantum circuit that produces the state* is "simple".
 - a) Clifford circuits?
 - b) Easily simulable \rightarrow easily learnable?
- 2) Change the definition of `learning', so that one only needs to learn `some properties' of the state.

Aaronson, 2007. The learnability of quantum states *Proc. R. Soc. A*.4633089–3114

*Actually, output distributions of circuits

Back to the big picture.

Are there efficient ways to learn quantum states?

Ideas:

) Assume the quantum circuit that produces the state* is "simple".

- a) Clifford circuits? 🔽 Easy to learn indeed, but...
- b) Easily simulable $\rightarrow \overline{easily}$ learnable?
- 2) Change the definition of `learning', so that one only needs to learn `some properties' of the state.

Aaronson, 2007. The learnability of quantum states *Proc. R. Soc. A*.4633089–3114

*Actually, output distributions of circuits

Back to the big picture.

Are there efficient ways to learn quantum states?

Ideas:

) Assume the quantum circuit that produces the state* is "simple".

- a) Clifford circuits? 🔽 Easy to learn indeed, but...
- b) Easily simulable \rightarrow easily learnable? \mathbf{X} ...not because they're easily simulable.
- 2) Change the definition of `learning', so that one only needs to learn `some properties' of the state.

Aaronson, 2007. The learnability of quantum states *Proc. R. Soc. A*.4633089–3114

*Actually, output distributions of circuits

Back to the big picture.

Are there efficient ways to learn quantum states?

Ideas:

- 1) Assume the quantum circuit that produces the state* is "simple".
 - a) Clifford circuits? V Easy to learn indeed, but...
 - b) Easily simulable $\rightarrow \overline{easily}$ learnable? \mathbf{X} ...not because they're easily simulable.

 Change the definition of `learning', so that one only needs to learn `some properties' of the state.

Aaronson, 2007. The learnability of quantum states *Proc. R. Soc. A*.4633089–3114

*Actually, output distributions of circuits

Back to the big picture.

Are there efficient ways to learn quantum states?

Ideas:

- 1) Assume the quantum circuit that produces the state* is "simple".
 - a) Clifford circuits? V Easy to learn indeed, but...
 - b) Easily simulable $\rightarrow \overline{easily}$ learnable? \mathbf{X} ...not because they're easily simulable.

 Change the definition of `learning', so that one only needs to learn `some properties' of the state.

Aaronson, 2007. The learnability of quantum states *Proc. R. Soc. A*.4633089–3114 Learnable in model A \rightarrow Learnable in model B?

*Actually, output distributions of circuits

[AQS'21] arXiv: 2102.07171, NeurIPS 2021 (Spotlight)

Private learning implies quantum stability

Srinivasan Arunachalam^{*1}, Yihui Quek^{†2}, and John Smolin^{‡1}

¹IBM Quantum, IBM T.J. Watson Research Center, Yorktown Heights, USA ² Information Systems Laboratory, Stanford University, USA

February 16, 2021

Abstract

Learning an unknown *n*-qubit quantum state ρ is a fundamental challenge in quantum computing. Information-theoretically, it is well-known that tomography requires exponential in *n* many copies of an unknown state ρ in order to estimate it up to small trace distance. Motivated by computational learning theory, Aaronson and others introduced several (weaker) learning models: the PAC model of learning quantum states (Proc. of Royal Society A'07), shadow tomography (STOC'18) for learning "shadows" of a quantum state, a learning model that additionally requires learners to be differentially private (STOC'19), and the online model of learning quantum states (NeurIPS'18). In these models it was shown that an unknown quantum state can be learned "approximately well" using *linear* in *n* many copies of ρ . But is there any relationship between these learning models? In this paper we prove a sequence of (information-theoretic) implications from differentially-private PAC learning to online learning and then to quantum stability.

Critical observation: every ρ defines a function f_{ρ} :

$$f_{\rho}(E) = \mathsf{Tr}(E\rho)$$

Critical observation: every ρ defines a function f_{ρ} :

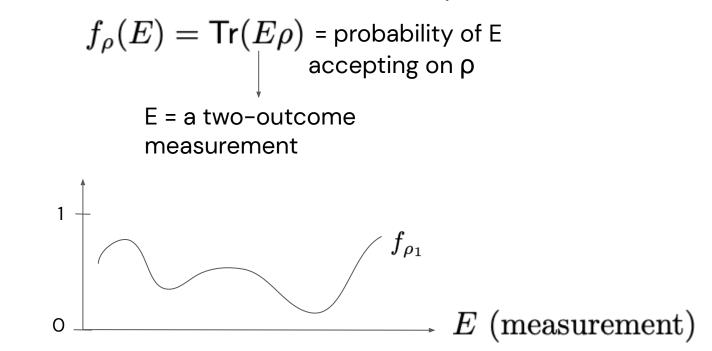
$$f_{
ho}(E) = \operatorname{Tr}(E
ho)$$

 \downarrow
E = a two-outcome
measurement

Critical observation: every ρ defines a function f_{ρ} mapping to [0,1]:

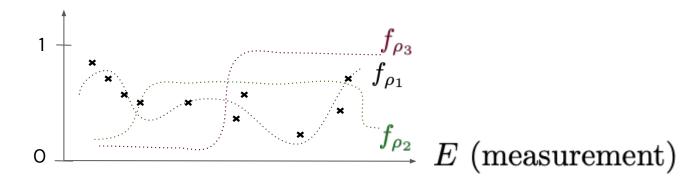
$$f_{
ho}(E) = {\sf Tr}(E
ho)$$
 = probability of E
 \downarrow accepting on ho
E = a two-outcome
measurement

Critical observation: every ρ defines a function f_{ρ} mapping to [0,1]:



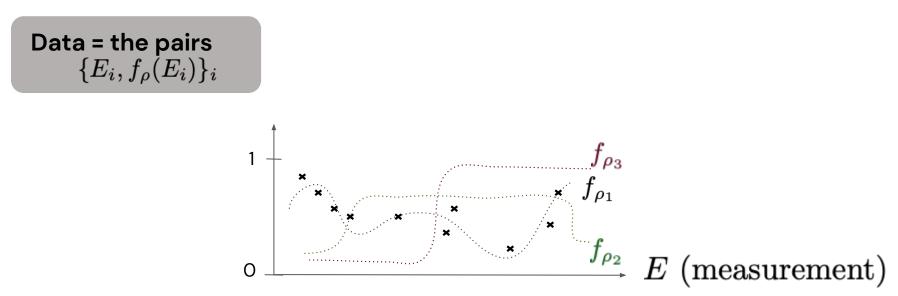
Critical observation: every ρ defines a function f_{ρ} mapping to [0,1]:

$$f_{
ho}(E) = \mathsf{Tr}(E
ho)$$



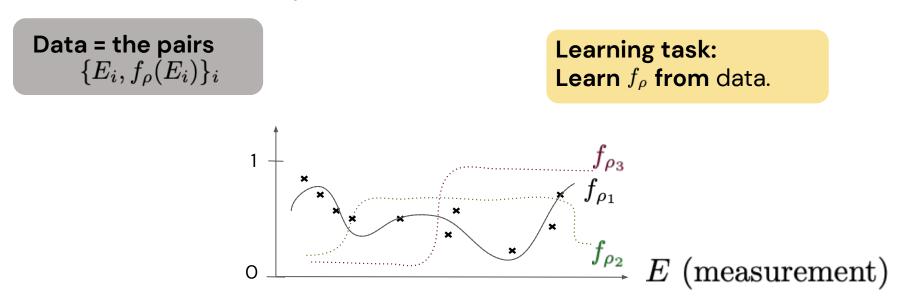
Critical observation: every ρ defines a function f_{ρ} mapping to [0,1]:

$$f_{\rho}(E) = \mathsf{Tr}(E\rho)$$



Critical observation: every ρ defines a function f_{ρ} mapping to [0,1]:

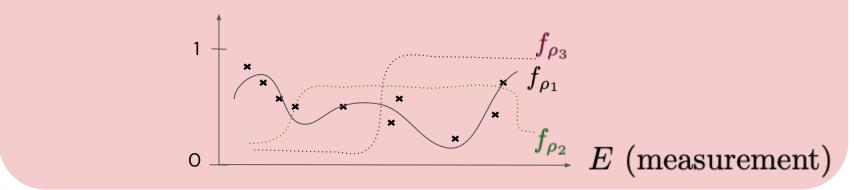
$$f_{\rho}(E) = \mathsf{Tr}(E\rho)$$



Critical observation: every ρ defines a function f_{ρ} mapping to [0,1]:

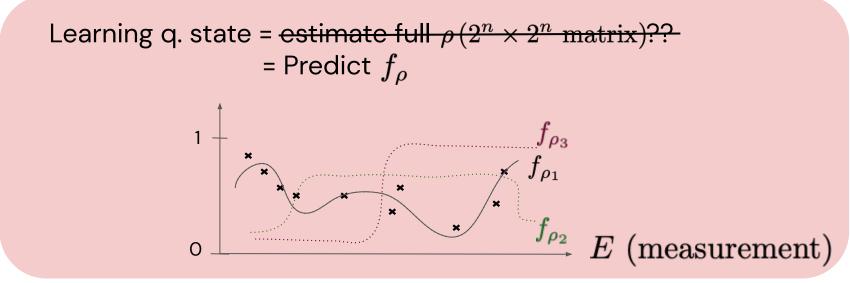
$$f_{\rho}(E) = \mathsf{Tr}(E\rho)$$

Learning q. state = estimate full $\rho (2^n \times 2^n \text{ matrix})$??



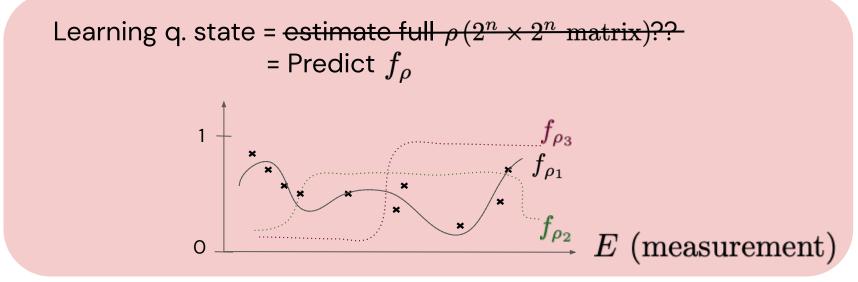
Critical observation: every ρ defines a function f_{ρ} mapping to [0,1]:

$$f_{\rho}(E) = \mathsf{Tr}(E\rho)$$



Critical observation: every ρ defines a function f_{ρ} mapping to [0,1]:

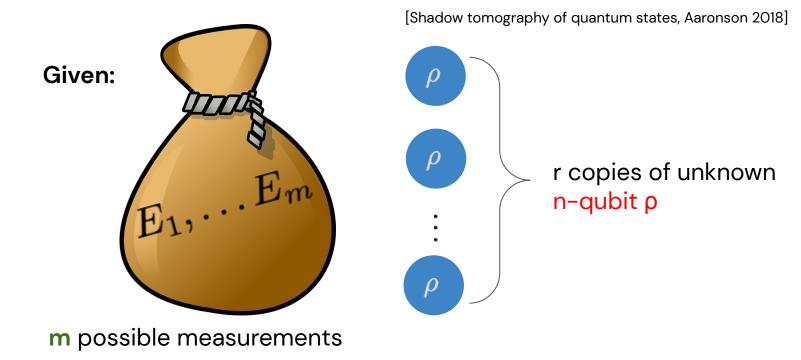
 $f_{\rho}(E) = \mathsf{Tr}(E\rho)$ (*pretty-good* tomography)

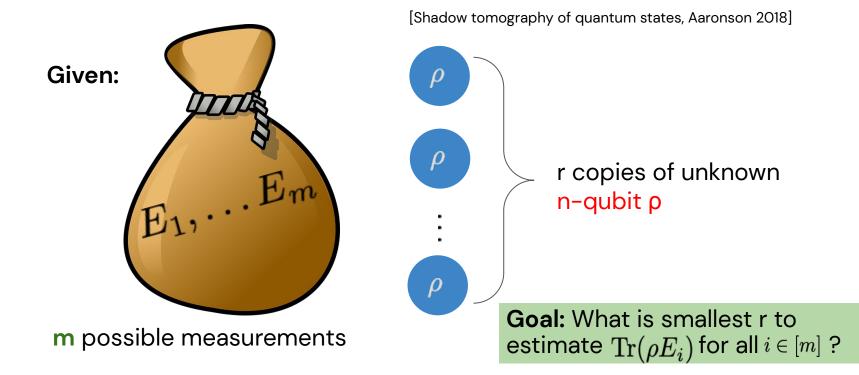


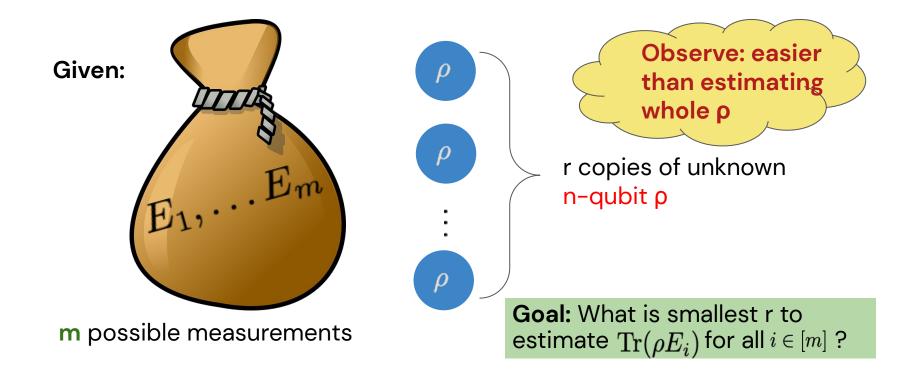
Given:

[Shadow tomography of quantum states, Aaronson 2018]

m possible measurements







Another example: Online learning

Unknown n-qubit ρ. Repeat the following rounds of interaction:

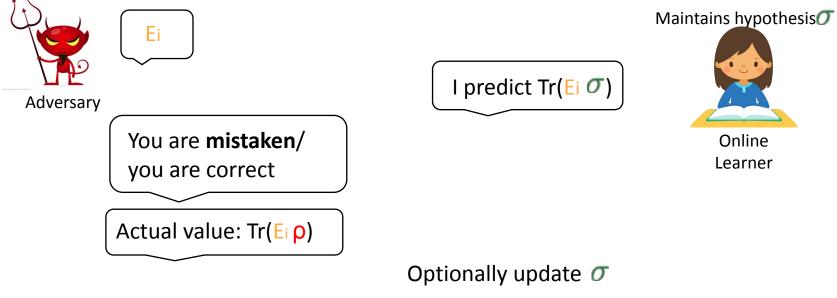
Learner

Another example: Online learning

Unknown n-qubit ρ. Repeat the following rounds of interaction:

Another example: Online learning

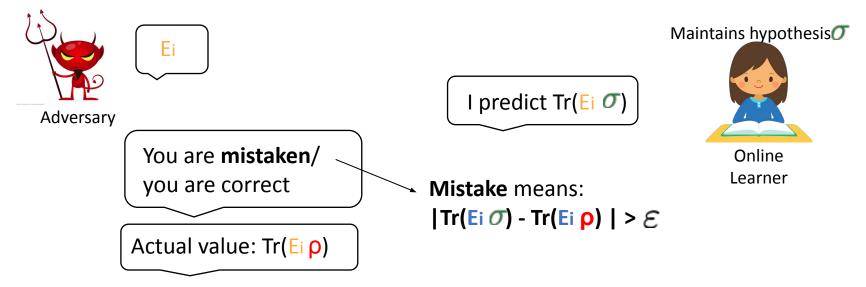
Unknown n-qubit ρ. Repeat the following rounds of interaction:



+ repeat T times!

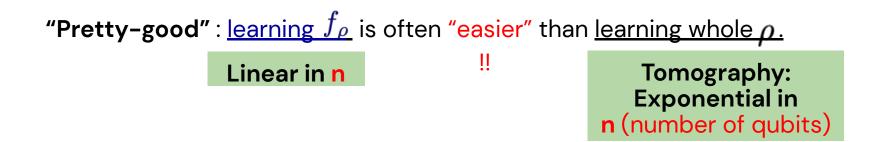
Another example: Online learning

Unknown n-qubit ρ. Repeat the following rounds of interaction:

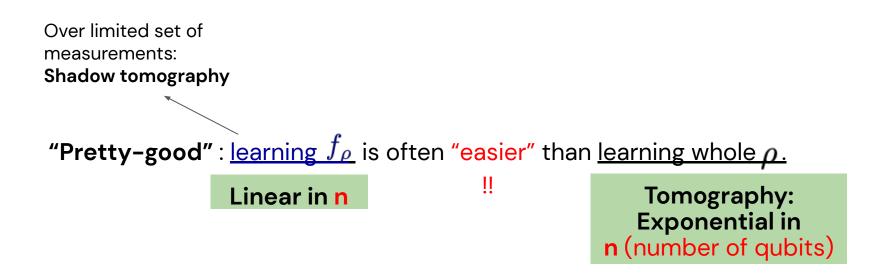


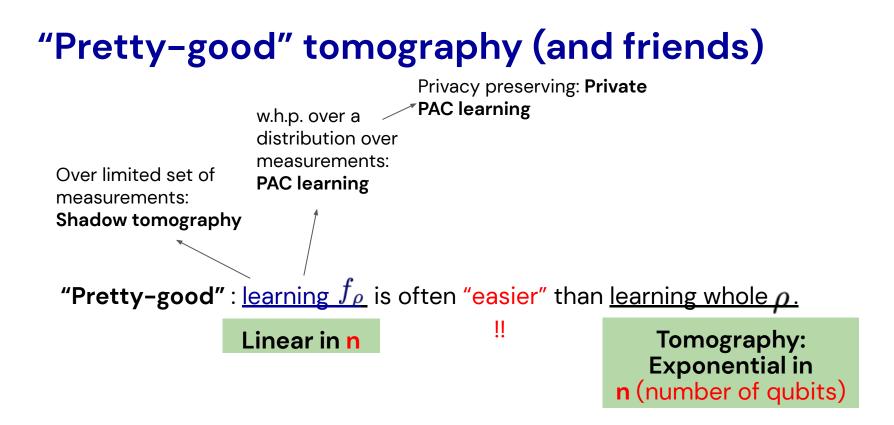
Want to minimize: worst-case number of mistakes made in T rounds

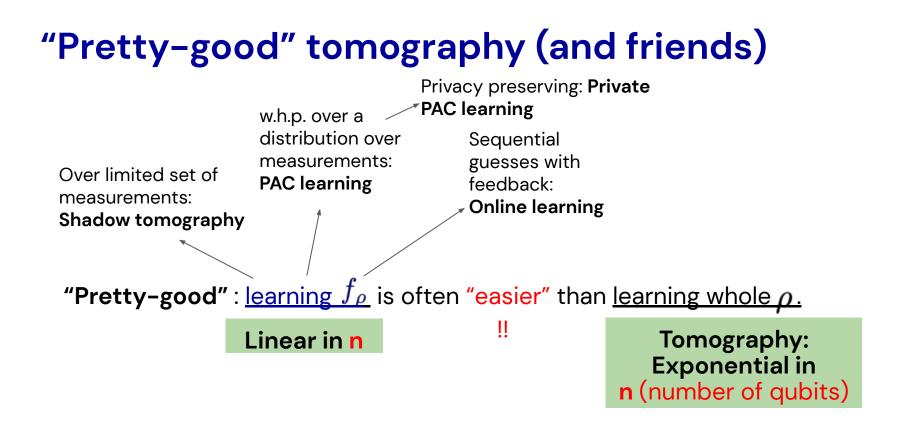
"Pretty-good" tomography (and friends)



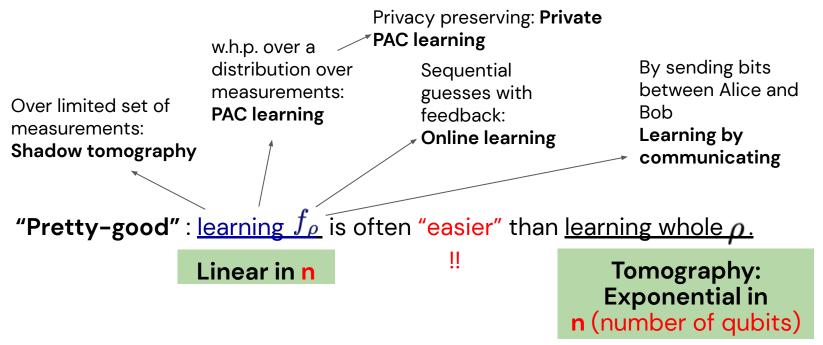
"Pretty-good" tomography (and friends)



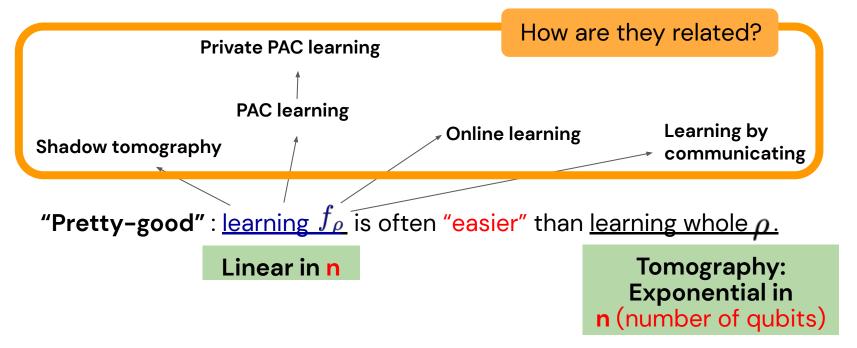




"Pretty-good" tomography (and friends)

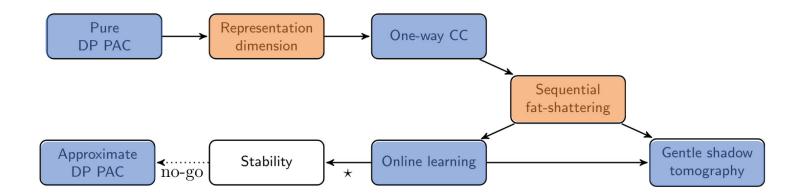


"Pretty-good" tomography (and friends)



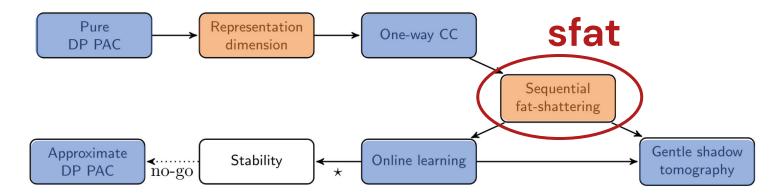
Our contribution: these models imply each other.

A web of implications between quantum learning models and combinatorial parameters



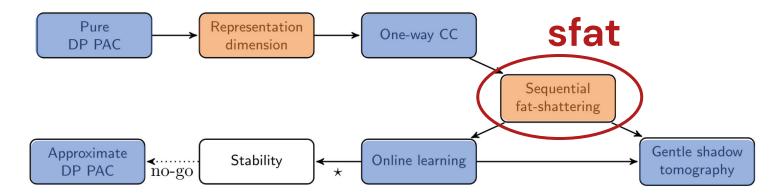
Our contribution: these models imply each other.

A web of implications between quantum learning models and combinatorial parameters = measures complexity of learning states *with special properties*



Our contribution: these models imply each other.

A web of implications between quantum learning models and combinatorial parameters = measures complexity of learning states *with special properties*



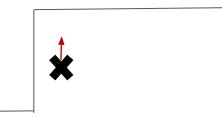
Given a function class C

Fat(C) = size of the largest set of points that is 'shattered' by C.

Shattered means:

For every pattern $(\pm \epsilon, \ldots \pm \epsilon)$, I can find a function in C that `fulfils that pattern of separation' from the points.

E.g. C is the class of threshold functions



Given a function class C

Fat(C) = size of the largest set of points that is 'shattered' by C.

Shattered means:

For every pattern $(\pm \epsilon, \ldots \pm \epsilon)$, I can find a function in C that `fulfils that pattern of separation' from the points.

E.g. C is the class of threshold functions

Given a function class C

Fat(C) = size of the largest set of points that is 'shattered' by C.

Shattered means:

For every pattern $(\pm \epsilon, \ldots \pm \epsilon)$, I can find a function in C that `fulfils that pattern of separation' from the points.

E.g. C is the class of threshold functions

 \rightarrow fat $_{\varepsilon}$ (C) is at least 1. Could it be at least 2?

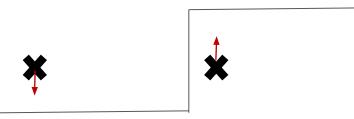
Given a function class C

Fat(C) = size of the largest set of points that is 'shattered' by C.

Shattered means:

For every pattern $(\pm \epsilon, \ldots \pm \epsilon)$, I can find a function in C that `fulfils that pattern of separation' from the points.

E.g. C is the class of threshold functions



Warmup: Fat shattering dimension [Kearns, Schapire94]

Given a function class C

Fat(C) = size of the largest set of points that is 'shattered' by C.

Shattered means:

For every pattern $(\pm \epsilon, \ldots \pm \epsilon)$, I can find a function in C that `fulfils that pattern of separation' from the points.

E.g. C is the class of threshold functions

Warmup: Fat shattering dimension [Kearns, Schapire94]

Given a function class C

Fat(C) = size of the largest set of points that is 'shattered' by C.

Shattered means:

For every pattern $(\pm \epsilon, \ldots \pm \epsilon)$, I can find a function in C that `fulfils that pattern of separation' from the points.

E.g. C is the class of threshold functions

Warmup: Fat shattering dimension [Kearns, Schapire94]

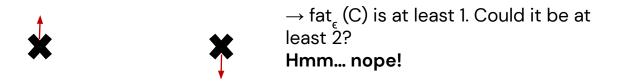
Given a function class C

Fat(C) = size of the largest set of points that is 'shattered' by C.

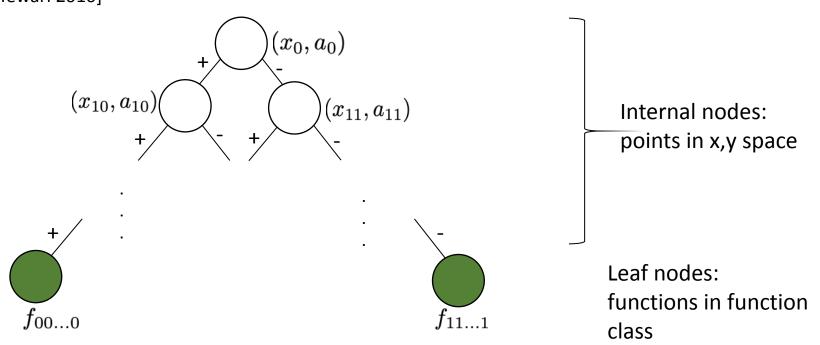
Shattered means:

For every pattern $(\pm \epsilon, \ldots \pm \epsilon)$, I can find a function in C that `fulfils that pattern of separation' from the points.

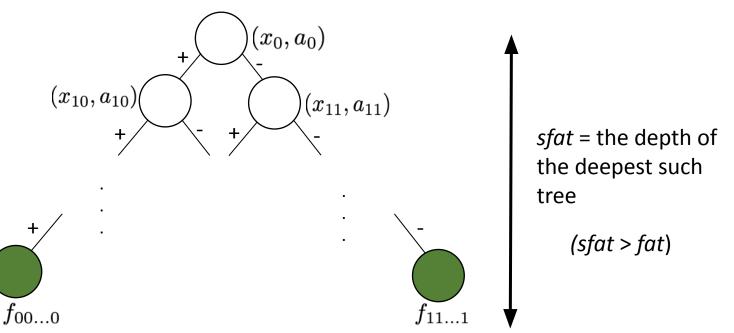
E.g. C is the class of threshold functions



Sequential fat-shattering dimension [Rakhlin, Sridharan, Tewari 2010]

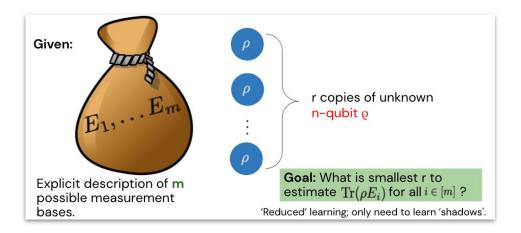


Sequential fat-shattering dimension [Rakhlin, Sridharan, Tewari 2010]

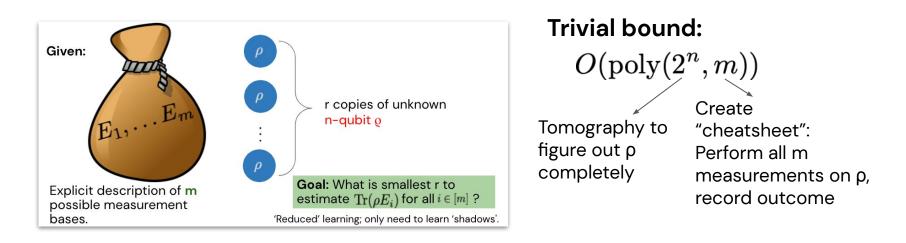


For every path from root to leaf, there is a function that 'fulfils that pattern of separation'. Difference from *fat*: points depend on earlier points.

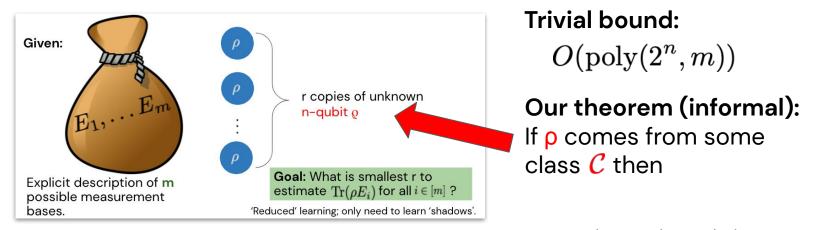
What's the complexity (=min r) of shadow tomography?



What's the complexity (=min r) of shadow tomography?

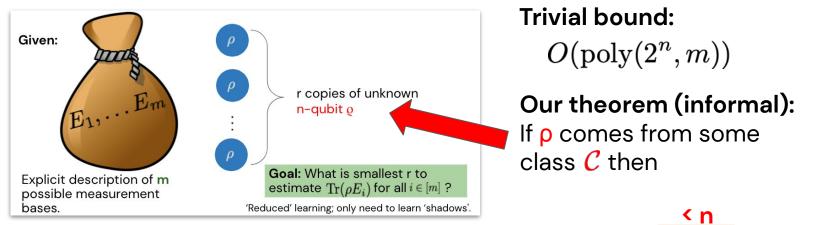


What's the complexity (=min r) of shadow tomography?



the sample complexity of shadow tomography is $O(\text{poly}(\text{sfat}(\mathcal{C}), \log m))$

What's the complexity (=min r) of shadow tomography for interesting classes of states?



the sample complexity of shadow tomography is $O(\text{poly}(\text{sfat}(\mathcal{C}), \log m))$

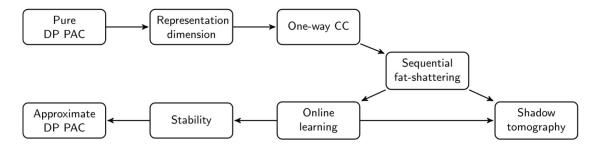
e.g. for C= low-rank states, bosonic states, noisy states

arXiv: 2102.07171/NeurIPS 2021 Part II takeaways

• There exist simpler/"reduced" versions of tomography – less resource-intensive but still capture "useful" information about state.

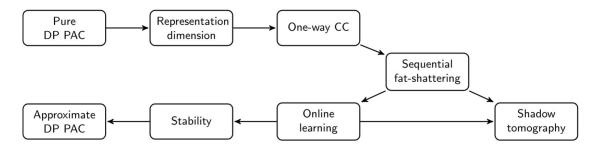
arXiv: 2102.07171/NeurIPS 2021 Part II takeaways

- There exist simpler/"reduced" versions of tomography less resource-intensive but still capture "useful" information about state.
- Equivalences between **reduced models of quantum learning allow us** to port algorithms from one model to another.



arXiv: 2102.07171/NeurIPS 2021 Part II takeaways

- There exist simpler/"reduced" versions of tomography less resource-intensive but still capture "useful" information about state.
- Equivalences between **reduced models of quantum learning allow us** to port algorithms from one model to another.



• Application: speedups in **shadow tomography** and other learning models.

Open questions

- [Sampling problems on NISQ] Can we come up with a combinatorial dimension for learning *distributions*?
- [Learning vs Classical Simulation] We saw that simulability doesn't imply learnability. Does learnability imply simulability?
- What other notions of learning could avoid the curse of exponentiality?