Counterexamples to the extendibility of positive maps

Mizanur Rahaman

June 30, 2022 Ecole Normale Supérieure de Lyon

Joint work with Giulio Chiribella, Ken Davidson and Vern Paulsen

Counterexamples to the extendibility of positive maps

Mizanur Rahaman

June 30, 2022 Ecole Normale Supérieure de Lyon

Joint work with Giulio Chiribella, Ken Davidson and Vern Paulsen

Hahn-Banach Theorem

Mizanur Rahaman

→ ∃ → June 30, 2022 Ecole Normale Supérieure de

э

Krein's Extension Theorem

Let \mathcal{C} be a cone in a real topological vector space X such that the interior of \mathcal{C} is non-empty.

Krein's Extension Theorem

Let C be a cone in a real topological vector space X such that the interior of C is non-empty. Let $M \subset X$ be a linear subspace of X and let

$$f: X \to \mathbb{R}$$

be a linear functional such that $f(M \cap C) \subseteq [0, \infty)$.

Krein's Extension Theorem

Let C be a cone in a real topological vector space X such that the interior of C is non-empty. Let $M \subset X$ be a linear subspace of X and let

$$f:X\to\mathbb{R}$$

be a linear functional such that $f(M \cap C) \subseteq [0, \infty)$. Then f can be extended to a linear functional \tilde{f} on X such that

 $\widetilde{f}(\mathcal{C}) \subseteq [0,\infty).$

Let $M_n(\mathbb{C})$ be the set of all $n \times n$ matrices and $\mathcal{C} = PSD(n, \mathbb{C})$ be the cone of all positive semi-definite matrices.

June 30, 2022 Ecole Normale Supérieure de

Let $M_n(\mathbb{C})$ be the set of all $n \times n$ matrices and $\mathcal{C} = PSD(n, \mathbb{C})$ be the cone of all positive semi-definite matrices.

Let S be a vector subspace of $M_n(\mathbb{C})$ with the property that if

• $X \in \mathcal{S}$, then $X^* \in \mathcal{S}$

June 30, 2022 Ecole Normale Supérieure de

Let $M_n(\mathbb{C})$ be the set of all $n \times n$ matrices and $\mathcal{C} = PSD(n, \mathbb{C})$ be the cone of all positive semi-definite matrices.

Let $\mathcal S$ be a vector subspace of $M_n(\mathbb C)$ with the property that if

- $X \in \mathcal{S}$, then $X^* \in \mathcal{S}$
- $\mathbf{1} \in \mathcal{S}$

Let $M_n(\mathbb{C})$ be the set of all $n \times n$ matrices and $\mathcal{C} = PSD(n, \mathbb{C})$ be the cone of all positive semi-definite matrices.

Let $\mathcal S$ be a vector subspace of $M_n(\mathbb C)$ with the property that if

•
$$X \in \mathcal{S}$$
, then $X^* \in \mathcal{S}$

$$\mathbf{1} \in \mathcal{S}$$

Vector subspace with these property is called **operator system**.

Let $M_n(\mathbb{C})$ be the set of all $n \times n$ matrices and $\mathcal{C} = PSD(n, \mathbb{C})$ be the cone of all positive semi-definite matrices.

Let $\mathcal S$ be a vector subspace of $M_n(\mathbb C)$ with the property that if

•
$$X \in \mathcal{S}$$
, then $X^* \in \mathcal{S}$

$$\mathbb{1} \in \mathcal{S}$$

Vector subspace with these property is called **operator system**. $S^+ = PSD(n, \mathbb{C}) \cap S$.

Let $M_n(\mathbb{C})$ be the set of all $n \times n$ matrices and $\mathcal{C} = PSD(n, \mathbb{C})$ be the cone of all positive semi-definite matrices.

Let $\mathcal S$ be a vector subspace of $M_n(\mathbb C)$ with the property that if

•
$$X \in \mathcal{S}$$
, then $X^* \in \mathcal{S}$

$$\mathbb{1} \in \mathcal{S}$$

Vector subspace with these property is called **operator system**. $S^+ = PSD(n, \mathbb{C}) \cap S$.

Krein's Extension Theorem

Let $S \subseteq M_n(\mathbb{C})$ be an operator system and let $f : S \to \mathbb{C}$ be a complex linear functional such that

$$f(\mathcal{S}^+) \subseteq [0,\infty),$$

June 30, 2022 Ecole Normale Supérieure de

・ 同 ト ・ ヨ ト ・ ヨ ト

Let $M_n(\mathbb{C})$ be the set of all $n \times n$ matrices and $\mathcal{C} = PSD(n, \mathbb{C})$ be the cone of all positive semi-definite matrices.

Let S be a vector subspace of $M_n(\mathbb{C})$ with the property that if

•
$$X \in \mathcal{S}$$
, then $X^* \in \mathcal{S}$

$$\mathbb{1} \in \mathcal{S}$$

Vector subspace with these property is called **operator system**. $S^+ = PSD(n, \mathbb{C}) \cap S.$

Krein's Extension Theorem

Let $S \subseteq M_n(\mathbb{C})$ be an operator system and let $f : S \to \mathbb{C}$ be a complex linear functional such that

$$f(\mathcal{S}^+)\subseteq [0,\infty),$$

then f can be extended to a positive linear functional on $M_n(\mathbb{C})$.

< 回 > < 三 > < 三 > -

Mizanur Rahaman

 $f: \mathcal{S} \subseteq M_n(\mathbb{C}) \to \mathbb{C}$

by a non-commutative space, say by the matrices.

```
f: \mathcal{S} \subseteq M_n(\mathbb{C}) \to \mathbb{C}
```

by a non-commutative space, say by the matrices. Ask: does the extendibility hold?

```
f: \mathcal{S} \subseteq M_n(\mathbb{C}) \to \mathbb{C}
```

by a non-commutative space, say by the matrices. Ask: does the extendibility hold? **Motivation:** Let $C \subseteq PSD(n, \mathbb{C})$ and $\mathcal{D} \subseteq PSD(m, \mathbb{C})$.

```
f: \mathcal{S} \subseteq M_n(\mathbb{C}) \to \mathbb{C}
```

by a non-commutative space, say by the matrices. Ask: does the extendibility hold? **Motivation:** Let $C \subseteq PSD(n, \mathbb{C})$ and $\mathcal{D} \subseteq PSD(m, \mathbb{C})$. Given a linear map such that

 $\Phi(\mathcal{C}) \subseteq \mathcal{D},$

$$f: \mathcal{S} \subseteq M_n(\mathbb{C}) \to \mathbb{C}$$

by a non-commutative space, say by the matrices. Ask: does the extendibility hold? **Motivation:** Let $C \subseteq PSD(n, \mathbb{C})$ and $\mathcal{D} \subseteq PSD(m, \mathbb{C})$. Given a linear map such that

 $\Phi(\mathcal{C}) \subseteq \mathcal{D},$

can we extend this to Φ such that

$$\widetilde{\Phi}(PSD(n,\mathbb{C}))\subseteq PSD(m,\mathbb{C})?$$

Let $S \subseteq M_n(\mathbb{C})$ be an operator system and H be a finite-dimensional Hilbert space and let

$$\Phi: \mathcal{S} \to B(H)$$

be a completely positive map.

Let $S \subseteq M_n(\mathbb{C})$ be an operator system and H be a finite-dimensional Hilbert space and let

$$\Phi: \mathcal{S} \to B(H)$$

be a completely positive map. Then Φ can be extended to a completely positive map $\widetilde{\Phi}$ on $M_n(\mathbb{C})$.

Let $S \subseteq M_n(\mathbb{C})$ be an operator system and H be a finite-dimensional Hilbert space and let

$$\Phi: \mathcal{S} \to B(H)$$

be a completely positive map. Then Φ can be extended to a completely positive map $\widetilde{\Phi}$ on $M_n(\mathbb{C})$.

Question: What if we have a positive map, instead of completely positive map? Can we extend?

Let $S \subseteq M_n(\mathbb{C})$ be an operator system and H be a finite-dimensional Hilbert space and let

$$\Phi: \mathcal{S} \to B(H)$$

be a completely positive map. Then Φ can be extended to a completely positive map $\widetilde{\Phi}$ on $M_n(\mathbb{C})$.

Question: What if we have a positive map, instead of completely positive map? Can we extend? **Ans:** NO!

Let $S \subseteq M_n(\mathbb{C})$ be an operator system and H be a finite-dimensional Hilbert space and let

$$\Phi: \mathcal{S} \to B(H)$$

be a completely positive map. Then Φ can be extended to a completely positive map $\widetilde{\Phi}$ on $M_n(\mathbb{C})$.

Question: What if we have a positive map, instead of completely positive map? Can we extend? **Ans:** NO! Arveson gave a counterexample! The norm seems to be an

obstruction.

Mizanur Rahaman

□ ▶ < ⓓ ▶ < ≧ ▶ < ≧ ▶ ≧ ♥ ♀ ♥ June 30, 2022 Ecole Normale Supérieure de

Størmer (2018)

Let $S \subseteq M_n(\mathbb{C})$ be an operator system and H be a finite-dimensional Hilbert space and let

$$\Phi: \mathcal{S} \to B(H)$$

be a positive map such that Φ is unital and of norm 1.

Størmer (2018)

Let $S \subseteq M_n(\mathbb{C})$ be an operator system and H be a finite-dimensional Hilbert space and let

$$\Phi: \mathcal{S} \to B(H)$$

be a positive map such that Φ is unital and of norm 1. Then Φ admits a positive extension to $M_n(\mathbb{C})$.

Counterexamples to Størmer's theorem (CDPR, 2022)

Mizanur Rahaman

Counterexamples to Størmer's theorem (CDPR, 2022)

$$\mathcal{A}_n := \left\{ \begin{pmatrix} \mathsf{al}_n & B \\ C & \mathsf{dl}_n \end{pmatrix} : \mathsf{a}, \mathsf{d} \in \mathbb{C}, \ B, C \in M_n(\mathbb{C}) \right\} \subseteq M_2(M_n(\mathbb{C})),$$

Counterexamples to Størmer's theorem (CDPR, 2022)

$$\mathcal{A}_n := \left\{ \begin{pmatrix} \mathsf{al}_n & B \\ C & \mathsf{dl}_n \end{pmatrix} : \mathsf{a}, \mathsf{d} \in \mathbb{C}, \ \mathsf{B}, \mathsf{C} \in \mathsf{M}_n(\mathbb{C}) \right\} \subseteq \mathsf{M}_2(\mathsf{M}_n(\mathbb{C})),$$

define

$$\Phi_n: \mathcal{A}_n \to M_{2n}(\mathbb{C})$$

by

$$\Phi_n\begin{pmatrix}aI_n&B\\C&dI_n\end{pmatrix}=\begin{pmatrix}aI_n&\frac{1}{4}B^t\\\frac{1}{4}C^t&dI_n\end{pmatrix},$$

$$\mathcal{A}_n := \left\{ \begin{pmatrix} aI_n & B \\ C & dI_n \end{pmatrix} : a, d \in \mathbb{C}, \ B, C \in M_n(\mathbb{C}) \right\} \subseteq M_2(M_n(\mathbb{C})),$$

define

$$\Phi_n: \mathcal{A}_n \to M_{2n}(\mathbb{C})$$

by

$$\Phi_n \begin{pmatrix} aI_n & B \\ C & dI_n \end{pmatrix} = \begin{pmatrix} aI_n & \frac{1}{4}B^t \\ \frac{1}{4}C^t & dI_n \end{pmatrix},$$

where X^t denotes the transpose of $X \in M_n(\mathbb{C})$.

$$\mathcal{A}_n := \left\{ \begin{pmatrix} aI_n & B \\ C & dI_n \end{pmatrix} : a, d \in \mathbb{C}, \ B, C \in M_n(\mathbb{C}) \right\} \subseteq M_2(M_n(\mathbb{C})),$$

define

$$\Phi_n: \mathcal{A}_n \to M_{2n}(\mathbb{C})$$

by

$$\Phi_n \begin{pmatrix} aI_n & B \\ C & dI_n \end{pmatrix} = \begin{pmatrix} aI_n & \frac{1}{4}B^t \\ \frac{1}{4}C^t & dI_n \end{pmatrix},$$

where X^t denotes the transpose of $X \in M_n(\mathbb{C})$. Then Φ_n is a unital, positive map with $\|\Phi_n\| = 1$,

$$\mathcal{A}_n := \left\{ \begin{pmatrix} aI_n & B \\ C & dI_n \end{pmatrix} : a, d \in \mathbb{C}, \ B, C \in M_n(\mathbb{C}) \right\} \subseteq M_2(M_n(\mathbb{C})),$$

define

$$\Phi_n: \mathcal{A}_n \to M_{2n}(\mathbb{C})$$

by

$$\Phi_n \begin{pmatrix} aI_n & B \\ C & dI_n \end{pmatrix} = \begin{pmatrix} aI_n & \frac{1}{4}B^t \\ \frac{1}{4}C^t & dI_n \end{pmatrix},$$

where X^t denotes the transpose of $X \in M_n(\mathbb{C})$. Then Φ_n is a unital, positive map with $\|\Phi_n\| = 1$, that does not admit a positive extension to $M_{2n}(\mathbb{C})$ for n > 16.

$$\mathcal{T}_n := \left\{ \begin{pmatrix} A & bI_n \\ cI_n & dI_n \end{pmatrix} : A \in M_n(\mathbb{C}), b, c, d \in \mathbb{C} \right\}$$

and a map $\Gamma_n : \mathcal{T}_n \to \mathcal{T}_n$ by

$$\Gamma_n \begin{pmatrix} A & bI_n \\ cI_n & dI_n \end{pmatrix} = \begin{pmatrix} A^t & bI_n \\ cI_n & dI_n \end{pmatrix}.$$

The map Γ_n is a positive isometry on \mathcal{T}_n which has no positive extension to the full matrix algebra $M_{2n}(\mathbb{C})$.

$$\mathcal{T}_n := \left\{ \begin{pmatrix} A & bI_n \\ cI_n & dI_n \end{pmatrix} : A \in M_n(\mathbb{C}), b, c, d \in \mathbb{C} \right\}$$

and a map $\Gamma_n : \mathcal{T}_n \to \mathcal{T}_n$ by

$$\Gamma_n \begin{pmatrix} A & bI_n \\ cI_n & dI_n \end{pmatrix} = \begin{pmatrix} A^t & bI_n \\ cI_n & dI_n \end{pmatrix}.$$

Mizanur Rahaman

→ ∃ → June 30, 2022 Ecole Normale Supérieure de

э

$$\mathcal{T}_n := \left\{ \begin{pmatrix} A & bI_n \\ cI_n & dI_n \end{pmatrix} : A \in M_n(\mathbb{C}), b, c, d \in \mathbb{C} \right\}$$

and a map $\Gamma_n : \mathcal{T}_n \to \mathcal{T}_n$ by

$$\Gamma_n \begin{pmatrix} A & bI_n \\ cI_n & dI_n \end{pmatrix} = \begin{pmatrix} A^t & bI_n \\ cI_n & dI_n \end{pmatrix}.$$

The map Γ_n is a positive isometry on \mathcal{T}_n which has no positive extension to the full matrix algebra $M_{2n}(\mathbb{C})$.

Mizanur Rahaman

$$\mathcal{C}_1 = \{x \in \mathcal{S} \otimes B(\mathcal{H}) | x = \sum_{i=1}^r a_i \otimes b_i, a_i \in \mathcal{S}^+, \ b_i \in B(\mathcal{H})^+ \}.$$

June 30, 2022 Ecole Normale Supérieure de

$$\mathcal{C}_1 = \{x \in \mathcal{S} \otimes B(H) | x = \sum_{i=1}^r a_i \otimes b_i, a_i \in \mathcal{S}^+, \ b_i \in B(H)^+ \}.$$

$$\mathcal{C}_2 = \{x \in \mathcal{S} \otimes B(H) | x = \sum_{i=1}^r a_i \otimes b_i, a_i \in M_n(\mathbb{C})^+, \ b_i \in B(H)^+\}.$$

$$\mathcal{C}_1 = \{x \in \mathcal{S} \otimes B(H) | x = \sum_{i=1}^r a_i \otimes b_i, a_i \in \mathcal{S}^+, \ b_i \in B(H)^+ \}.$$

$$\mathcal{C}_2 = \{x \in \mathcal{S} \otimes B(\mathcal{H}) | x = \sum_{i=1}^r a_i \otimes b_i, a_i \in M_n(\mathbb{C})^+, \ b_i \in B(\mathcal{H})^+\}.$$

If $C_1 = C_2$, then every positive map $\Phi : S \to B(H)$ can be extended to a positive map on $M_n(\mathbb{C})$.

$$\mathcal{C}_1 = \{x \in \mathcal{S} \otimes B(H) | x = \sum_{i=1}^r a_i \otimes b_i, a_i \in \mathcal{S}^+, \ b_i \in B(H)^+ \}.$$

$$\mathcal{C}_2 = \{x \in \mathcal{S} \otimes B(\mathcal{H}) | x = \sum_{i=1}^r a_i \otimes b_i, a_i \in M_n(\mathbb{C})^+, \ b_i \in B(\mathcal{H})^+\}.$$

If $C_1 = C_2$, then every positive map $\Phi : S \to B(H)$ can be extended to a positive map on $M_n(\mathbb{C})$.

Conversely, if $C_1 \subsetneq C_2$, then there exists a positive map $\Phi : S \to B(H)$ that can not be extended positively to $M_n(\mathbb{C})$.

THANK YOU!

Mizanur Rahaman

June 30, 2022 Ecole Normale Supérieure de

æ

・ロト ・日本 ・ヨト ・ヨト

Consider $E = \mathbb{R}^2$, $C = \{(x, y) : y > 0\} \cup \{(x, 0) : x > 0\}$. Let $F \subseteq E$ is the x-axis.

June 30, 2022 Ecole Normale Supérieure de

Consider $E = \mathbb{R}^2$, $C = \{(x, y) : y > 0\} \cup \{(x, 0) : x > 0\}$. Let $F \subseteq E$ is the x-axis. Then the functional $\phi(x, 0) = x$ is positive functional on F, i.e,

 $\phi(F\cap \mathcal{C})\in [0,\infty).$

Consider $E = \mathbb{R}^2$, $C = \{(x, y) : y > 0\} \cup \{(x, 0) : x > 0\}$. Let $F \subseteq E$ is the x-axis. Then the functional $\phi(x, 0) = x$ is positive functional on F, i.e,

 $\phi(F \cap C) \in [0,\infty).$

Check that it can not be extended to positive functional on E.