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Hahn-Banach Theorem

Krein’s Extension Theorem

Let C be a cone in a real topological vector space X such that the interior
of C is non-empty. Let M ⊂ X be a linear subspace of X and let

f : X → R

be a linear functional such that f (M ∩ C) ⊆ [0,∞).Then f can be
extended to a linear functional f̃ on X such that

f̃ (C) ⊆ [0,∞).
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Special Case

Let Mn(C) be the set of all n × n matrices and C = PSD(n,C) be the
cone of all positive semi-definite matrices.

Let S be a vector subspace of Mn(C) with the property that if

X ∈ S, then X ∗ ∈ S
1 ∈ S

Vector subspace with these property is called operator system.
S+ = PSD(n,C) ∩ S.

Krein’s Extension Theorem

Let S ⊆ Mn(C) be an operator system and let f : S → C be a complex
linear functional such that

f (S+) ⊆ [0,∞),

then f can be extended to a positive linear functional on Mn(C).
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Non-commutative Hahn-Banach Theorem

Replace the range of the linear function

f : S ⊆ Mn(C)→ C

by a non-commutative space, say by the matrices. Ask: does the
extendibility hold?
Motivation: Let C ⊆ PSD(n,C) and D ⊆ PSD(m,C). Given a linear
map such that

Φ(C) ⊆ D,

can we extend this to Φ̃ such that

Φ̃(PSD(n,C)) ⊆ PSD(m,C)?
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Non-commutative Hahn-Banach Theorem

Arveson Extension Theorem (1969)

Let S ⊆ Mn(C) be an operator system and H be a finite-dimensional
Hilbert space and let

Φ : S → B(H)

be a completely positive map.

Then Φ can be extended to a completely
positive map Φ̃ on Mn(C).

Question: What if we have a positive map, instead of completely positive
map? Can we extend?
Ans: NO! Arveson gave a counterexample! The norm seems to be an
obstruction.
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Positive maps with stronger property

Størmer (2018)

Let S ⊆ Mn(C) be an operator system and H be a finite-dimensional
Hilbert space and let

Φ : S → B(H)

be a positive map such that Φ is unital and of norm 1. Then Φ admits a
positive extension to Mn(C).
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Counterexamples to Størmer’s theorem (CDPR, 2022)

An :=

{(
aIn B
C dIn

)
: a, d ∈ C, B,C ∈ Mn(C)

}
⊆ M2(Mn(C)),

define
Φn : An → M2n(C)

by

Φn

(
aIn B
C dIn

)
=

(
aIn

1
4B

t

1
4C

t dIn

)
,

where X t denotes the transpose of X ∈ Mn(C). Then Φn is a unital,
positive map with ‖Φn‖ = 1, that does not admit a positive extension to
M2n(C) for n > 16.
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Another counterexample

Tn :=

{(
A bIn
cIn dIn

)
: A ∈ Mn(C), b, c , d ∈ C

}
and a map Γn : Tn → Tn by

Γn

(
A bIn
cIn dIn

)
=

(
At bIn
cIn dIn

)
.

The map Γn is a positive isometry on Tn which has no positive extension
to the full matrix algebra M2n(C).
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Cone theoretic obstruction?

If S ⊆ Mn(C) and given B(H) for finite dimensional H, we define two
cones

C1 = {x ∈ S ⊗ B(H)|x =
r∑

i=1

ai ⊗ bi , ai ∈ S+, bi ∈ B(H)+}.

C2 = {x ∈ S ⊗ B(H)|x =
r∑

i=1

ai ⊗ bi , ai ∈ Mn(C)+, bi ∈ B(H)+}.

If C1 = C2, then every positive map Φ : S → B(H) can be extended to a
positive map on Mn(C).
Conversely, if C1 ( C2, then there exists a positive map Φ : S → B(H)
that can not be extended positively to Mn(C).
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THANK YOU!
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Consider E = R2, C = {(x , y) : y > 0} ∪ {(x , 0) : x > 0}. Let F ⊆ E is
the x-axis.

Then the functional φ(x , 0) = x is positive functional on F , i.e,

φ(F ∩ C) ∈ [0,∞).

Check that it can not be extended to positive functional on E .
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