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Entanglement

= cannot be created or increased by
local operations (LO) & classical communication (CC)

= Entanglement manipulation :

the conversion of entanglement from one form to
another via LOCC by 2 distant parties

= Asymptotic entanglement manipulation protocols:
= Entanglement distillation

= Entanglement dilution
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Asymptotic Entanglement Distillation

Bob
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“r . @m <"
singlets (=Y _

. (o) 23

= Heuristically: \ =

b

m the maximum number of singlets that can be
limsup —~ = extracted from each copy of the state Lrg

N—o0 L
= “distillable entanglement” ED (IOAB)
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singlets

Alice

= Heuristically:

m the minimum number of Bell states needed
. - n
liminf — = to create a copy of the state IOAB

n—wo [l
= “entanglement cost” Ec (IOAB)
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Asymptotic Entanglement Manipulation of Pure States

Pag = ‘ Dap > <§9AB ‘

EC (pAB) = ED (IOAB) =E (‘ N >) eEQ:;ﬁg?/e?Jent
=S(pn) =S(p5)

S(p,)=—-Tr(p,l0g, p,) =von Neumann entropy of its
reduced state A

= entanglement of pure states is asymptotically reversible

= This is not true for mixed states.
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Entanglement Cost of a mixed state
[Hayden, Horodecki & Terhal]

o0 - 1 n
E. (/OAB) = E; (pAB) = imﬁ E. (pr )

Entanglement of Formation of a bipartite state 0,

E (@) = {gnip>} > S ( A
OpB :Zi: P; ‘(DEAB ><¢5AB ‘ \

convex roof extension | _ _ @ )
Oh =T | 0he ) {0k =(0k)

\
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evaluated in the

Ec(Pas) Ep(Pag):

multiple, identical copies
of the Initial state

LOCC

——
——_—— ___-~
’f —

—

asymptotic i.i.d. framework

multiple, identical copies
of the desired target state

with asymptotically vanishing error

~N -

m In practice: difficult Chieve due to noise

m typically one doesn’t know how such a limit is approached
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Asymptotic-i-i-d. framework ===  One-shot scenario

= E.g. Entanglement Dilution

instead of singlets W?m”
. LOCC
\\\ T Bob
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Asymptotic-i-i.d. framework ===  One-shot scenario

= E.g. One-shot Entanglement Dilution

singlets lﬂ_

l Locc
ST - - Bob

————

How many singlets are needed to create a single copy of a

bipartite state P g Via LOCC ?
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Question

Question

How many singlets are needed
to create a single copy of
Pag via LOCC ?

Is there an operational
Interpretation of the Schmidt
number of Pag ?

One-shot entanglement dilution

Some relevant entropic quantities

= Definition & properties of
the Schmidt number of IOAB

= Answering the questions

= One-shot entanglement distillation & entanglement spread

= Open gquestions
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= A bipartite pure state ‘WAB> ceH,\QH,
d
Wae) =D A in)]iz)
1=1

d
Schmidt coeffs. 4. >0 ; Zﬂ,i =1 d= min{dA,dB}
=1

f

= Schmidt decomposition

= no.of non-zero Schmidt coeffs.
= Schmidtrank - r(wAB) N =rankof Op =rankof Py

_ IOA:TrB‘l//AB><WAB‘

= | Apure state “//AB> is entangled if and only if I'(y,5) >1.

Locc
= A necessary condition for ‘WAB> —> ‘(pAB>: F(WAB) > r((DAB).
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. [Terhal & Horodecki]
Prg < &= { Piy ‘ Vi >} an ensemble of pure states

Pas = Z Pi ‘l//iAB><WiAB ‘

Mo (E)= max r(y®) = max. Schmidt rank of the pure states in &

Schmidt number of  Ppg: N(p,g):= mgiin{r (E)}

max

= Inany E={pi,‘l//iAB>} of pP,g» 1 atleast one ‘wiAB> such that

r(WiAB) > N(0p8)

= 1 atleastone &= { pi,‘l//iAB>} of p,g, suchthat ‘v"wiAB> e,
r(WiAB) <N(0p8)
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= Forapure state O,g = ‘l//AB><WAB ‘ . N(ows) =1y as)

= For a separable state N(p,5)=1.

= Schmidt number is an entanglement monotone

VA e LOCC N (A(op)) S N(0p5)

= Classification of density matrices:

H . finite-dl Hilbert space; Prg € @(}[n ®7'[n)

set of density matrices

Sk ::{pABE@(Hn@)j{n); N(pAB)Sk} Sk—1CSk

81 = set of separable density matrices

sl Classification of linear maps
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= Classification of linear maps:

= A linear Hermiticity-preserving map Ak is K -positive if & only if

(I®Ak)pABZO Vs € 5

Al : positive map

separable states <= nositive maps [Horodecki

= Astate . isentangledif&onlyif 3 @ A; such that

(1®A;)pps <0

Schmidt number += | -positive maps

= | Astate P has Schmidt number >k +1 If 4 a Ak such that

(1 ®A,)pag <0
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Schmidt number -- Summary

= Schmidt number of p,; Is an entanglement monotone

= S, can be characterized by K -positive maps

= can be detected by k-Schmidt number witnesses

= There is a ‘zoo’ of entanglement monotones!

(Q) Does the Schmidt number have an operational significance ?
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Question Question
How many singlets are needed Is there an operational
to create a Sing|e copy of interpretation of the Schmidt
Pag via LOCC ? number of Pag ?

= One-shot entanglement dilution
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One-shot Entanglement Dilution

singlets

/ _\

-

Alice DT Bob
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One-shot Entanglement Dilution
= Equivalently,

Bob

Las

M
‘\PM>:_Z“>“> a maximally entangled
M i3 state of Schmidt rank M ,

logM =7



I UNIVERSITY OF
&Y CAMBRIDGE

One-shot Entanglement Dilution

=7 Bob
c>0;
FA(Y,,), Pp) 21— ¢

Fi (M, 0,5) = max F(A(Y ), Pns)

AelLOCC

= Dilution fidelity

One-shot & -error entanglement cost

E((:l,)g(pAB) = min{log M Fi (M, 045) 21_5}
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Ec(:l)g (/OAB) =7

= Theorem: For any ¢ =0,

————
- ~-o

E((:l)g (Ons) zn‘gﬂ:Hog (Pra | R)

] =

=
N e ———

PaB Hfz{pi"WiAB»
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« Definition of Hy (oga| R):

Pra =P, [wi")] Paa = 2 B0 ) (]

= Tripartite c-g state:

Prag = Z P |1z ) (i ‘®"7”iAB><'7”iAB ‘

R: an auxiliary classical system

{‘iR>}E e

pRA:Zpi“R><iR‘®WiA WiA:TrB‘WiAB><WiAB‘
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¥ Quantum relative Renyi 1

entropy of order ¢ =1 Su (ollo) = E log (TI’ (paal_a))

So(plle)=1lm S, (pllo) =-log (Tr (I1,,0))

po = Hp projection onto support of 0O

= Definition of H,(0z, | R):

Ho (Ora | R) = mgax Ho (0ra | OR)
H, (IORA | GR) = _SO(IORA | Oor ® IA)

Ho (Pan | R) = max |og(Tr(HpRA (0., ® |A)))
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H, (0ur | R) = maxlog(Tr( pRA(aR®|A)))

HE(pas |R):= MIN Ho(0pa | R)

PRAE B® (PrA

B*(0ra) _{IORA | Pra = Pra LS 5}

= Theorem: For any & =0,

(1) (/OAB) mm HO’(pRA | R)
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One-shot & -error entanglement cost

= Theorem: For any ¢ =0,

Ec(:l)g (pAE‘;‘):"‘if’nan Ho (Ora | R)

~

—

min HE(ppa | R) < EE, (pg) < Min Hé (op, | R)
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e=0: One-shot (Q-error entanglement cost

= Corollary:

E((:l) (Pag) = mgn Hy (Pra | R)
= min max Iog(Tr(ﬂ (0, ® IA)))

E op_ PRA
g \\\ *
= |Og(N (pAB)/' (*)
RN

Schmidt number

= Answer: The minimum number of singlets needed to

create a single copy of Pas is 100 N(0,5)
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E((:l)g (Pns) = min{log M Fi(M, ppg) 21_5}

= Lemma: [G.Bowen & ND ; M. Hayashi]

Fi (M, pag) =

MaX
ool

PAB :Z Pi
i

M

Z piZﬂk(i) ............... (1)

e F(M,pu)2

RHS of (1)

* F,(M,p,)< LHSof (1)

v AB
K -th Schmidt coeff. of ‘Wi >

‘quantum scissors effect’

Lo-Popescu theorem
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Qs logN(p,,) always additive ?
2,
X
Iog N (IOAE?) =0 Iog N (IOAB)

(A) No! [Terhal & Horodecki]
« Isotropic state: Invariant under U ®U "~

B 1—f
JoN: M2 _1

(P2 ) (P [)+ £ 2) (P |

0< <1

= Proved: f =}/\/§; N(,Ofé): N(0s)

[Terhal & Horodecki

iog N (pi@é =10g N (0p5)

= (Q) Can one understand this operationally ?
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= Isotropic state

1-f
Pas M2 _1

(=¥ ) (¥ [)+ [0 (P |

0<f<1

= Numerical evidence: f — \f% N (pi@é) =N(p.)

log N (/0?52 =10g N (45)

= (Q) Can one prove this ?
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Las
Y% T

lA : LOCC )
Alice ~~~. 7 Bob

-~
~So P

\\' 8
z“11M>

-
-

Eél,)g (Pns) = max{log M :3A:LOCC, F(A(pa5), ¥y ) 21—5}

One-shot & -error distillable entanglement
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= Theorem: One-shot & -error distillable entanglement

(1) (IOAB) mln (gﬁA)

St (@4) SEY (Pa5) < St (04) —log(L—2+/¢)

mln ((DA) = Max Sm|n (a)A)

_ wp€B, (¢p)
smoothed min-entropy

Smin (a)A) = IOg (;Lmax (a)A))

min-entropy
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(1) ~ QE¢ £
ED,g (/OAB) ~ Smin ((DA) Ec(:l)g (pAB) ~ Smax (¢A)
(::(gi — g)::,‘ min-entropy max-entropy
El(Dl) (¢AB) — Smin ((DA) E((:l) (¢AB) — Smax (¢A)
=—10g 4, (@) = Iog(rank(gaA))

= The differences :

A(CDAB) = Eél) (¢AB) - E[()l) (¢AB) &=0

Operational significance ?

A, (§DAB) = Ec(:l)g (§DAB) — E[(>1,)g (¢AB) 20
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[Hayden, Winter; Harrow]

= The difference :

A((DAB) - E((:l) (gﬁAB) — E[()l) (goAB) = entanglement spread

A, (Pns) = Ec(:l)g (Pns) — Eél,)g (@pg)= & - perturbed

entanglement spread

A(@,gz): lower bound to the classical communication cost

of creating @,; from singlets via LOCC

O FET to a fidelity > (1— ).

(Q) Do these differences for a mixed state O,z have
have similar operational interpretations ?
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= One-shot entanglement dilution

= Minimum number of singlets needed to create a single copy of Jo N

EX (p,:) = log ( N (pAB)) [logarithm of the Schmidt number]

« Foranaccuracy ¢ > 0: EY (pu)~ man H; (oga | R)

= For apurestate P, = ‘¢AB><¢AB )
Ec’ (P18)= Smex (92)= log (rank(g,))

= One-shot entanglement distillation

= Forapurestate p,5 = ‘CDAB > <§0AB ‘ ,

Elg)l) (¢AB) = Smin ((DA) = — |09 (ﬂ’max ((DA))

= For an accuracy € =0 E[()l,)g (PAB) ~ Spin (¢A)

= Open questions: Schmidt number, entanglement spread
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Retrieving the asymptotic entanglement cost

. (Pro) = limlim = E® (p21)

e—>0n—o N

Our Theorem = (1) (,0 )
A | Generalized
S,(pllo)<S(plle)  \ limlim= Stoin'e
Fannes’ inequality ¢>0n— | lemma
00
_ [Hayden,
EC (IOAB) — EF (IOAB) Horodecki,
Terhal]




