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Entanglement

 Entanglement manipulation :

the conversion of entanglement from one form to 

another via LOCC by 2 distant parties

 Asymptotic entanglement manipulation protocols:

 Entanglement distillation

 Entanglement dilution

 cannot be created or increased by 
local operations (LO) & classical communication (CC)



Asymptotic Entanglement Distillation

n
AB

Alice Bob



Asymptotic Entanglement Distillation

nm 


n
AB

: LOCC

Alice Bob

singlet

    

  2 21 01 10
2

    C C





Entanglement Distillation
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Asymptotic Entanglement Dilution
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Entanglement Dilution
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( )C ABE 

the minimum number of Bell states needed 
to create a copy of the state
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Asymptotic Entanglement Manipulation of Pure States

AB AB AB  

( ) ( )C AB D ABE E 
: ( ) ( )A BS S  

 entanglement of pure states is asymptotically reversible

= von Neumann entropy of its 

reduced state A
2( ) Tr( log )A A AS    

 This is not true for mixed states.

 ABE  Entropy of 
entanglement



Asymptotic Entanglement Dilution 

Entanglement Cost of a mixed state 

Entanglement of Formation of a bipartite state 
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[Hayden, Horodecki & Terhal]
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evaluated in the

asymptotic i.i.d. framework

multiple, identical copies
of the initial state

with asymptotically vanishing error

( ),  ( ) :C AB D ABE E 

multiple, identical copies
of the desired target state

LOCC

e.g. in ent. distillation 
n

AB

 in practice: difficult to achieve due to noise

n 

 typically one doesn’t know how such a limit is approached

: no correlations



A more relevant scenario 

 E.g.  Entanglement Dilution

Asymptotic i.i.d. framework One-shot scenario
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A more relevant scenario 

 E.g. One-shot Entanglement Dilution

Asymptotic i.i.d. framework One-shot scenario

m 


AB

: LOCC

Alice Bob

singlets

?m 

How many singlets are needed to create a single copy of a 

bipartite state          via LOCC ?AB



Outline of the talk

Question

 Definition & properties of 
the Schmidt number of 

How many singlets are needed 
to create a single copy of 

via LOCC ?AB

Is there an operational
interpretation of the Schmidt 
number of ?AB

Question

AB One-shot entanglement dilution

 Some relevant entropic quantities

 Answering the questions

 One-shot entanglement distillation & entanglement spread

 Open questions



Schmidt number

 A bipartite pure state

 Schmidt decomposition

 Schmidt rank :

AB BA  H H
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( )ABr 

Schmidt coeffs.

= no.of non-zero Schmidt coeffs.

= rank of = rank ofA
TrA B AB AB  

B

 A pure state AB is entangled if and only if ( ) 1.ABr  

 A necessary condition for 
LOCC

:AB AB  ( ) ( ).AB ABr r 

min{ , }A Bd d d



Schmidt number : mixed states

 , AB
AB i ip  E =

AB AB
AB i i i

i
p  

an ensemble of pure states

 max max ( )AB
ii

r r E = = max. Schmidt rank of the pure states in E

Schmidt number of :AB   maxmin( )ABN r
E

:= E

 In any  , AB
i ip E = of ,AB  at least one AB

i such that

( ) ( )AB
i ABr N 

 , AB
i ip E = at least one of ,AB such that AB

i E,

( ) ( )AB
i ABr N 

[Terhal & Horodecki]



Schmidt number contd.

 Schmidt number is an entanglement monotone

LOCC ( ( )) ( )AB ABN N  

 For a pure state :AB AB AB   ( ) ( )AB ABN r 

 Classification of density matrices:

:nH  AB n n  D H Hfinite-dl Hilbert space; 

set of density matrices 

  : ;  ( )k AB n n ABS N k    D H H 1k kS S 

1S  set of separable density matrices 

Classification of linear maps

 For a separable state ( ) 1.ABN  



Schmidt number contd.

 Classification of linear maps:

 A linear Hermiticity-preserving map is -positive if & only if 

  0k ABI  

k

AB kS 

1 : positive map

 A state AB is entangled if & only if  a 1 such that

 1 0ABI  

 A state AB has Schmidt number  a k such that

  0k ABI  

1,k  if

separable states positive maps

Schmidt number -positive maps

k

k

[Horodecki]



Schmidt number -- Summary

 Schmidt number of  is an entanglement monotone

 can be characterized by      -positive mapskkS

 can be detected by

AB

(Q) Does the Schmidt number have an operational significance ?

 There is a ‘zoo’ of entanglement monotones!

-Schmidt number witnessesk



Outline of the talk

Question

How many singlets are needed 
to create a single copy of 

via LOCC ?AB

Is there an operational
interpretation of the Schmidt 
number of ?AB

Question

 One-shot entanglement dilution



One-shot Entanglement Dilution
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One-shot Entanglement Dilution

M

AB

: LOCC

Alice Bob

1

1 M

M
i

i i
M 

   a maximally entangled
state of Schmidt rank ,M

log ?M 

 Equivalently,



One-shot Entanglement Dilution

M

AB

: LOCC

Alice Bob

 dilmin log : F ( , ) 1ABM M   


0; 

(1)
, ( ) :C ABE   

One-shot -error entanglement cost

( ( ), ) 1M ABF     

dil LOCC
F ( , ) : max ( ( ), )AB M ABM F 


  

 Dilution fidelity



(1)
, ( ) ?C ABE   

 Theorem: For any 0, 
(1)

, 0( ) min ( | )C AB RAE H R
  

E

One-shot -error entanglement cost

 , AB
AB i ip  E =



0 ( | ) :RAH R  Definition of

 , AB
AB i ip  E = AB AB

AB i i i
i

p  

AB AB
RAB i R R i i

i
p i i   

 Tripartite c-q state:

an auxiliary classical system
 Ri  RH

:R

A
RA i R R i

i
p i i   TrA AB AB

i B i i  



0 ( | ) :RAH R  Definition of

 11( || ) : log  Tr ( )
1

S  
    






0
0

 S ( || ) : lim ( || )S


   


  log  Tr ( )  

0
   projection onto support of 

 Quantum relative Renyi
entropy of order 1 

0 ( | ) :RAH R Definition of

0 0( | ) max ( | )
R

RA RA RH R H


  

0 0( | ) ( || )RA R RA R AH S I     

  0 max log Tr )| (( )
RA

R
RA R AH R I

  



0 ( | ) :RAH R  Definition of

  0 ( | ) max log Tr ( )
RA

R
RA R AH R I

   

( )
0min ( | )

RRA A
A

B
RH R

 




 1: :  |( | |) |RA RA RRA AB        RA

 Theorem: For any 0, 
(1)

, 0( ) min ( | )C AB RAE H R
  

E

‘smoothed’ entropy

0 ( | ) :RAH R  



 Theorem: For any 0, 

2 (1)
0 , 0min ( | ) ( ) min ( | )RA C AB RAH R E H R 

   
E E

(1)
, 0( ) min ( | )C AB RAE H R
  

E

One-shot -error entanglement cost



 Corollary:

0 : 

(1)
0( ) min ( | )C AB RAE H R 

E

One-shot -error entanglement cost0

log ( )ABN 

Schmidt number

 Answer: The minimum number of singlets needed to    

create a single copy of               AB is log ( )ABN 

  max log Tm r (in )
RA

R
R AI

  
E

(*)



 
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Key ingredient of the proof

 Lemma: [G.Bowen & ND ; M. Hayashi]

…………….(1)

-th Schmidt coeff. of
AB
ik

dilF ( , )ABM  

dilF ( , )ABM  

RHS of (1)

LHS of (1)

‘quantum scissors effect’

Lo-Popescu theorem





 dilmin log : F ( , ) 1ABM M   (1)
, ( ) :C ABE   



(Q) Is log ( )ABN  always additive ?
?

log ( ) log ( )n
AB ABN n N  

(A) No!

 Isotropic state:

 2

1
1AB M M M M

f I f
M

 
      


0 1f 

 Proved: 1 ;
2

f  2( ) ( )AB ABN N  

2log ( ) log ( )AB ABN N  
 (Q) Can one understand this operationally ?

[Terhal & Horodecki]

Open Questions

Invariant under *U U
[Terhal & Horodecki]

*



 Isotropic state

 2

1
1AB M M M M

f I f
M

 
      


0 1f 

 Numerical evidence: 3 ;2f 
2( ) ( )AB ABN N  

2log ( ) log ( )AB ABN N  

 (Q) Can one prove this ?



One-shot Entanglement Distillation
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One-shot -error distillable entanglement



(1)
, min( ) ( )D AB AE S 
  

 Theorem:

For a pure state 

One-shot -error distillable entanglement

;AB AB AB  

(1) '
min , min( ) ( ) ( ) log(1 2 )A D AB AS E S 

      

min min( )
( ) max ( )

A A
A AB

S S




 
 




 min max( ) : log ( )A AS   
min-entropy

smoothed min-entropy



(1)
, min( ) ( )D AB AE S 
  

 For a pure state 

0 
(1)

min( ) ( )D AB AE S 
max: log ( )A  

;AB AB AB  

(1)
max( ) ( )C AB AE S 
 rank( ): log A

(1)
, max( ) ( )C AB AE S 
  

(1) (1)( ) ( ) ( )AB C AB D ABE E    

(1) (1)
, ,( ) ( ) ( )AB C AB D ABE E      

min-entropy max-entropy

 The differences : 

Operational significance ?

0 

0 



 The difference : 

(1) (1)( ) ( ) ( )AB C AB D ABE E     = entanglement spread

[Hayden, Winter; Harrow]

(1) (1)
, ,( ) ( ) ( )AB C AB D ABE E       =         - perturbed

entanglement spread

lower bound to the classical communication cost

of creating AB from singlets via LOCC

( ) : .....................AB  to a fidelity (1 ). 

( ) :AB

(Q) Do these differences for a mixed state 
have similar operational interpretations ?

For a pure state ;AB AB AB  

AB have



SUMMARY

 For a pure state ;AB AB AB  

 One-shot entanglement dilution

(1) ( )C ABE  max ( )AS   rank( ): log A
 One-shot entanglement distillation

 For an accuracy

 For a pure state ;AB AB AB  
(1) ( )D ABE  min ( )AS   max ( ): log A  

0 :  (1)
, min( ) ( )D AB AE S 
  

 For an accuracy 0 :  (1)
, 0( ) min ( | )C AB RAE H R
  

E

 Open questions: Schmidt number, entanglement spread

 Minimum number of singlets needed to create a single copy of

 (1) ( ) log ( )C AB ABE N 
AB

[logarithm of the Schmidt number]



( )F ABE 

(1)
,0

1( ) lim lim ( )n
C AB C ABn

E E
n 

 

 


(1)
,.... ( ) ....n

C ABE   

0

1lim lim
n n 

( )C ABE  

Retrieving the asymptotic entanglement cost

[Hayden, 
Horodecki, 

Terhal]

Generalized
Stein’s
lemmaFannes’ inequality

0 S ( || ) ( || )S   

Our Theorem 


