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Density states
e (H,(:|-)) — Hilbert space,
@ U(H) — the group of unitary operators

@ u(#) — anti-Hermitian operators

u*(H) — Hermitian operators

The set D1(#H) of pure states is the image of the map

HA\ {0} 3 x = py = 'ﬁﬁ;' e DHH) C u*(H).
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Density states
e (H,(:|-)) — Hilbert space,
@ U(H) — the group of unitary operators
@ u(#) — anti-Hermitian operators

o u*(H) — Hermitian operators

The set D1(#H) of pure states is the image of the map

HA\ {0} 3 x = py = m);' e DHH) C u*(H).

Di(H) ~PH = (H \ {0})/C* — Hilbert projective space

D(H) = convex(D1(H)) — convex body of (mixed) density states

DH)={D Xip: Ai=0, Y XNi=1, x€H}.
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Composite systems
Let now H = H;1 ® Ha.

In H we can distinguish separable (simple) tensors of the form
X = x1 ® x2. The corresponding pure states we call separable,

SYH)={px € D}(H) : x =x1 D x2}.
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Composite systems
Let now H = H;1 ® Ha.

In H we can distinguish separable (simple) tensors of the form
X = x1 ® x2. The corresponding pure states we call separable,

S H)={px €D'(H) :x=x1Dx2}.

One can show that
Px1®@x0 = Pxy X Pxo 5

S H)={peD'(H):p=pa®py, X EHi}.

Here we use the decomposition
u'(H) = u*(H1) ® u*(Ha),

where
(AL ® A2)(x1 ® x2) = A1x1 @ Asxo .
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Entanglement

By definition, the set S(#) of separable density states is the convex hull of
the set S1(H) of separable pure states,

S(H) = convex(S(H)) = {Z Aipi i Ai >0, Z)\; =1, pi e SY{(H)}.

J.Grabowski (IMPAN) Segre maps and entanglement 09/01/2012 5/25



Entanglement

By definition, the set S(#) of separable density states is the convex hull of
the set S1(H) of separable pure states,

S(H) = convex(S(H)) = {Z Aipi i Ai >0, Z)\,- =1, pi € SY(H)}.

The other states are called entangled,

E(H) = D(H) \ S(H).
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Entanglement

By definition, the set S(#) of separable density states is the convex hull of
the set S1(H) of separable pure states,

S(H) = convex(S(H)) = {Z Aipi i Ai >0, Z)\,- =1, pi € SY(H)}.
The other states are called entangled,
E(H)=D(H)\ S(H).

Example

Put #1 = H, = C2.

V.
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Entanglement

By definition, the set S(#) of separable density states is the convex hull of
the set S1(H) of separable pure states,

S(H) = convex(S(H)) = {Z Aipi i Ai >0, Z)\,- =1, pi € SY(H)}.
The other states are called entangled,

EH)=D(H)\S(H).
Example

Put H; = Hy = C?. The tensor x = \% (J0) ® |1) — |1) ® |0)) is not
simple and the corresponding pure state
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Entanglement

By definition, the set S(#) of separable density states is the convex hull of

the set S1(H) of separable pure states,

S(H) = convex(S(H)) = {Z Aipi i Ai >0, Z)\,- =1, pi € SY(H)}.

The other states are called entangled,
EH)=D(H)\S(H).
Example
Put H; = Hy = C?. The tensor x = \% (J0) ® |1) — |1) ® |0)) is not
simple and the corresponding pure state
px = %(I0>®|1><0|®<1\+\1>®!0><1\®<0|
—10)®[1){1[@ (0] - 1) ® [0){0] ® (1)

is entangled.
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Measure of Entanglement

Question 1: How to decide whether a given state is entangled?
Question 2: How to measure the entanglement?

For pure states we have nice answers:

@ Concurrence:

c(p) = /1= tr (tr2(p)?),

J.Grabowski (IMPAN) Segre maps and entanglement 09/01/2012

6/25



Measure of Entanglement

Question 1: How to decide whether a given state is entangled?
Question 2: How to measure the entanglement?

For pure states we have nice answers:

c(p) = /1 —tr(tra(p)?),

where tr is the trace with respect to the second subsystem,

trz(Al ® A2) = tr (AQ) -A7.

@ Concurrence:
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Question 1: How to decide whether a given state is entangled?
Question 2: How to measure the entanglement?

For pure states we have nice answers:

c(p) = /1 —tr(tr2(p)?),
where tr is the trace with respect to the second subsystem,
tl"g(Al ® A2) = tr (AQ) -A7.

@ Schmidt rank: the number k of components in any Schmidt
decomposition.

@ Concurrence:
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Measure of Entanglement

Question 1: How to decide whether a given state is entangled?
Question 2: How to measure the entanglement?

For pure states we have nice answers:

c(p) = /1 —tr(tr2(p)?),
where tr is the trace with respect to the second subsystem,
tl"g(Al ® A2) = tr (A2) -A7.

@ Schmidt rank: the number k of components in any Schmidt
decomposition.

@ Concurrence:

Theorem
Any x € H = H1 ® Ho admits a Schmidt decomposition

k
X = Z Aiei® fi, A\j >0, (&) and (f;) — orthonormal sets. .
i=1
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Segre embedding
The tensor product map

Q@ :HixHy = H=H1@Ha, (x1,%)—x1®x2,
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Segre embedding
The tensor product map
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associates the product of rays with a ray, so it induces a canonical
embedding on the level of complex projective spaces,
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Segre embedding
The tensor product map

X :H1 X Ho > H=H1®Hy, (X1,X2)>—>X1®X2,

associates the product of rays with a ray, so it induces a canonical
embedding on the level of complex projective spaces,

Seg : PH1 x PHy — PH =P(Hi1® Ha),
Seg : DY (H1) x DY (Ho) — DYH) = DY (H1 ® Ha),
(lea sz) = Pxlgx2 -
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Segre embedding
The tensor product map
®:7‘[1><7'[2—>7‘[=H1®7‘[2, (X1,X2)>—>X1®X2,

associates the product of rays with a ray, so it induces a canonical
embedding on the level of complex projective spaces,

Seg : PH1 x PHy — PH =P(Hi1® Ha),
Seg : DY (H1) x DY (Ho) — DYH) = DY (H1 ® Ha),

(pX17pX2) = Pxigx? -

In particular, Seg embeds CP" x CP™ into CP"™+n+m,
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Segre embedding

The tensor product map
X :H1 X Ho > H=H1®Hy, (X1,X2)>—>X1®X2,

associates the product of rays with a ray, so it induces a canonical
embedding on the level of complex projective spaces,
Seg : PH1 x PHy — PH =P(Hi1® Ha),
Seg : DY (H1) x DY (Ho) — DYH) = DY (H1 ® Ha),
(pX17 sz) = Pxlgx? -

In particular, Seg embeds CP" x CP™ into CP"™+n+m,

Theorem

A pure state p on H = Hi1 ® Hy is entangled if and only if p lies outside
the range of the Segre embedding.
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o We work on H®? = H ® H or, more generally, HE®" =H ® --- @ H -
n-times.
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Bosons and Fermions

@ Question 3: How to define entanglement for composite systems of
indistinguishable particles?

We work on H®2 = H ® H or, more generally, H®" =H @ --- @ H -
n-times.

Question 4: Which symmetric/antisymmetric tensors are ‘simple’
(separable)?

Antisymmetric tensors (fermions) are never simple in the standard
sense: X1 A Xo = X1 Q X0 — Xo @ X1.

@ Symmetric tensors (bosons): x; ® xo + x2 ® xq or rather x ® x?

e What about other potential statistics (parastatistics)?
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Bosons and Fermions

@ Question 3: How to define entanglement for composite systems of
indistinguishable particles?

e We work on H®? =H @ H or, more generally, H®" = H® --- @ H -
n-times.

@ Question 4: Which symmetric/antisymmetric tensors are ‘simple’
(separable)?

@ Antisymmetric tensors (fermions) are never simple in the standard
sense: X1 A Xo = X1 Q X0 — Xo @ X1.

@ Symmetric tensors (bosons): x; ® xo + x2 ® xq or rather x ® x?

e What about other potential statistics (parastatistics)?

We need a unifying mathematical concept of a simple tensor.
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Multipartite systems of Bosons or Fermion
In the tensor power H®¥ = H ® - - - ® H we distinguish the subspaces:
_—

k—times

J.Grabowski (IMPAN) Segre maps and entanglement 09/01/2012 9 /25



Multipartite systems of Bosons or Fermion

In the tensor power H®¥ = H ® - - - ® H we distinguish the subspaces:
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k—times

o HYK =H v ---VH of totally symmetric tensors (bosonic Fock),

k—times
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k—times
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Multipartite systems of Bosons or Fermion

In the tensor power H®K = H @ --- @ H we distinguish the subspaces:
—_———

k—times

o HYK =H v ---VH of totally symmetric tensors (bosonic Fock),
—_—
k—times
e and H K = H A --- AH of totally antisymmetric ones (fermionic
—_—

k—times
Fock space),

together with the symmetrization, W,Y c HOk 5 Yk

and antisymmetrization, 7, : H®k — H"X, projectors:
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Multipartite systems of Bosons or Fermion
In the tensor power H®K = H @ --- @ H we distinguish the subspaces:
—_———
k—times
o HYK =H v ---VH of totally symmetric tensors (bosonic Fock),
—_—
k—times
e and H K = H A --- AH of totally antisymmetric ones (fermionic

k—times
Fock space),

together with the symmetrization, 7/ : HEOK — HVK,

and antisymmetrization, 7, : H®k — H"X, projectors:

T(A®: - ®fi)= o Z fo1) ® ++ ® oy »

€Sk
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Multipartite systems of Bosons or Fermion
In the tensor power H®K = H @ --- @ H we distinguish the subspaces:
—_———
k—times
o HYK =H v ---VH of totally symmetric tensors (bosonic Fock),
—_—
k—times
e and H K = H A --- AH of totally antisymmetric ones (fermionic

k—times
Fock space),

together with the symmetrization, 7/ : HEOK — HVEK,
and antisymmetrization, 7, : H®k — H"X, projectors:

T(A®: - ®fi)= o Z fo1) ® ++ ® oy »

€Sk

(A ® - ®fi) = kIZ( 1) f0) ® -+ ® Foiy -
€Sk

J.Grabowski (IMPAN) Segre maps and entanglement 09/01/2012 9 /25



Multipartite Hermitian product

J.Grabowski (IMPAN)

Segre maps and entanglement

09/01/2012

10 / 25



Multipartite Hermitian product

The Hermitian product in H has an obvious extension to a Hermitian
product in HEK, HVK and H/ k:
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Multipartite Hermitian product

The Hermitian product in H has an obvious extension to a Hermitian
product in HEK, HVK and H/ k:

o
k

(AR - ®fla® @) =]](fla)
i=1
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Multipartite Hermitian product

The Hermitian product in H has an obvious extension to a Hermitian
product in HEk, HVK and H/k:
°

K
(AR - ®fla® @) =]](fla)
° i=1
1
(AV--Vic|giV---Vek) k' Y H il&r(iy) = gper((filg))-

o,TES i=1
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Multipartite Hermitian product

The Hermitian product in H has an obvious extension to a Hermitian
product in HEk, HVK and H/k:
°

k
(AR - ®fla® @) =]](fla)
° i=1
1
(AV--Vic|giV---Vek) k' Y H il&r(iy) = gper((filg))-
o,TES i=1
Here,

per a,J k' Z Ha,T()

TESK i=1

is the permanent of the matrix A = (aj;).
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Multipartite Hermitian product

The Hermitian product in H has an obvious extension to a Hermitian
product in HEk, HVK and H/k:

°
k
(AR - ®fla® @) =]](fla)
° i=1
1
(AV--Vic|giV---Vek) k' Y H il&r(iy) = gper((filg))-
o,TES i=1
Here,

per a,J k' Z Ha,T()

TESK i=1

is the permanent of the matrix A = (aj;).

1
(AN Aflg A A gk) = 4 det((filg))-

J.Grabowski (IMPAN) Segre maps and entanglement 09/01/2012 10 / 25



Contractions

J.Grabowski (IMPAN)

Segre maps and entanglement

09/01/2012 11 /25




Contractions

These Hermitian products can be extended to contractions (inner

products) between HZK (HVK, H"k) on one hand, and H®' (K, HM)
on the other, | < k.
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Contractions

These Hermitian products can be extended to contractions (inner
products) between HZK (HVK, H"k) on one hand, and H®' (K, HM)
on the other, / < k.

eForf=fQ - QfcH®® andg=g1®---® g € H®,

ng:<g1®--'®g/|ﬁ®---®f/)ﬁ+1®~-®fk-
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Contractions

These Hermitian products can be extended to contractions (inner
products) between HZK (HVK, H"k) on one hand, and H®' (K, HM)

on the other, [ < k.
eForf=fQ - QfcH®® andg=g1®---® g € H®,
ng:<g1®-~®g/|ﬂ®---®f/>f/+1®~-®fk.

o If fe 1Yk (f € H <) and g € HY! (g € HV), then 1, f € HV(K—))
(1gf € HAED),
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Contractions

These Hermitian products can be extended to contractions (inner
products) between HZK (HVK, H"k) on one hand, and H®' (K, HM)

on the other, [ < k.
eForf=fQ - QfcH®® andg=g1®---® g € H®,
ng:<g1®-~®g/|ﬁ®---®f/>f/+1®~-®fk.

o If fe 1Yk (f € H <) and g € HY! (g € HV), then 1, f € HV(K—))
(1gf € HAED),

@ In particular,

J

Zg1V~--ng_1f1 VoV = <g1 AV \/gk_1|f1 V e V fk>fj,

NE

1
k!
j

1
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Contractions

These Hermitian products can be extended to contractions (inner

products) between HZK (HVK, H"k) on one hand, and H®' (K, HM)
on the other, | < k.

eForf=fQ - QfcH®® andg=g1®---® g € H®,
ng:<g1®-~®g/|ﬁ®---®f/>f/+1®~-®fk.

o If fe 1Yk (f € H <) and g € HY! (g € HV), then 1, f € HV(K—))
(1gf € HAED),

@ In particular,

k j
1
Zg1v~..ng_1f1\/'“\/fk=EZ(&\/"'\/gk—1|ﬁ\/'Y'ka>ﬂ'7
=

1 & i

— Vv
tarnnge LA A= ﬂz(_l)k gt A AgoalA A= A
T j=1

J.Grabowski (IMPAN) Segre maps and entanglement 09/01/2012 11 /25



The S-rank

J.Grabowski (IMPAN)

Segre maps and entanglement

09/01/2012 12 /25




The S-rank

Definition

Let u € H®¥. By the S-rank of u, we understand the maximum of
dimensions of the linear spaces 14‘{_10(u), for o € Sy, which are the images
of the contraction maps

HECD) 5 1 0,0(u) € H.
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The S-rank

Definition

Let u € H®¥. By the S-rank of u, we understand the maximum of
dimensions of the linear spaces 1;‘{_10(u), for o € Sy, which are the images
of the contraction maps

HECD) 5 1 0,0(u) € H.

Non-zero tensors of minimal S-rank in H®¥ (resp., HV*, H"*) we will call
simple (resp., simple symmetric, simple antisymmetric).
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The S-rank

Definition

Let u € H®¥. By the S-rank of u, we understand the maximum of
dimensions of the linear spaces 1;‘{_10(u), for o € Sy, which are the images
of the contraction maps

HEKD) 5 0,0(u) € H.

Non-zero tensors of minimal S-rank in H®¥ (resp., HV*, H"*) we will call
simple (resp., simple symmetric, simple antisymmetric).

Note that for u € HVk (resp., u € H"¥), the S-rank of u equals the
dimension of the linear space which is the image of the contraction map,

V=) 5, U € H,

A=) o) wu € H.
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The S-rank: examples

= o = £ w4
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The S-rank: examples

Assume that (e;) is an orthonormal set in H.
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The S-rank: examples

Assume that (e;) is an orthonormal set in H.

Example

The tensor u = e; ® e; has the S-rank 1:

lae;+be,0(U) = ae,+be, U = (a€1 + bep|er)er = aey .
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The S-rank: examples

Assume that (e;) is an orthonormal set in H.

Example

The tensor u = e; ® e; has the S-rank 1:

lae;+be,0(U) = ae,+be, U = (a€1 + bep|er)er = aey .
Example
The tensor v+ = e; ® e £ & ® e; has the S-rank 2:
Zae1+bezo'(u) - izael—i—bez ut+ =

+(ae; + bey|er)ex £ (ae; + bey|er)er = +aey £ bey .
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The S-rank: examples

Assume that (e;) is an orthonormal set in H.

Example

The tensor u = e; ® e; has the S-rank 1:
lae;+be,0(U) = ae,+be, U = (a€1 + bep|er)er = aey .

Example
The tensor u+ = €1 ® e & &> ® e has the S-rank 2:

lae +he,0(U) = Flag 1be s =
+(ae1 + bex|er)ex + (ae; + bey|ex)e; = taex + be; .
Example

If (¢;) and (f;) are orthonormal sets, \; > 0, then the S-rank of
Soi_iAiei @ fi is r, i.e., the S-rank equals the Schmidt rank.

v
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Simple tensors
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Simple tensors

Theorem

o The minimal possible S-rank of a non-zero tensor u € H®* equals 1.
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Simple tensors

Theorem

o The minimal possible S-rank of a non-zero tensor u € H®* equals 1.

A tensor u € H®¥ is of S-rank 1 if and only if

u=HL® --Qf, ficH, £f#0.
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Simple tensors

Theorem

o The minimal possible S-rank of a non-zero tensor u € H®* equals 1.

A tensor u € H®¥ is of S-rank 1 if and only if

u=hHh® ---Qf, fiecH, f£i#0.

o The minimal possible S-rank of a non-zero tensor v € H* equals 1.
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Simple tensors

Theorem

o The minimal possible S-rank of a non-zero tensor u € H®* equals 1.
A tensor u € H®¥ is of S-rank 1 if and only if

u=hHh® ---Qf, fiecH, f£i#0.

o The minimal possible S-rank of a non-zero tensor v € H* equals 1.
A tensor v € HVk is of S-rank 1 if and only if

v=Ff®---f, feH, f#0.
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Simple tensors

Theorem

o The minimal possible S-rank of a non-zero tensor u € H®* equals 1.
A tensor u € H®¥ is of S-rank 1 if and only if

u=ALQ® --Qfx, fieH, £#0.

o The minimal possible S-rank of a non-zero tensor v € H* equals 1.
A tensor v € HVk is of S-rank 1 if and only if

v=Ff®---f, feH, f#0.

o The minimal possible S-rank of a non-zero tensor w € H\¥ equals k.
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Simple tensors

Theorem

@ The minimal possible S-rank of a non-zero tensor u € H®* equals 1.
A tensor u € H®k is of S-rank 1 if and only if
u:f1®®fk7 f;EH7 f;?éo
e The minimal possible S-rank of a non-zero tensor v € H"* equals 1.
A tensor v € HV¥ is of S-rank 1 if and only if
v=Ff®---f, feH, f#0.

o The minimal possible S-rank of a non-zero tensor w € H\¥ equals k.
A tensor w € HK is of S-rank k if and only if

w="Ff A Af,
where fi, ..., fx € H are linearly independent.

J.Grabowski (IMPAN) 09/01/2012 14 / 25



Entanglement for identical particles

J.Grabowski (IMPAN)

o F
Segre maps and entanglement

09/01/2012 15/ 25



Entanglement for identical particles

Definition
o A pure state p, on HVK with x € HVk, x # 0, is called a bosonic
simple pure state if x is a simple symmetric, x =f ® - - - ® f, tensor.
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Entanglement for identical particles

Definition
o A pure state p, on HVK with x € HVk, x # 0, is called a bosonic

simple pure state if x is a simple symmetric, x =f ® - - - ® f, tensor.
If x is not simple symmetric, we call py a bosonic entangled state.
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Entanglement for identical particles

Definition
o A pure state p, on HVK with x € HVk, x # 0, is called a bosonic

simple pure state if x is a simple symmetric, x =f ® - - - ® f, tensor.
If x is not simple symmetric, we call py a bosonic entangled state.

o A pure state p, on H"¥) with x € H"K, x # 0, is called a fermionic
simple pure state if x is a simple antisymmetric, x = f; A --- A fy,
tensor.
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Entanglement for identical particles

Definition
o A pure state p, on HVK with x € HVk, x # 0, is called a bosonic

simple pure state if x is a simple symmetric, x =f ® - - - ® f, tensor.
If x is not simple symmetric, we call py a bosonic entangled state.

o A pure state p, on H"¥) with x € H"K, x # 0, is called a fermionic
simple pure state if x is a simple antisymmetric, x = f; A --- A fy,
tensor. If x is not simple antisymmetric, we call py a fermionic
entangled state.
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Entanglement for identical particles

Definition
o A pure state p, on HVK with x € HVk, x # 0, is called a bosonic

simple pure state if x is a simple symmetric, x =f ® - - - ® f, tensor.
If x is not simple symmetric, we call py a bosonic entangled state.

o A pure state p, on H"¥) with x € H"K, x # 0, is called a fermionic
simple pure state if x is a simple antisymmetric, x = f; A --- A fy,
tensor. If x is not simple antisymmetric, we call py a fermionic
entangled state.

o A mixed state p on H"¥ (resp., on H"¥) we call bosonic (fermionic)
simple mixed state if it can be written as a convex combination of
bosonic (fermionic) simple pure states.
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Entanglement for identical particles

Definition
o A pure state p, on HVK with x € HVk, x # 0, is called a bosonic

simple pure state if x is a simple symmetric, x =f ® - - - ® f, tensor.
If x is not simple symmetric, we call py a bosonic entangled state.

o A pure state p, on H"¥) with x € H"K, x # 0, is called a fermionic
simple pure state if x is a simple antisymmetric, x = f; A --- A fy,
tensor. If x is not simple antisymmetric, we call py a fermionic
entangled state.

o A mixed state p on H"¥ (resp., on H"¥) we call bosonic (fermionic)
simple mixed state if it can be written as a convex combination of
bosonic (fermionic) simple pure states. In the other case, p is called
bosonic (fermionic) entangled mixed state.

J.Grabowski (IMPAN) Segre maps and entanglement 09/01/2012 15 / 25



Bosonic and fermionic Segre maps

J.Grabowski (IMPAN)

Segre maps and entanglement

09/01/2012

16 / 25



Bosonic and fermionic Segre maps

It is clear that the Segre map for the Bose statistics should be
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Bosonic and fermionic Segre maps

It is clear that the Segre map for the Bose statistics should be

Ho > x+— x®k ¢ (HVk)

Y

PH > px—s pex € P(HYF)

o
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Bosonic and fermionic Segre maps

It is clear that the Segre map for the Bose statistics should be

Ho > X—— x®k € (HVk)

Y

PH > px—s pex € P(HYF)

o

and for the Fermi statistics:
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Bosonic and fermionic Segre maps

It is clear that the Segre map for the Bose statistics should be

Ho 5 xi—> x® € (WK

oLl

PH > px—> pox € P(HYK)
and for the Fermi statistics:

7-[§k > (Xl,...,Xk)}—> X1 N\ AXx € (HAk)

SO NI T

(PH)ék =) (pX17 SO )pxk) = DxA. . Ax € P(HAk)

o
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Bosonic and fermionic Segre maps

It is clear that the Segre map for the Bose statistics should be

Ho 5 xi—> x® € (WK

oLl

PH > px—> pox € P(HYK)
and for the Fermi statistics:

7-[§k S5 (X1, Xk)F——= X1 A Axk € (HAk)o

SO NI T

(PH)ék =) (pX17 SO )pxk) = DxA. . Ax € P(HAk)

where H2* = HXK\ {(x1, ..., xk) 1 xa A=+ Axk = 0}
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Bosonic and fermionic Segre maps

It is clear that the Segre map for the Bose statistics should be

Ho 5 xi—> x® € (WK

oLl

PH > px—> pox € P(HYK)
and for the Fermi statistics:

7-[§k S5 (X1, Xk)F——= X1 A Axk € (HAk)o

SO NI T

(PH)ék =) (pX17 SO )pxk) = DxA. . Ax € P(HAk)

where H2* = HXK\ {(x1, ..., xk) 1 xa A=+ Axk = 0}
and (PH)XK = (PH) M\ {(pxys - -+ px) i X0 Ao Axk = 0}

J.Grabowski (IMPAN) Segre maps and entanglement 09/01/2012

16 / 25



Bosonic and fermionic Segre maps

J.Grabowski (IMPAN)

Segre maps and entanglement

09/01/2012 17 /25



Bosonic and fermionic Segre maps

Note that the condition x; A -+ A xx % 0 does not depend on the choice of
the vectors xi, ..., X, in their projective classes and means that
Pxis- -+ Px, do not lie in a common projective hyperspace.
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Bosonic and fermionic Segre maps

Note that the condition x; A -+ A xx % 0 does not depend on the choice of
the vectors xi, ..., X, in their projective classes and means that
Pxis- -+ Px, do not lie in a common projective hyperspace.

The subset HX* (resp., (PH)2XK) is open and dense in H*¥ (resp.,
(PH)5).
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Bosonic and fermionic Segre maps

Note that the condition x; A -+ A xx % 0 does not depend on the choice of
the vectors xi, ..., X, in their projective classes and means that
Pxis- -+ Px, do not lie in a common projective hyperspace.

The subset HX* (resp., (PH)2XK) is open and dense in H*¥ (resp.,
(PH)5).

Theorem

A bosonic (fermionic) pure state p € P(HV*) (resp., p € P(H"K)) is
entangled if and only if it lies outside the range of the Segre map

Seg) : PH — P(H'¥) (resp., Seg) : (PH) kK — P(H"F)).
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Bosonic and fermionic Segre maps

Note that the condition x; A -+ A xx % 0 does not depend on the choice of
the vectors xi, ..., X, in their projective classes and means that
Pxis- -+ Px, do not lie in a common projective hyperspace.

The subset HX* (resp., (PH)2XK) is open and dense in H*¥ (resp.,
(PH)5).

Theorem

A bosonic (fermionic) pure state p € P(HV*) (resp., p € P(H"K)) is
entangled if and only if it lies outside the range of the Segre map

Seg) : PH — P(H'¥) (resp., Seg) : (PH) kK — P(H"F)).

A mixed bosonic (fermionic) state is entangled if and only if it lies outside
the convex hull of the range of the corresponding Segre map.
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Generalized parastatistics

@ The subspaces "X and H"¥ form particular irreducible parts of the
‘diagonal’ representation of the compact group U(#) in the Hilbert
space HEk,

U(X1®~--®Xk): U(X1)®-~®U(Xk).
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Generalized parastatistics

@ The subspaces "X and H"¥ form particular irreducible parts of the
‘diagonal’ representation of the compact group U(#) in the Hilbert
space HEk,

U(X1®~--®Xk): U(X1)®-~®U(Xk).

@ We can identify the symmetry group Sy with the group of certain
unitary operators on the Hilbert space #* in the obvious way,

O—(X1®...®Xk): 0'(1)®'.'®X0'(k)'

J.Grabowski (IMPAN) Segre maps and entanglement 09/01/2012 18 / 25



Generalized parastatistics

@ The subspaces "X and H"¥ form particular irreducible parts of the
‘diagonal’ representation of the compact group U(#) in the Hilbert
space HEk,

U(X1®~--®Xk): U(X1)®"‘®U(Xk).

@ We can identify the symmetry group Sy with the group of certain
unitary operators on the Hilbert space #* in the obvious way,

O—(X1®...®Xk): 0'(1)®'.'®X0'(k)'

@ The operators of Sy intertwine the unitary action of U(H).
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Generalized parastatistics

@ The subspaces H"* and H"¥ form particular irreducible parts of the
‘diagonal’ representation of the compact group U(#) in the Hilbert
space HEk,

U(X1®--'®Xk):U(X1)®'”®U(Xk).

@ We can identify the symmetry group Sy with the group of certain
unitary operators on the Hilbert space #* in the obvious way,

O—(X1®...®Xk): 0'(1)®'.'®X0'(k)'

@ The operators of Sy intertwine the unitary action of U(H).

@ For k > 2, there are other irreducible parts of the above
representation of U(#H) associated with invariant subspaces of the
Si-action.
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Generalized parastatistics

@ The subspaces H"* and H"¥ form particular irreducible parts of the
‘diagonal’ representation of the compact group U(#) in the Hilbert
space HEk,

U(X1®--'®Xk): U(X1)®"‘®U(Xk).

@ We can identify the symmetry group Sy with the group of certain
unitary operators on the Hilbert space #* in the obvious way,

O—(X1®...®Xk): 0'(1)®'.'®X0'(k)'

@ The operators of Sy intertwine the unitary action of U(H).

@ For k > 2, there are other irreducible parts of the above
representation of U(#H) associated with invariant subspaces of the
Sk-action. We shall call them (generalized) k-parastatistics.
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Simple tensors of a given parastatistics

@ Any of these k-parastatistics (i.e., any irreducible subspace of the
tensor product H®¥) is associated with a Young tableau o with
k-boxes (chambers).
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Simple tensors of a given parastatistics

@ Any of these k-parastatistics (i.e., any irreducible subspace of the
tensor product H®¥) is associated with a Young tableau o with

k-boxes (chambers). The corresponding irreducible subrepresentation
in H®* we denote H.
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Simple tensors of a given parastatistics

@ Any of these k-parastatistics (i.e., any irreducible subspace of the
tensor product H®¥) is associated with a Young tableau o with
k-boxes (chambers). The corresponding irreducible subrepresentation
in H®* we denote H.

@ Any irreducible representation H contains cyclic vectors which are of
highest weight relative to some choice of a maximal torus and Borel
subgroups in U(#H). We will call them a-simple tensors or simple
tensors in H.

J.Grabowski (IMPAN) Segre maps and entanglement 09/01/2012 19 / 25



Simple tensors of a given parastatistics

@ Any of these k-parastatistics (i.e., any irreducible subspace of the
tensor product H®¥) is associated with a Young tableau o with
k-boxes (chambers). The corresponding irreducible subrepresentation
in H®* we denote H.

@ Any irreducible representation H contains cyclic vectors which are of
highest weight relative to some choice of a maximal torus and Borel
subgroups in U(#H). We will call them a-simple tensors or simple
tensors in H<.

@ Such vectors can be viewed as generalized coherent states or as the
‘most classical’ states with respect to their correlation properties.
These tensors represent the minimal amount of quantum correlations
for tensors in H®, namely the quantum correlations forced directly by
the particular parastatistics.
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Highest vectors have minimal S-rank
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Highest vectors have minimal S-rank
Definition
Consider partitions of k: k= X1 +---+ \,, where \; > --- >\, > 1. To

a partition A = (\1,...,\,) is associated a Young diagram with \; boxes
in the jth row, the rows of boxes lined up on the left.
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Highest vectors have minimal S-rank

Definition

Consider partitions of k: k= X1 +---+ \,, where \; > --- >\, > 1. To
a partition A = (\1,...,\,) is associated a Young diagram with \; boxes
in the ith row, the rows of boxes lined up on the left. Define a tableau on
a given Young diagram to be a numbering of the boxes by the integers
1,...,k, and denote with Y(k) the set of all Young tableaux with k boxes.

v
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Highest vectors have minimal S-rank

Definition

Consider partitions of k: k =Xy +---+ \;, where \; > --- > X\, > 1. To
a partition A = (\1,...,\,) is associated a Young diagram with \; boxes
in the ith row, the rows of boxes lined up on the left. Define a tableau on
a given Young diagram to be a numbering of the boxes by the integers
1,...,k, and denote with Y(k) the set of all Young tableaux with k boxes.

v

Theorem

To each o € Y (k) corresponds an irreducible component H® in H¥. A
tensor v € H® is simple if and only if it has the minimal S-rank among

non-zero tensors from H®. This minimal S-rank equals the number r of
rows in the corresponding Young diagram and the simple tensor reads as

V=" (ea(n) ® - ® €ar))
where ey, . .., e, are some linearly independent vectors in H and (i) is the

number of the row in which the box with the number i appears in the
tableaux c.
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Example

For k = 3, besides symmetric and antisymmetric tensors associated with
1

1]
the Young tableaux ag = and a3z =|2]|,
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Example

For k = 3, besides symmetric and antisymmetric tensors associated with
the Young tableaux o = and a3 =2/, we have two
additional irreducible parts associated with the Young tableaux

;2‘ and a2:é3‘.

=
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Example

For k = 3, besides symmetric and antisymmetric tensors associated with

1

the Young tableaux o = and a3 =2/, we have two
additional irreducible parts associated with the Young tableaux

1

2]

=

3

Hence,

and ap =

1

3\‘

2

HE =1 e H* o H*? & H"?,

with
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Example

For k = 3, besides symmetric and antisymmetric tensors associated with
the Young tableaux o = and a3 =2/, we have two
additional irreducible parts associated with the Young tableaux

_|1]2] _[1]3]
a1 — 3 and 042—; .
Hence,
HE =1 e H* o H*? & H"?,
with

% HOS o W

1
TU(x ®x®x3) = = (X1 ®X2 X3+ X2 @ X1 QX3 — X3 X2 QX1 — X3 QX1 @ X2),
3
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Example

For k = 3, besides symmetric and antisymmetric tensors associated with
the Young tableaux o = and a3 =2/, we have two
additional irreducible parts associated with the Young tableaux

_|1]2] _[1]3]
a1 — 3 and 042—; .
Hence,
HE =1 e H* o H*? & H"?,
with

T HO3 s Y
1
7TO‘I(Xl ®X2®X3) = §(X1 RXo QX3+ X0 QX1 ®X3—X3RXo R X1 —X3 & X1 ®x2),
and

1
T2 (X1 ®x2 Q@ x3) = §(X1 Rx2 QX3+ X3 DX DXL —X2 @ X1 ®X3 — X2 @ X3 R X1).
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Example

The simple tensors (the highest weight vectors) in 7 can be written as
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Example

The simple tensors (the highest weight vectors) in 7 can be written as

aq
2N
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Example

The simple tensors (the highest weight vectors) in 7 can be written as

a1 —
V)\ =
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Example

The simple tensors (the highest weight vectors) in 7 can be written as

V)‘f‘l = g (Xal(l) ® Xy (2) ® Xa1(3))
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Example

The simple tensors (the highest weight vectors) in 7 can be written as

V)‘f‘l = g (Xal(l) ® Xy (2) ® Xa1(3))
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Example

The simple tensors (the highest weight vectors) in 7 can be written as

Vgl = (Xal(l) ® Xa]_(2) ® Xal(3))

(x1 ® x1 ® x2)

1
1
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Example

The simple tensors (the highest weight vectors) in 7 can be written as

Vgl = (Xal(l) ® Xa]_(2) ® Xal(3))

(x1 ® x1 ® x2)

1
1
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Example
The simple tensors (the highest weight vectors) in 7 can be written as

Vgl = a1 (Xal(l) ® Xa]_(2) ® Xal(3))
a1

(x1 ® x1 ® x2)

T
T
2
§(x1®xl®x2—x2®X1®X1)
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Example

The simple tensors (the highest weight vectors) in 7 can be written as
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Example
The simple tensors (the highest weight vectors) in 7 can be written as

a1 —
V)\ =

(Xa1(1) ® Xa1(2) @ Xay(3))
(x1 ® x1 ® x2)

1
1
2

§(X1 ® X1 ® X2 — X2 ® X1 ®X1)
A

(a@a®@e—ea®e®e),
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Example
The simple tensors (the highest weight vectors) in 7 can be written as

a1 —
V)\ =

Y(Xa1(1) ® Xar(2) @ Xay(3))
(1 ®x1 ® x2)

7r0é
,n_a
2

g(x1®x1®X2—x2®X1®X1)
MeaRe®e—-—ea®e ®e),

for certain choice of an orthonormal basis ¢; in ‘H and A\ # 0.
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T (X1 ® X1 ® X2)

2
§(x1®xl®x2—x2®X1®X1)
MeaRe®e—-—ea®e ®e),

for certain choice of an orthonormal basis ¢; in ‘H and A\ # 0.

Analogously, the simple tensors in H*2 take the form
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Example

The simple tensors (the highest weight vectors) in 7% can be written as

Vfl = a1 (Xal(l) ® Xa]_(2) ® Xal(3))

T
T (X1 ® X1 ® X2)

2
§(x1®xl®x2—x2®X1®X1)
MeaRe®e—-—ea®e ®e),

for certain choice of an orthonormal basis ¢; in ‘H and A\ # 0.

Analogously, the simple tensors in H*2 take the form
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Example

The simple tensors (the highest weight vectors) in 7% can be written as

Vfl = a1 (Xal(l) ® Xa]_(2) ® Xal(3))

T
T (X1 ® X1 ® X2)

2
§(x1®xl®x2—x2®X1®X1)
MeaRe®e—-—ea®e ®e),

for certain choice of an orthonormal basis ¢; in ‘H and A\ # 0.

Analogously, the simple tensors in H*2 take the form

a2 —
V)\ =

J.Grabowski (IMPAN) Segre maps and entanglement 09/01/2012

22 /25



Example

The simple tensors (the highest weight vectors) in 7% can be written as

Vﬁl = e (Xal(l) ® Xa]_(2) ® Xal(3))

1 ®x1 ® x2)

7ra
,n_a
2

§(x1®xl®x2—x2®X1®X1)
MeaRe®e—-—ea®e ®e),

for certain choice of an orthonormal basis ¢; in ‘H and A\ # 0.

Analogously, the simple tensors in H*2 take the form

V)C\“2 = 7™ (Xaz(l) ® Xap(2) ® Xa2(3))

J.Grabowski (IMPAN) Segre maps and entanglement 09/01/2012

22 /25



Example

The simple tensors (the highest weight vectors) in 7% can be written as
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Example

The simple tensors (the highest weight vectors) in 7% can be written as

Vﬁl = e (Xal(l) ® Xa]_(2) ® Xal(3))

(1 ®x1 ® x2)

7ra
,n_a
2

§(x1®xl®x2—x2®X1®X1)
MeaRe®e—-—ea®e ®e),

for certain choice of an orthonormal basis ¢; in ‘H and A\ # 0.

Analogously, the simple tensors in H*2 take the form

a2 — a2
W= T (Xap(1) @ Xap(2) @ Xas(3))
= 72(x1 ® x2 ® x1)
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Example

The simple tensors (the highest weight vectors) in 7% can be written as

Vﬁl = e (Xal(l) ® Xa]_(2) ® Xal(3))

(1 ®x1 ® x2)

7ra
,n_a
2

§(x1®xl®x2—x2®X1®X1)
MeaRe®e—-—ea®e ®e),

for certain choice of an orthonormal basis ¢; in ‘H and A\ # 0.

Analogously, the simple tensors in H*2 take the form

V)?Z = 71_042 (XOQ(l) ® Xa2(2) ® Xa2(3))
= 7ra2(X1 ® X2 ® Xl)

= Ma®ea®ea—-—ea®e®e).
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Entanglement for arbitrary parastatistics

Definition
o We say that a pure state p, on H®k obeys a parastatistics a € Y (k)

(is a pure a-state for short) if v € H®, i.e. pis a pure state on the
Hilbert space H¢.
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o We say that a pure state p, on H®k obeys a parastatistics a € Y (k)

(is a pure a-state for short) if v € H®, i.e. pis a pure state on the
Hilbert space H¢.

o A pure state p on H®¥ obeying a parastatistics « is called a simple
pure a-state if p is represented by an a-simple tensor in H*. If p is
not simple a-state, we call it an entangled pure a-state.
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Entanglement for arbitrary parastatistics

Definition
o We say that a pure state p, on H®k obeys a parastatistics a € Y (k)
(is a pure a-state for short) if v € H®, i.e. pis a pure state on the
Hilbert space H¢.

o A pure state p on H®¥ obeying a parastatistics « is called a simple
pure a-state if p is represented by an a-simple tensor in H*. If p is
not simple a-state, we call it an entangled pure a-state.

@ A mixed state p on H we call a simple a-state if it can be written as
a convex combination of simple pure a-states. In the other case, p is
called an entangled mixed a-state.
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Entanglement for arbitrary parastatistics

Definition
o We say that a pure state p, on H®¥ obeys a parastatistics a € Y (k)
(is a pure a-state for short) if v € H*, i.e. p is a pure state on the
Hilbert space H®.

o A pure state p on H®¥ obeying a parastatistics « is called a simple
pure a-state if p is represented by an a-simple tensor in H*. If p is
not simple a-state, we call it an entangled pure a-state.

@ A mixed state p on H we call a simple a-state if it can be written as
a convex combination of simple pure a-states. In the other case, p is
called an entangled mixed a-state.

Simple pure a-states can be characterized in terms of generalized Segre
maps.
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