Segre maps and entanglement for multipartite systems of indistinguishable particles

Janusz Grabowski

Polish Academy of Sciences

Luminy, January 9, 2012

J.Grabowski (IMPAN)

Segre maps and entanglement

09/01/2012 1 / 25

- Density states and composite systems
- Entanglement and measure of entanglement
- Segre embedding
- Multipartite systems of bosons and fermions
- Multipartite Hermitian product and contractions
- The S-rank and simple tensors
- Entanglement for indistinguishable particles
- Bosonic and fermionic Segre maps
- Generalized parastatistics and simple tensors
- Entanglement for arbitrary parastatistics
- References

- Density states and composite systems
- Entanglement and measure of entanglement
- Segre embedding
- Multipartite systems of bosons and fermions
- Multipartite Hermitian product and contractions
- The S-rank and simple tensors
- Entanglement for indistinguishable particles
- Bosonic and fermionic Segre maps
- Generalized parastatistics and simple tensors
- Entanglement for arbitrary parastatistics
- References

- Density states and composite systems
- Entanglement and measure of entanglement
- Segre embedding
- Multipartite systems of bosons and fermions
- Multipartite Hermitian product and contractions
- The S-rank and simple tensors
- Entanglement for indistinguishable particles
- Bosonic and fermionic Segre maps
- Generalized parastatistics and simple tensors
- Entanglement for arbitrary parastatistics
- References

- Density states and composite systems
- Entanglement and measure of entanglement
- Segre embedding
- Multipartite systems of bosons and fermions
- Multipartite Hermitian product and contractions
- The S-rank and simple tensors
- Entanglement for indistinguishable particles
- Bosonic and fermionic Segre maps
- Generalized parastatistics and simple tensors
- Entanglement for arbitrary parastatistics
- References

- Density states and composite systems
- Entanglement and measure of entanglement
- Segre embedding
- Multipartite systems of bosons and fermions
- Multipartite Hermitian product and contractions
- The S-rank and simple tensors
- Entanglement for indistinguishable particles
- Bosonic and fermionic Segre maps
- Generalized parastatistics and simple tensors
- Entanglement for arbitrary parastatistics
- References

- Density states and composite systems
- Entanglement and measure of entanglement
- Segre embedding
- Multipartite systems of bosons and fermions
- Multipartite Hermitian product and contractions
- The S-rank and simple tensors
- Entanglement for indistinguishable particles
- Bosonic and fermionic Segre maps
- Generalized parastatistics and simple tensors
- Entanglement for arbitrary parastatistics
- References

- Density states and composite systems
- Entanglement and measure of entanglement
- Segre embedding
- Multipartite systems of bosons and fermions
- Multipartite Hermitian product and contractions
- The S-rank and simple tensors
- Entanglement for indistinguishable particles
- Bosonic and fermionic Segre maps
- Generalized parastatistics and simple tensors
- Entanglement for arbitrary parastatistics
- References

- Density states and composite systems
- Entanglement and measure of entanglement
- Segre embedding
- Multipartite systems of bosons and fermions
- Multipartite Hermitian product and contractions
- The S-rank and simple tensors
- Entanglement for indistinguishable particles
- Bosonic and fermionic Segre maps
- Generalized parastatistics and simple tensors
- Entanglement for arbitrary parastatistics
- References

- Density states and composite systems
- Entanglement and measure of entanglement
- Segre embedding
- Multipartite systems of bosons and fermions
- Multipartite Hermitian product and contractions
- The S-rank and simple tensors
- Entanglement for indistinguishable particles
- Bosonic and fermionic Segre maps
- Generalized parastatistics and simple tensors
- Entanglement for arbitrary parastatistics
- References

- Density states and composite systems
- Entanglement and measure of entanglement
- Segre embedding
- Multipartite systems of bosons and fermions
- Multipartite Hermitian product and contractions
- The S-rank and simple tensors
- Entanglement for indistinguishable particles
- Bosonic and fermionic Segre maps
- Generalized parastatistics and simple tensors
- Entanglement for arbitrary parastatistics
- References

- Density states and composite systems
- Entanglement and measure of entanglement
- Segre embedding
- Multipartite systems of bosons and fermions
- Multipartite Hermitian product and contractions
- The S-rank and simple tensors
- Entanglement for indistinguishable particles
- Bosonic and fermionic Segre maps
- Generalized parastatistics and simple tensors
- Entanglement for arbitrary parastatistics

• References

- Density states and composite systems
- Entanglement and measure of entanglement
- Segre embedding
- Multipartite systems of bosons and fermions
- Multipartite Hermitian product and contractions
- The S-rank and simple tensors
- Entanglement for indistinguishable particles
- Bosonic and fermionic Segre maps
- Generalized parastatistics and simple tensors
- Entanglement for arbitrary parastatistics
- References

- $(\mathcal{H}, \langle \cdot | \cdot \rangle)$ Hilbert space,
- $U(\mathcal{H})$ the group of unitary operators
- $u(\mathcal{H})$ anti-Hermitian operators
- $u^*(\mathcal{H})$ Hermitian operators
- The set $\mathcal{D}_1(\mathcal{H})$ of pure states is the image of the map

$$\mathcal{H}\setminus\{0\}
i x\mapsto
ho_x=rac{|x
angle\!\langle x|}{||x||^2}\in\mathcal{D}^1(\mathcal{H})\subset u^*(\mathcal{H})\,.$$

• $\mathcal{D}_1(\mathcal{H})\simeq \mathbb{P}\mathcal{H}=(\mathcal{H}\setminus\{0\})/\mathbb{C}^{\times}$ – Hilbert projective space

• $\mathcal{D}(\mathcal{H}) = \operatorname{convex}(\mathcal{D}_1(\mathcal{H})) - \text{convex body of (mixed) density states}$

$$\mathcal{D}(\mathcal{H}) = \{\sum_i \lambda_i
ho_{\mathsf{x}_i} : \lambda_i \geq 0\,, \quad \sum_i \lambda_i = 1\,, \quad \mathsf{x}_i \in \mathcal{H}\}\,.$$

- $(\mathcal{H}, \langle \cdot | \cdot \rangle)$ Hilbert space,
- $U(\mathcal{H})$ the group of unitary operators
- $u(\mathcal{H})$ anti-Hermitian operators
- $u^*(\mathcal{H})$ Hermitian operators
- The set $\mathcal{D}_1(\mathcal{H})$ of pure states is the image of the map

$$\mathcal{H}\setminus\{0\}
i x \mapsto
ho_x = rac{|x
angle\!\langle x|}{||x||^2} \in \mathcal{D}^1(\mathcal{H}) \subset u^*(\mathcal{H})\,.$$

• $\mathcal{D}_1(\mathcal{H})\simeq \mathbb{P}\mathcal{H}=(\mathcal{H}\setminus\{0\})/\mathbb{C}^{\times}$ – Hilbert projective space

• $\mathcal{D}(\mathcal{H}) = \operatorname{convex}(\mathcal{D}_1(\mathcal{H})) - \text{convex body of (mixed) density states}$

$$\mathcal{D}(\mathcal{H}) = \{\sum_i \lambda_i
ho_{\mathsf{x}_i} : \lambda_i \geq 0\,, \quad \sum_i \lambda_i = 1\,, \quad \mathsf{x}_i \in \mathcal{H}\}\,.$$

- $(\mathcal{H}, \langle \cdot | \cdot \rangle)$ Hilbert space,
- $U(\mathcal{H})$ the group of unitary operators
- $u(\mathcal{H})$ anti-Hermitian operators
- $u^*(\mathcal{H})$ Hermitian operators
- The set $\mathcal{D}_1(\mathcal{H})$ of pure states is the image of the map

$$\mathcal{H}\setminus\{0\}
i x\mapsto
ho_x=rac{|x
angle\!\langle x|}{\|x\|^2}\in\mathcal{D}^1(\mathcal{H})\subset u^*(\mathcal{H})\,.$$

• $\mathcal{D}_1(\mathcal{H})\simeq \mathbb{P}\mathcal{H}=(\mathcal{H}\setminus\{0\})/\mathbb{C}^{\times}$ – Hilbert projective space

• $\mathcal{D}(\mathcal{H}) = \operatorname{convex}(\mathcal{D}_1(\mathcal{H})) - \text{convex body of (mixed) density states}$

$$\mathcal{D}(\mathcal{H}) = \{\sum_i \lambda_i
ho_{\mathsf{x}_i} : \lambda_i \geq 0\,, \quad \sum_i \lambda_i = 1\,, \quad \mathsf{x}_i \in \mathcal{H}\}\,.$$

< 回 > < 三 > < 三 >

- $(\mathcal{H}, \langle \cdot | \cdot \rangle)$ Hilbert space,
- $U(\mathcal{H})$ the group of unitary operators
- $u(\mathcal{H})$ anti-Hermitian operators
- $u^*(\mathcal{H})$ Hermitian operators

• The set $\mathcal{D}_1(\mathcal{H})$ of pure states is the image of the map

$$\mathcal{H}\setminus\{0\}
i x\mapsto
ho_x=rac{|x
angle\!\langle x|}{||x||^2}\in\mathcal{D}^1(\mathcal{H})\subset u^*(\mathcal{H})\,.$$

• $\mathcal{D}_1(\mathcal{H})\simeq \mathbb{P}\mathcal{H}=(\mathcal{H}\setminus\{0\})/\mathbb{C}^{\times}$ – Hilbert projective space

• $\mathcal{D}(\mathcal{H}) = \operatorname{convex}(\mathcal{D}_1(\mathcal{H})) - \text{convex body of (mixed) density states}$

$$\mathcal{D}(\mathcal{H}) = \{\sum_i \lambda_i
ho_{\mathsf{x}_i} : \lambda_i \geq 0\,, \quad \sum_i \lambda_i = 1\,, \quad \mathsf{x}_i \in \mathcal{H}\}\,.$$

< 回 > < 三 > < 三 >

- $(\mathcal{H}, \langle \cdot | \cdot \rangle)$ Hilbert space,
- $U(\mathcal{H})$ the group of unitary operators
- $u(\mathcal{H})$ anti-Hermitian operators
- $u^*(\mathcal{H})$ Hermitian operators
- The set $\mathcal{D}_1(\mathcal{H})$ of pure states is the image of the map

$$\mathcal{H}\setminus\{0\}
i x \mapsto
ho_x = rac{|x\rangle\!\langle x|}{\|x\|^2} \in \mathcal{D}^1(\mathcal{H}) \subset u^*(\mathcal{H}).$$

• $\mathcal{D}_1(\mathcal{H})\simeq \mathbb{P}\mathcal{H}=(\mathcal{H}\setminus\{0\})/\mathbb{C}^{\times}$ – Hilbert projective space

• $\mathcal{D}(\mathcal{H}) = \operatorname{convex}(\mathcal{D}_1(\mathcal{H})) - \text{convex body of (mixed) density states}$

$$\mathcal{D}(\mathcal{H}) = \{\sum_i \lambda_i
ho_{\mathbf{x}_i} : \lambda_i \geq 0\,, \quad \sum_i \lambda_i = 1\,, \quad \mathbf{x}_i \in \mathcal{H}\},$$

A (1) > (1) > (2) > (2) > (2) > (2)

- $(\mathcal{H}, \langle \cdot | \cdot \rangle)$ Hilbert space,
- $U(\mathcal{H})$ the group of unitary operators
- $u(\mathcal{H})$ anti-Hermitian operators
- $u^*(\mathcal{H})$ Hermitian operators
- The set $\mathcal{D}_1(\mathcal{H})$ of pure states is the image of the map

$$\mathcal{H}\setminus\{0\}
i x\mapsto
ho_x=rac{|x
angle\!\langle x|}{\|x\|^2}\in\mathcal{D}^1(\mathcal{H})\subset u^*(\mathcal{H})\,.$$

• $\mathcal{D}_1(\mathcal{H})\simeq \mathbb{P}\mathcal{H}=(\mathcal{H}\setminus\{0\})/\mathbb{C}^{\times}$ – Hilbert projective space

• $\mathcal{D}(\mathcal{H}) = \operatorname{convex}(\mathcal{D}_1(\mathcal{H})) - \text{convex body of (mixed) density states}$

$$\mathcal{D}(\mathcal{H}) = \{\sum_i \lambda_i
ho_{\mathbf{x}_i} : \lambda_i \geq 0\,, \quad \sum_i \lambda_i = 1\,, \quad \mathbf{x}_i \in \mathcal{H}\},$$

(4日) * * ヨ * * ヨ *

- $(\mathcal{H}, \langle \cdot | \cdot \rangle)$ Hilbert space,
- $U(\mathcal{H})$ the group of unitary operators
- $u(\mathcal{H})$ anti-Hermitian operators
- $u^*(\mathcal{H})$ Hermitian operators
- The set $\mathcal{D}_1(\mathcal{H})$ of pure states is the image of the map

$$\mathcal{H}\setminus\{0\}
i x \mapsto
ho_x = rac{|x\rangle\!\langle x|}{\|x\|^2} \in \mathcal{D}^1(\mathcal{H}) \subset u^*(\mathcal{H}).$$

• $\mathcal{D}_1(\mathcal{H})\simeq \mathbb{P}\mathcal{H}=(\mathcal{H}\setminus\{0\})/\mathbb{C}^{\times}$ – Hilbert projective space

• $\mathcal{D}(\mathcal{H}) = \operatorname{convex}(\mathcal{D}_1(\mathcal{H})) - \text{convex body of (mixed) density states}$

$$\mathcal{D}(\mathcal{H}) = \{\sum_i \lambda_i
ho_{\mathsf{X}_i} : \lambda_i \geq \mathsf{0}\,, \quad \sum_i \lambda_i = \mathsf{1}\,, \quad \mathsf{X}_i \in \mathcal{H}\},$$

- $(\mathcal{H}, \langle \cdot | \cdot \rangle)$ Hilbert space,
- $U(\mathcal{H})$ the group of unitary operators
- $u(\mathcal{H})$ anti-Hermitian operators
- $u^*(\mathcal{H})$ Hermitian operators
- The set $\mathcal{D}_1(\mathcal{H})$ of pure states is the image of the map

$$\mathcal{H}\setminus\{0\}
i x\mapsto
ho_x=rac{|x
angle\!\langle x|}{\|x\|^2}\in \mathcal{D}^1(\mathcal{H})\subset u^*(\mathcal{H})\,.$$

- $\mathcal{D}_1(\mathcal{H})\simeq \mathbb{P}\mathcal{H}=(\mathcal{H}\setminus\{0\})/\mathbb{C}^{\times}$ Hilbert projective space
- $\mathcal{D}(\mathcal{H}) = \operatorname{convex}(\mathcal{D}_1(\mathcal{H}))$ convex body of (mixed) density states

$$\mathcal{D}(\mathcal{H}) = \{\sum_i \lambda_i
ho_{\mathsf{x}_i} : \lambda_i \geq 0\,, \quad \sum_i \lambda_i = 1\,, \quad \mathsf{x}_i \in \mathcal{H}\}\,.$$

Let now $\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2$.

In \mathcal{H} we can distinguish separable (simple) tensors of the form $x = x_1 \otimes x_2$. The corresponding pure states we call separable,

$$\mathcal{S}^1(\mathcal{H}) = \{ \rho_x \in \mathcal{D}^1(\mathcal{H}) : x = x_1 \otimes x_2 \}.$$

One can show that

 $\rho_{x_1\otimes x_2}=\rho_{x_1}\otimes\rho_{x_2}\,,$

i.e.

$$\mathcal{S}^1(\mathcal{H}) = \{ \rho \in \mathcal{D}^1(\mathcal{H}) : \rho = \rho_{x_1} \otimes \rho_{x_2}, \quad x_i \in \mathcal{H}_i \}.$$

Here we use the decomposition

$$u^*(\mathcal{H}) = u^*(\mathcal{H}_1) \otimes u^*(\mathcal{H}_2)$$
,

where

$$(A_1\otimes A_2)(x_1\otimes x_2)=A_1x_1\otimes A_2x_2$$

→ Ξ → → Ξ

Let now $\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2$.

In \mathcal{H} we can distinguish separable (simple) tensors of the form $x = x_1 \otimes x_2$. The corresponding pure states we call separable,

$$\mathcal{S}^1(\mathcal{H}) = \{ \rho_x \in \mathcal{D}^1(\mathcal{H}) : x = x_1 \otimes x_2 \}.$$

One can show that

 $\rho_{x_1\otimes x_2}=\rho_{x_1}\otimes\rho_{x_2}\,,$

i.e.

$$\mathcal{S}^{1}(\mathcal{H}) = \{ \rho \in \mathcal{D}^{1}(\mathcal{H}) : \rho = \rho_{x_{1}} \otimes \rho_{x_{2}}, \quad x_{i} \in \mathcal{H}_{i} \}.$$

Here we use the decomposition

$$u^*(\mathcal{H}) = u^*(\mathcal{H}_1) \otimes u^*(\mathcal{H}_2)$$
,

where

$$(A_1\otimes A_2)(x_1\otimes x_2)=A_1x_1\otimes A_2x_2$$

→ Ξ → → Ξ

Let now $\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2$.

In \mathcal{H} we can distinguish separable (simple) tensors of the form $x = x_1 \otimes x_2$. The corresponding pure states we call separable,

$$\mathcal{S}^1(\mathcal{H}) = \{
ho_x \in \mathcal{D}^1(\mathcal{H}) : x = x_1 \otimes x_2 \}.$$

One can show that

 $\rho_{\mathbf{x}_1\otimes\mathbf{x}_2}=\rho_{\mathbf{x}_1}\otimes\rho_{\mathbf{x}_2}\,,$

i.e.

$$\mathcal{S}^1(\mathcal{H}) = \{ \rho \in \mathcal{D}^1(\mathcal{H}) : \rho = \rho_{x_1} \otimes \rho_{x_2}, \quad x_i \in \mathcal{H}_i \}.$$

Here we use the decomposition

$$u^*(\mathcal{H}) = u^*(\mathcal{H}_1) \otimes u^*(\mathcal{H}_2)$$
,

where

$$(A_1\otimes A_2)(x_1\otimes x_2)=A_1x_1\otimes A_2x_2$$

A E > A E >

Let now $\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2$.

In \mathcal{H} we can distinguish separable (simple) tensors of the form $x = x_1 \otimes x_2$. The corresponding pure states we call separable,

$$\mathcal{S}^1(\mathcal{H}) = \{
ho_x \in \mathcal{D}^1(\mathcal{H}) : x = x_1 \otimes x_2 \}.$$

One can show that

$$\rho_{x_1\otimes x_2}=\rho_{x_1}\otimes\rho_{x_2}\,,$$

i.e.

$$\mathcal{S}^{1}(\mathcal{H}) = \{ \rho \in \mathcal{D}^{1}(\mathcal{H}) : \rho = \rho_{x_{1}} \otimes \rho_{x_{2}}, \quad x_{i} \in \mathcal{H}_{i} \}.$$

Here we use the decomposition

$$u^*(\mathcal{H}) = u^*(\mathcal{H}_1) \otimes u^*(\mathcal{H}_2)$$
,

where

$$(A_1\otimes A_2)(x_1\otimes x_2)=A_1x_1\otimes A_2x_2$$

★ 글 ▶ ★ 글 ▶

Let now $\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2$.

In \mathcal{H} we can distinguish separable (simple) tensors of the form $x = x_1 \otimes x_2$. The corresponding pure states we call separable,

$$\mathcal{S}^1(\mathcal{H}) = \{ \rho_x \in \mathcal{D}^1(\mathcal{H}) : x = x_1 \otimes x_2 \}.$$

One can show that

$$\rho_{x_1\otimes x_2}=\rho_{x_1}\otimes\rho_{x_2}\,,$$

i.e.

$$\mathcal{S}^{1}(\mathcal{H}) = \{ \rho \in \mathcal{D}^{1}(\mathcal{H}) : \rho = \rho_{x_{1}} \otimes \rho_{x_{2}}, \quad x_{i} \in \mathcal{H}_{i} \}.$$

Here we use the decomposition

$$u^*(\mathcal{H}) = u^*(\mathcal{H}_1) \otimes u^*(\mathcal{H}_2)$$
,

where

$$(A_1\otimes A_2)(x_1\otimes x_2)=A_1x_1\otimes A_2x_2.$$

By definition, the set $S(\mathcal{H})$ of separable density states is the convex hull of the set $S^1(\mathcal{H})$ of separable pure states,

$$\mathcal{S}(\mathcal{H}) = ext{convex}(\mathcal{S}^1(\mathcal{H})) = \{\sum_i \lambda_i
ho_i : \lambda_i \ge 0 \ , \ \sum_i \lambda_i = 1 \ , \
ho_i \in \mathcal{S}^1(\mathcal{H}) \} \ .$$

The other states are called entangled,

 $\mathcal{E}(\mathcal{H}) = \mathcal{D}(\mathcal{H}) \setminus \mathcal{S}(\mathcal{H})$.

Example

Put $\mathcal{H}_1 = \mathcal{H}_2 = \mathbb{C}^2$. The tensor $x = \frac{1}{\sqrt{2}} (|0\rangle \otimes |1\rangle - |1\rangle \otimes |0\rangle)$ is not simple and the corresponding pure state

$egin{aligned} & p_{\mathbf{x}} & = & rac{1}{2} \left(\left| 0 ight angle \otimes \left| 1 ight angle \left\langle 0 ight| \otimes \left\langle 1 ight| + \left| 1 ight angle \otimes \left| 0 ight angle \left\langle 1 ight| \otimes \left\langle 0 ight| & \ - & \left| 0 ight angle \otimes \left| 1 ight angle \left\langle 1 ight| \otimes \left\langle 0 ight| - & \left| 1 ight angle \otimes \left| 0 ight angle \left\langle 0 ight angle & \left\langle 1 ight angle \end{aligned}$

By definition, the set $S(\mathcal{H})$ of separable density states is the convex hull of the set $S^1(\mathcal{H})$ of separable pure states,

$$\mathcal{S}(\mathcal{H}) = \operatorname{convex}(\mathcal{S}^1(\mathcal{H})) = \{\sum_i \lambda_i
ho_i : \lambda_i \ge 0, \ \sum_i \lambda_i = 1, \
ho_i \in \mathcal{S}^1(\mathcal{H})\}.$$

The other states are called entangled,

$$\mathcal{E}(\mathcal{H}) = \mathcal{D}(\mathcal{H}) \setminus \mathcal{S}(\mathcal{H})$$
 .

Example

Put $\mathcal{H}_1 = \mathcal{H}_2 = \mathbb{C}^2$. The tensor $x = \frac{1}{\sqrt{2}} (|0\rangle \otimes |1\rangle - |1\rangle \otimes |0\rangle)$ is not simple and the corresponding pure state

$egin{aligned} & \rho_{\mathbf{x}} & = & rac{1}{2} \left(|0 angle \otimes |1 angle \langle 0| \otimes \langle 1| + |1 angle \otimes |0 angle \langle 1| \otimes \langle 0| \ & - |0 angle \otimes |1 angle \langle 1| \otimes \langle 0| - |1 angle \otimes |0 angle \langle 0| \otimes \langle 1| angle \end{aligned}$

By definition, the set $S(\mathcal{H})$ of separable density states is the convex hull of the set $S^1(\mathcal{H})$ of separable pure states,

$$\mathcal{S}(\mathcal{H}) = ext{convex}(\mathcal{S}^1(\mathcal{H})) = \{\sum_i \lambda_i
ho_i : \lambda_i \ge 0 \,, \, \sum_i \lambda_i = 1 \,, \, \,
ho_i \in \mathcal{S}^1(\mathcal{H}) \} \,.$$

The other states are called entangled,

$$\mathcal{E}(\mathcal{H}) = \mathcal{D}(\mathcal{H}) \setminus \mathcal{S}(\mathcal{H}).$$

Example

Put $\mathcal{H}_1 = \mathcal{H}_2 = \mathbb{C}^2$. The tensor $x = \frac{1}{\sqrt{2}} (|0\rangle \otimes |1\rangle + |1\rangle \otimes |0\rangle)$ is not simple and the corresponding pure state

 $\begin{array}{ll} |0\rangle \otimes |1\rangle \langle 0| \otimes \langle 1| + |1\rangle \otimes |0\rangle \langle 1| \otimes \langle 0| \right) \frac{1}{2} &= -\frac{1}{2} \langle 0| \otimes \langle 1| \otimes \langle 0| - \frac{1}{2} \rangle \\ &- \langle 0| \otimes \langle 0| \otimes \langle 1| - |0\rangle \otimes |1\rangle \langle 1| \otimes \langle 0| - \frac{1}{2} \rangle \end{array}$

By definition, the set $S(\mathcal{H})$ of separable density states is the convex hull of the set $S^1(\mathcal{H})$ of separable pure states,

$$\mathcal{S}(\mathcal{H}) = ext{convex}(\mathcal{S}^1(\mathcal{H})) = \{\sum_i \lambda_i
ho_i : \lambda_i \ge 0 \,, \, \sum_i \lambda_i = 1 \,, \, \,
ho_i \in \mathcal{S}^1(\mathcal{H}) \} \,.$$

The other states are called entangled,

$$\mathcal{E}(\mathcal{H}) = \mathcal{D}(\mathcal{H}) \setminus \mathcal{S}(\mathcal{H}).$$

Example

Put $\mathcal{H}_1 = \mathcal{H}_2 = \mathbb{C}^2$. The tensor $x = \frac{1}{\sqrt{2}} (|0\rangle \otimes |1\rangle - |1\rangle \otimes |0\rangle)$ is not simple and the corresponding pure state

$$egin{array}{rcl}
ho_{\mathrm{X}} &=& rac{1}{2} \left(|0
angle \otimes |1
angle \langle 0| \otimes \langle 1| + |1
angle \otimes |0
angle \langle 1| \otimes \langle 0| \ &- |0
angle \otimes |1
angle \langle 1| \otimes \langle 0| - |1
angle \otimes |0
angle \langle 0| \otimes \langle 1|
ight) \end{array}$$

By definition, the set $S(\mathcal{H})$ of separable density states is the convex hull of the set $S^1(\mathcal{H})$ of separable pure states,

$$\mathcal{S}(\mathcal{H}) = ext{convex}(\mathcal{S}^1(\mathcal{H})) = \{\sum_i \lambda_i
ho_i : \lambda_i \ge 0 \,, \, \sum_i \lambda_i = 1 \,, \, \,
ho_i \in \mathcal{S}^1(\mathcal{H}) \} \,.$$

The other states are called entangled,

$$\mathcal{E}(\mathcal{H}) = \mathcal{D}(\mathcal{H}) \setminus \mathcal{S}(\mathcal{H})$$
.

Example

Put $\mathcal{H}_1 = \mathcal{H}_2 = \mathbb{C}^2$. The tensor $x = \frac{1}{\sqrt{2}} (|0\rangle \otimes |1\rangle - |1\rangle \otimes |0\rangle)$ is not simple and the corresponding pure state

$$egin{array}{rcl}
ho_{ imes} &=& rac{1}{2} \left(|0
angle \otimes |1
angle \langle 0| \otimes \langle 1| + |1
angle \otimes |0
angle \langle 1| \otimes \langle 0| \ &-& |0
angle \otimes |1
angle \langle 1| \otimes \langle 0| - |1
angle \otimes |0
angle \langle 0| \otimes \langle 1|
ight) \end{array}$$

By definition, the set $S(\mathcal{H})$ of separable density states is the convex hull of the set $S^1(\mathcal{H})$ of separable pure states,

$$\mathcal{S}(\mathcal{H}) = ext{convex}(\mathcal{S}^1(\mathcal{H})) = \{\sum_i \lambda_i
ho_i : \lambda_i \ge 0 \,, \, \sum_i \lambda_i = 1 \,, \, \,
ho_i \in \mathcal{S}^1(\mathcal{H}) \} \,.$$

The other states are called entangled,

$$\mathcal{E}(\mathcal{H}) = \mathcal{D}(\mathcal{H}) \setminus \mathcal{S}(\mathcal{H})$$
.

Example

Put $\mathcal{H}_1 = \mathcal{H}_2 = \mathbb{C}^2$. The tensor $x = \frac{1}{\sqrt{2}} (|0\rangle \otimes |1\rangle - |1\rangle \otimes |0\rangle)$ is not simple and the corresponding pure state

$$egin{array}{rcl}
ho_{\mathrm{x}} &=& rac{1}{2} \left(|0
angle \otimes |1
angle \langle 0| \otimes \langle 1| + |1
angle \otimes |0
angle \langle 1| \otimes \langle 0| \ &-& |0
angle \otimes |1
angle \langle 1| \otimes \langle 0| - |1
angle \otimes |0
angle \langle 0| \otimes \langle 1|
angle \end{array}$$

Question 1: How to decide whether a given state is entangled? Question 2: How to measure the entanglement?

For pure states we have nice answers

• Concurrence:

$$c(
ho)=\sqrt{1-\mathrm{tr}\left(\mathrm{tr}_{\,2}(
ho)^2
ight)}\,,$$

where tr_2 is the trace with respect to the second subsystem,

$$\operatorname{tr}_2(A_1\otimes A_2) = \operatorname{tr}(A_2)\cdot A_1.$$

• Schmidt rank: the number k of components in any Schmidt decomposition.

l heorem

 $\mathcal{H}_1\otimes\mathcal{H}_2$ admits a Schmidt decomposition .

 $\chi = \sum \lambda_i e_i \otimes f_i \ , \ \lambda_i > 0 \ , \ (e_i)$ and (f_i) – orthonormal sets.

Question 1: How to decide whether a given state is entangled?

Question 2: How to measure the entanglement?

For pure states we have nice answers:

• Concurrence:

$$c(
ho) = \sqrt{1 - \operatorname{tr}\left(\operatorname{tr}_2(
ho)^2
ight)},$$

where tr_2 is the trace with respect to the second subsystem,

$$\operatorname{tr}_2(A_1\otimes A_2) = \operatorname{tr}(A_2)\cdot A_1.$$

• Schmidt rank: the number k of components in any Schmidt decomposition.

l heorem

$\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2$ admits a Schmidt decomposition .

 $\mathsf{x}=\sum \lambda_l \mathsf{e}_l\otimes \mathsf{f}_l\,,\;\lambda_l>0\,,\;(\mathsf{e}_l)$ and (f_l) – orthonormal sets.

Question 1: How to decide whether a given state is entangled? Question 2: How to measure the entanglement?

For pure states we have nice answers:

• Concurrence:

$$c(
ho)=\sqrt{1-\mathrm{tr}\left(\mathrm{tr}_{2}(
ho)^{2}
ight)}\,,$$

where tr_2 is the trace with respect to the second subsystem,

$$\operatorname{tr}_2(A_1\otimes A_2) = \operatorname{tr}(A_2)\cdot A_1.$$

• Schmidt rank: the number k of components in any Schmidt decomposition.

l heorem

Any $x \in \mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2$ admits a Schmidt decomposition .

 $X = \sum \lambda_i e_i \otimes f_i \ , \ \lambda_i > 0 \ , \ (e_i)$ and (f_i) – orthonormal sets.

Question 1: How to decide whether a given state is entangled? Question 2: How to measure the entanglement?

For pure states we have nice answers:

• Concurrence:

$$oldsymbol{c}(
ho)=\sqrt{1-{
m tr}\left({
m tr}_{\,2}(
ho)^2
ight)}\,,$$

where tr_2 is the trace with respect to the second subsystem,

$$\operatorname{tr}_2(A_1\otimes A_2) = \operatorname{tr}(A_2)\cdot A_1.$$

• Schmidt rank: the number k of components in any Schmidt decomposition.

I heorem

Any $x \in \mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2$ admits a Schmidt decomposition k

 $\lambda_i e_i \otimes f_i\,,\;\lambda_i > 0\,,\;(e_i)$ and (f_i) – orthonormal sets.
Question 1: How to decide whether a given state is entangled? Question 2: How to measure the entanglement?

For pure states we have nice answers:

• Concurrence:

$$\boldsymbol{c}(\rho) = \sqrt{1 - \operatorname{tr}\left(\operatorname{tr}_2(\rho)^2\right)},$$

where tr_2 is the trace with respect to the second subsystem,

$$\operatorname{tr}_2(A_1\otimes A_2)=\operatorname{tr}(A_2)\cdot A_1.$$

• Schmidt rank: the number k of components in any Schmidt decomposition.

l heorem

Any $x \in \mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2$ admits a Schmidt decomposition .

 $\mathsf{x}=\sum \lambda_l \mathsf{e}_l\otimes \mathsf{f}_l\,,\;\lambda_l>0\,,\;(\mathsf{e}_l)$ and (\mathfrak{f}_l) – orthonormal sets. .

Question 1: How to decide whether a given state is entangled? Question 2: How to measure the entanglement?

For pure states we have nice answers:

Concurrence:

$$c(
ho)=\sqrt{1-\mathrm{tr}\left(\mathrm{tr}_2(
ho)^2
ight)}\,,$$

where tr_2 is the trace with respect to the second subsystem,

$$\operatorname{tr}_2(A_1\otimes A_2)=\operatorname{tr}(A_2)\cdot A_1.$$

• Schmidt rank: the number k of components in any Schmidt decomposition.

l heorem

Any $\mathsf{x} \in \mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2$ admits a Schmidt decomposition .

 $\chi = \sum \lambda_i e_i \otimes f_i \,, \; \lambda_i > 0 \,, \; (e_i)$ and (f_i) – orthonormal sets. .

Question 1: How to decide whether a given state is entangled? Question 2: How to measure the entanglement?

For pure states we have nice answers:

• Concurrence:

$$c(
ho)=\sqrt{1-\mathrm{tr}\left(\mathrm{tr}_2(
ho)^2
ight)}\,,$$

where tr_2 is the trace with respect to the second subsystem,

$$\operatorname{tr}_2(A_1\otimes A_2)=\operatorname{tr}(A_2)\cdot A_1.$$

• Schmidt rank: the number k of components in any Schmidt decomposition.

Theorem

Any $x \in \mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2$ admits a Schmidt decomposition $x = \sum_{i=1}^k \lambda_i e_i \otimes f_i, \ \lambda_i > 0, \ (e_i) \text{ and } (f_i) - \text{orthonormal sets.}$

Question 1: How to decide whether a given state is entangled? Question 2: How to measure the entanglement?

For pure states we have nice answers:

• Concurrence:

$$c(
ho)=\sqrt{1-\mathrm{tr}\left(\mathrm{tr}_{2}(
ho)^{2}
ight)}\,,$$

where tr_2 is the trace with respect to the second subsystem,

$$\operatorname{tr}_2(A_1\otimes A_2)=\operatorname{tr}(A_2)\cdot A_1.$$

• Schmidt rank: the number k of components in any Schmidt decomposition.

Theorem

Any
$$x \in \mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2$$
 admits a Schmidt decomposition
 $x = \sum_{i=1}^k \lambda_i e_i \otimes f_i, \ \lambda_i > 0, \ (e_i) \text{ and } (f_i) - \text{orthonormal sets.}.$

The tensor product map

 $\otimes: \mathcal{H}_1 \times \mathcal{H}_2 \to \mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2 \,, \quad (x_1, x_2) \mapsto x_1 \otimes x_2 \,,$

associates the product of rays with a ray, so it induces a canonical embedding on the level of complex projective spaces,

> $Seg: \mathbb{P}\mathcal{H}_1 \times \mathbb{P}\mathcal{H}_2 \to \mathbb{P}\mathcal{H} = \mathbb{P}(\mathcal{H}_1 \otimes \mathcal{H}_2),$ $Seg: \mathcal{D}^1(\mathcal{H}_1) \times \mathcal{D}^1(\mathcal{H}_2) \to \mathcal{D}^1(\mathcal{H}) = \mathcal{D}^1(\mathcal{H}_1 \otimes \mathcal{H}_2),$ $(\rho_{x_1}, \rho_{x_2}) \mapsto \rho_{x^1 \otimes x^2}.$

In particular, Seg embeds $\mathbb{CP}^n \times \mathbb{CP}^m$ into \mathbb{CP}^{nm+n+m} .

l heorem

A pure state ρ on $\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2$ is entangled if and only if ρ lies outside the range of the Segre embedding.

J.Grabowski (IMPAN)

The tensor product map

 $\otimes: \mathcal{H}_1 \times \mathcal{H}_2 \to \mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2 \,, \quad (x_1, x_2) \mapsto x_1 \otimes x_2 \,,$

associates the product of rays with a ray, so it induces a canonical embedding on the level of complex projective spaces,

 $Seg: \mathbb{P}\mathcal{H}_1 \times \mathbb{P}\mathcal{H}_2 \to \mathbb{P}\mathcal{H} = \mathbb{P}(\mathcal{H}_1 \otimes \mathcal{H}_2),$ $Seg: \mathcal{D}^1(\mathcal{H}_1) \times \mathcal{D}^1(\mathcal{H}_2) \to \mathcal{D}^1(\mathcal{H}) = \mathcal{D}^1(\mathcal{H}_1 \otimes \mathcal{H}_2),$ $(\rho_{x_1}, \rho_{x_2}) \mapsto \rho_{x^1 \otimes x^2}.$

In particular, Seg embeds $\mathbb{CP}^n \times \mathbb{CP}^m$ into \mathbb{CP}^{nm+n+m} .

l heorem

A pure state ρ on $\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2$ is entangled if and only if ρ lies outside the range of the Segre embedding.

J.Grabowski (IMPAN)

イロン イロン イヨン

The tensor product map

 $\otimes: \mathcal{H}_1 \times \mathcal{H}_2 \to \mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2, \quad (x_1, x_2) \mapsto x_1 \otimes x_2,$

associates the product of rays with a ray, so it induces a canonical embedding on the level of complex projective spaces,

$$\begin{split} \operatorname{Seg} : \mathbb{P}\mathcal{H}_1 \times \mathbb{P}\mathcal{H}_2 & \to & \mathbb{P}\mathcal{H} = \mathbb{P}(\mathcal{H}_1 \otimes \mathcal{H}_2), \\ \operatorname{Seg} : \mathcal{D}^1(\mathcal{H}_1) \times \mathcal{D}^1(\mathcal{H}_2) & \to & \mathcal{D}^1(\mathcal{H}) = \mathcal{D}^1(\mathcal{H}_1 \otimes \mathcal{H}_2), \\ & (\rho_{x_1}, \rho_{x_2}) & \mapsto & \rho_{x^1 \otimes x^2} \,. \end{split}$$

In particular, Seg embeds $\mathbb{CP}^n \times \mathbb{CP}^m$ into \mathbb{CP}^{nm+n+m} .

l heorem

A pure state ρ on $\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2$ is entangled if and only if ρ lies outside the range of the Segre embedding.

J.Grabowski (IMPAN)

< D > < D > < E > < E >

The tensor product map

 $\otimes: \mathcal{H}_1 \times \mathcal{H}_2 \to \mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2, \quad (x_1, x_2) \mapsto x_1 \otimes x_2,$

associates the product of rays with a ray, so it induces a canonical embedding on the level of complex projective spaces,

 $Seg: \mathbb{P}\mathcal{H}_1 \times \mathbb{P}\mathcal{H}_2 \to \mathbb{P}\mathcal{H} = \mathbb{P}(\mathcal{H}_1 \otimes \mathcal{H}_2),$ $Seg: \mathcal{D}^1(\mathcal{H}_1) \times \mathcal{D}^1(\mathcal{H}_2) \to \mathcal{D}^1(\mathcal{H}) = \mathcal{D}^1(\mathcal{H}_1 \otimes \mathcal{H}_2),$ $(\rho_{x_1}, \rho_{x_2}) \mapsto \rho_{x^1 \otimes x^2}.$

In particular, Seg embeds $\mathbb{CP}^n \times \mathbb{CP}^m$ into \mathbb{CP}^{nm+n+m} .

l heorem

A pure state ρ on $\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2$ is entangled if and only if ρ lies outside the range of the Segre embedding.

J.Grabowski (IMPAN)

イロン イロン イヨン

The tensor product map

 $\otimes: \mathcal{H}_1 \times \mathcal{H}_2 \to \mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2, \quad (x_1, x_2) \mapsto x_1 \otimes x_2,$

associates the product of rays with a ray, so it induces a canonical embedding on the level of complex projective spaces,

$$Seg: \mathbb{P}\mathcal{H}_1 \times \mathbb{P}\mathcal{H}_2 \to \mathbb{P}\mathcal{H} = \mathbb{P}(\mathcal{H}_1 \otimes \mathcal{H}_2),$$

$$Seg: \mathcal{D}^1(\mathcal{H}_1) \times \mathcal{D}^1(\mathcal{H}_2) \to \mathcal{D}^1(\mathcal{H}) = \mathcal{D}^1(\mathcal{H}_1 \otimes \mathcal{H}_2),$$

$$(\rho_{x_1}, \rho_{x_2}) \mapsto \rho_{x^1 \otimes x^2}.$$

In particular, Seg embeds $\mathbb{CP}^n \times \mathbb{CP}^m$ into \mathbb{CP}^{nm+n+m} .

Theorem

A pure state ρ on $\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2$ is entangled if and only if ρ lies outside the range of the Segre embedding.

J.Grabowski (IMPAN)

The tensor product map

 $\otimes: \mathcal{H}_1 \times \mathcal{H}_2 \to \mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2, \quad (x_1, x_2) \mapsto x_1 \otimes x_2,$

associates the product of rays with a ray, so it induces a canonical embedding on the level of complex projective spaces,

$$Seg: \mathbb{P}\mathcal{H}_1 \times \mathbb{P}\mathcal{H}_2 \to \mathbb{P}\mathcal{H} = \mathbb{P}(\mathcal{H}_1 \otimes \mathcal{H}_2),$$

$$Seg: \mathcal{D}^1(\mathcal{H}_1) \times \mathcal{D}^1(\mathcal{H}_2) \to \mathcal{D}^1(\mathcal{H}) = \mathcal{D}^1(\mathcal{H}_1 \otimes \mathcal{H}_2),$$

$$(\rho_{x_1}, \rho_{x_2}) \mapsto \rho_{x^1 \otimes x^2}.$$

In particular, Seg embeds $\mathbb{CP}^n \times \mathbb{CP}^m$ into \mathbb{CP}^{nm+n+m} .

Theorem

A pure state ρ on $\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2$ is entangled if and only if ρ lies outside the range of the Segre embedding.

J.Grabowski (IMPAN)

イロト イヨト イヨト イヨト

- Question 3: How to define entanglement for composite systems of indistinguishable particles?
- We work on $\mathcal{H}^{\otimes 2} = \mathcal{H} \otimes \mathcal{H}$ or, more generally, $\mathcal{H}^{\otimes n} = \mathcal{H} \otimes \cdots \otimes \mathcal{H}$ *n*-times.
- Question 4: Which symmetric/antisymmetric tensors are 'simple' (separable)?
- Antisymmetric tensors (fermions) are never simple in the standard sense: x₁ ∧ x₂ = x₁ ⊗ x₂ − x₂ ⊗ x₁.
- Symmetric tensors (bosons): $x_1 \otimes x_2 + x_2 \otimes x_1$ or rather $x \otimes x$?
- What about other potential statistics (parastatistics)?

We need a unifying mathematical concept of a simple tensor.

- Question 3: How to define entanglement for composite systems of indistinguishable particles?
- We work on $\mathcal{H}^{\otimes 2} = \mathcal{H} \otimes \mathcal{H}$ or, more generally, $\mathcal{H}^{\otimes n} = \mathcal{H} \otimes \cdots \otimes \mathcal{H}$ *n*-times.
- Question 4: Which symmetric/antisymmetric tensors are 'simple' (separable)?
- Antisymmetric tensors (fermions) are never simple in the standard sense: x₁ ∧ x₂ = x₁ ⊗ x₂ − x₂ ⊗ x₁.
- Symmetric tensors (bosons): $x_1 \otimes x_2 + x_2 \otimes x_1$ or rather $x \otimes x$?
- What about other potential statistics (parastatistics)?

We need a unifying mathematical concept of a simple tensor.

- Question 3: How to define entanglement for composite systems of indistinguishable particles?
- We work on $\mathcal{H}^{\otimes 2} = \mathcal{H} \otimes \mathcal{H}$ or, more generally, $\mathcal{H}^{\otimes n} = \mathcal{H} \otimes \cdots \otimes \mathcal{H}$ *n*-times.
- Question 4: Which symmetric/antisymmetric tensors are 'simple' (separable)?
- Antisymmetric tensors (fermions) are never simple in the standard sense: x₁ ∧ x₂ = x₁ ⊗ x₂ − x₂ ⊗ x₁.
- Symmetric tensors (bosons): $x_1 \otimes x_2 + x_2 \otimes x_1$ or rather $x \otimes x$?
- What about other potential statistics (parastatistics)?

We need a unifying mathematical concept of a simple tensor.

((日)) くぼう くぼう

- Question 3: How to define entanglement for composite systems of indistinguishable particles?
- We work on $\mathcal{H}^{\otimes 2} = \mathcal{H} \otimes \mathcal{H}$ or, more generally, $\mathcal{H}^{\otimes n} = \mathcal{H} \otimes \cdots \otimes \mathcal{H}$ *n*-times.
- Question 4: Which symmetric/antisymmetric tensors are 'simple' (separable)?
- Antisymmetric tensors (fermions) are never simple in the standard sense: x₁ ∧ x₂ = x₁ ⊗ x₂ − x₂ ⊗ x₁.
- Symmetric tensors (bosons): $x_1 \otimes x_2 + x_2 \otimes x_1$ or rather $x \otimes x$?
- What about other potential statistics (parastatistics)?

We need a unifying mathematical concept of a simple tensor.

- Question 3: How to define entanglement for composite systems of indistinguishable particles?
- We work on $\mathcal{H}^{\otimes 2} = \mathcal{H} \otimes \mathcal{H}$ or, more generally, $\mathcal{H}^{\otimes n} = \mathcal{H} \otimes \cdots \otimes \mathcal{H}$ *n*-times.
- Question 4: Which symmetric/antisymmetric tensors are 'simple' (separable)?
- Antisymmetric tensors (fermions) are never simple in the standard sense: x₁ ∧ x₂ = x₁ ⊗ x₂ − x₂ ⊗ x₁.
- Symmetric tensors (bosons): $x_1 \otimes x_2 + x_2 \otimes x_1$ or rather $x \otimes x$?
- What about other potential statistics (parastatistics)?

We need a unifying mathematical concept of a simple tensor.

- Question 3: How to define entanglement for composite systems of indistinguishable particles?
- We work on $\mathcal{H}^{\otimes 2} = \mathcal{H} \otimes \mathcal{H}$ or, more generally, $\mathcal{H}^{\otimes n} = \mathcal{H} \otimes \cdots \otimes \mathcal{H}$ *n*-times.
- Question 4: Which symmetric/antisymmetric tensors are 'simple' (separable)?
- Antisymmetric tensors (fermions) are never simple in the standard sense: x₁ ∧ x₂ = x₁ ⊗ x₂ − x₂ ⊗ x₁.
- Symmetric tensors (bosons): $x_1 \otimes x_2 + x_2 \otimes x_1$ or rather $x \otimes x$?
- What about other potential statistics (parastatistics)?

We need a unifying mathematical concept of a simple tensor.

- Question 3: How to define entanglement for composite systems of indistinguishable particles?
- We work on $\mathcal{H}^{\otimes 2} = \mathcal{H} \otimes \mathcal{H}$ or, more generally, $\mathcal{H}^{\otimes n} = \mathcal{H} \otimes \cdots \otimes \mathcal{H}$ *n*-times.
- Question 4: Which symmetric/antisymmetric tensors are 'simple' (separable)?
- Antisymmetric tensors (fermions) are never simple in the standard sense: x₁ ∧ x₂ = x₁ ⊗ x₂ − x₂ ⊗ x₁.
- Symmetric tensors (bosons): $x_1 \otimes x_2 + x_2 \otimes x_1$ or rather $x \otimes x$?
- What about other potential statistics (parastatistics)?

We need a unifying mathematical concept of a simple tensor.

・ロ・ ・ 日・ ・ ヨ・

- Question 3: How to define entanglement for composite systems of indistinguishable particles?
- We work on $\mathcal{H}^{\otimes 2} = \mathcal{H} \otimes \mathcal{H}$ or, more generally, $\mathcal{H}^{\otimes n} = \mathcal{H} \otimes \cdots \otimes \mathcal{H}$ *n*-times.
- Question 4: Which symmetric/antisymmetric tensors are 'simple' (separable)?
- Antisymmetric tensors (fermions) are never simple in the standard sense: x₁ ∧ x₂ = x₁ ⊗ x₂ − x₂ ⊗ x₁.
- Symmetric tensors (bosons): $x_1 \otimes x_2 + x_2 \otimes x_1$ or rather $x \otimes x$?
- What about other potential statistics (parastatistics)?

We need a unifying mathematical concept of a simple tensor.

J.Grabowski (IMPAN)

In the tensor power $\mathcal{H}^{\otimes k} = \underbrace{\mathcal{H} \otimes \cdots \otimes \mathcal{H}}_{k \in \text{times}}$ we distinguish the subspaces:

• $\mathcal{H}^{\vee k} = \underbrace{\mathcal{H} \vee \cdots \vee \mathcal{H}}_{k-\text{times}}$ of totally symmetric tensors (bosonic Fock),

• and $\mathcal{H}^{\wedge k} = \underbrace{\mathcal{H} \wedge \cdots \wedge \mathcal{H}}_{k-\text{times}}$ of totally antisymmetric ones (fermionic Fock space).

together with the symmetrization, $\pi_k^ee:\mathcal{H}^{\otimes k} o\mathcal{H}^{ee k}$, and antisymmetrization, $\pi_k^\wedge:\mathcal{H}^{\otimes k} o\mathcal{H}^{\wedge k}$, projectors.

$$\pi_k^{\vee}(f_1\otimes\cdots\otimes f_k)=rac{1}{k!}\sum_{\sigma\in S_k}f_{\sigma(1)}\otimes\cdots\otimes f_{\sigma(k)},$$

$$\pi_k^\wedge(f_1\otimes\cdots\otimes f_k)=rac{1}{k!}\sum_{\sigma\in S_k}(-1)^\sigma f_{\sigma(1)}\otimes\cdots\otimes f_{\sigma(k)}\,.$$

イロト イヨト イヨト イヨト

In the tensor power $\mathcal{H}^{\otimes k} = \underbrace{\mathcal{H} \otimes \cdots \otimes \mathcal{H}}_{k-\text{times}}$ we distinguish the subspaces:

• $\mathcal{H}^{\vee k} = \underbrace{\mathcal{H} \vee \cdots \vee \mathcal{H}}_{k-\text{times}}$ of totally symmetric tensors (bosonic Fock),

• and $\mathcal{H}^{\wedge k} = \underbrace{\mathcal{H} \wedge \cdots \wedge \mathcal{H}}_{k-\text{times}}$ of totally antisymmetric ones (fermionic Fock space),

together with the symmetrization, $\pi_k^{ee}:\mathcal{H}^{\otimes k} o\mathcal{H}^{ee k}$, and antisymmetrization, $\pi_k^\wedge:\mathcal{H}^{\otimes k} o\mathcal{H}^{\wedge k}$, projectors

$$\pi_k^{\vee}(f_1\otimes\cdots\otimes f_k)=rac{1}{k!}\sum_{\sigma\in S_k}f_{\sigma(1)}\otimes\cdots\otimes f_{\sigma(k)},$$

$$\pi_k^\wedge(f_1\otimes\cdots\otimes f_k)=rac{1}{k!}\sum_{\sigma\in S_k}(-1)^\sigma f_{\sigma(1)}\otimes\cdots\otimes f_{\sigma(k)}\,.$$

In the tensor power $\mathcal{H}^{\otimes k} = \underbrace{\mathcal{H} \otimes \cdots \otimes \mathcal{H}}_{k-\text{times}}$ we distinguish the subspaces:

•
$$\mathcal{H}^{\vee k} = \underbrace{\mathcal{H} \vee \cdots \vee \mathcal{H}}_{k-\text{times}}$$
 of totally symmetric tensors (bosonic Fock),

• and $\mathcal{H}^{\wedge k} = \underbrace{\mathcal{H} \wedge \cdots \wedge \mathcal{H}}_{k-\text{times}}$ of totally antisymmetric ones (fermionic Fock space),

together with the symmetrization, $\pi_k^{\vee}: \mathcal{H}^{\otimes k} \to \mathcal{H}^{\vee k}$, and antisymmetrization, $\pi_k^{\wedge}: \mathcal{H}^{\otimes k} \to \mathcal{H}^{\wedge k}$, projectors

$$\pi_k^{\vee}(f_1\otimes\cdots\otimes f_k)=rac{1}{k!}\sum_{\sigma\in S_k}f_{\sigma(1)}\otimes\cdots\otimes f_{\sigma(k)},$$

$$\pi_k^\wedge(f_1\otimes\cdots\otimes f_k)=rac{1}{k!}\sum_{\sigma\in S_k}(-1)^\sigma f_{\sigma(1)}\otimes\cdots\otimes f_{\sigma(k)}\,.$$

In the tensor power $\mathcal{H}^{\otimes k} = \underbrace{\mathcal{H} \otimes \cdots \otimes \mathcal{H}}_{k-\text{times}}$ we distinguish the subspaces:

•
$$\mathcal{H}^{\vee k} = \underbrace{\mathcal{H} \vee \cdots \vee \mathcal{H}}_{k-\text{times}}$$
 of totally symmetric tensors (bosonic Fock),

• and $\mathcal{H}^{\wedge k} = \underbrace{\mathcal{H} \wedge \cdots \wedge \mathcal{H}}_{k-\text{times}}$ of totally antisymmetric ones (fermionic Fock space),

together with the symmetrization, $\pi_k^{ee}: \mathcal{H}^{\otimes k} \to \mathcal{H}^{ee k}$, and antisymmetrization, $\pi_k^{\wedge}: \mathcal{H}^{\otimes k} \to \mathcal{H}^{\wedge k}$, projectors:

$$\pi_k^{\vee}(f_1\otimes\cdots\otimes f_k)=\frac{1}{k!}\sum_{\sigma\in S_k}f_{\sigma(1)}\otimes\cdots\otimes f_{\sigma(k)},$$

$$\pi_k^\wedge(f_1\otimes\cdots\otimes f_k)=rac{1}{k!}\sum_{\sigma\in S_k}(-1)^\sigma f_{\sigma(1)}\otimes\cdots\otimes f_{\sigma(k)}\,.$$

In the tensor power $\mathcal{H}^{\otimes k} = \underbrace{\mathcal{H} \otimes \cdots \otimes \mathcal{H}}_{k-\text{times}}$ we distinguish the subspaces:

•
$$\mathcal{H}^{\vee k} = \underbrace{\mathcal{H} \vee \cdots \vee \mathcal{H}}_{k-\text{times}}$$
 of totally symmetric tensors (bosonic Fock),

• and $\mathcal{H}^{\wedge k} = \underbrace{\mathcal{H} \wedge \cdots \wedge \mathcal{H}}_{k-\text{times}}$ of totally antisymmetric ones (fermionic Fock space),

together with the symmetrization, $\pi_k^{\vee} : \mathcal{H}^{\otimes k} \to \mathcal{H}^{\vee k}$, and antisymmetrization, $\pi_k^{\wedge} : \mathcal{H}^{\otimes k} \to \mathcal{H}^{\wedge k}$, projectors:

$$\pi_k^{\vee}(f_1\otimes\cdots\otimes f_k)=rac{1}{k!}\sum_{\sigma\in S_k}f_{\sigma(1)}\otimes\cdots\otimes f_{\sigma(k)}\,,$$
 $\pi_k^{\wedge}(f_1\otimes\cdots\otimes f_k)=rac{1}{k!}\sum_{\sigma\in S_k}(-1)^{\sigma}f_{\sigma(1)}\otimes\cdots\otimes f_{\sigma(k)}$

In the tensor power $\mathcal{H}^{\otimes k} = \underbrace{\mathcal{H} \otimes \cdots \otimes \mathcal{H}}_{k-\text{times}}$ we distinguish the subspaces:

•
$$\mathcal{H}^{\vee k} = \underbrace{\mathcal{H} \vee \cdots \vee \mathcal{H}}_{k-\text{times}}$$
 of totally symmetric tensors (bosonic Fock),

• and $\mathcal{H}^{\wedge k} = \underbrace{\mathcal{H} \wedge \cdots \wedge \mathcal{H}}_{k-\text{times}}$ of totally antisymmetric ones (fermionic Fock space),

together with the symmetrization, $\pi_k^{ee}:\mathcal{H}^{\otimes k} \to \mathcal{H}^{ee k}$,

and antisymmetrization, $\pi_k^\wedge: \mathcal{H}^{\otimes k} \to \mathcal{H}^{\wedge k}$, projectors:

$$\pi_k^{\vee}(f_1\otimes\cdots\otimes f_k)=\frac{1}{k!}\sum_{\sigma\in S_k}f_{\sigma(1)}\otimes\cdots\otimes f_{\sigma(k)},$$

In the tensor power $\mathcal{H}^{\otimes k} = \underbrace{\mathcal{H} \otimes \cdots \otimes \mathcal{H}}_{k-\text{times}}$ we distinguish the subspaces:

•
$$\mathcal{H}^{\vee k} = \underbrace{\mathcal{H} \vee \cdots \vee \mathcal{H}}_{k-\text{times}}$$
 of totally symmetric tensors (bosonic Fock),

• and $\mathcal{H}^{\wedge k} = \underbrace{\mathcal{H} \wedge \cdots \wedge \mathcal{H}}_{k-\text{times}}$ of totally antisymmetric ones (fermionic Fock space),

together with the symmetrization, $\pi_k^{ee}:\mathcal{H}^{\otimes k} \to \mathcal{H}^{ee k}$,

and antisymmetrization, $\pi_k^\wedge: \mathcal{H}^{\otimes k} \to \mathcal{H}^{\wedge k}$, projectors:

$$\pi_k^{\vee}(f_1 \otimes \cdots \otimes f_k) = \frac{1}{k!} \sum_{\sigma \in S_k} f_{\sigma(1)} \otimes \cdots \otimes f_{\sigma(k)},$$

$$\pi_k^{\wedge}(f_1\otimes\cdots\otimes f_k)=rac{1}{k!}\sum_{\sigma\in S_k}(-1)^{\sigma}f_{\sigma(1)}\otimes\cdots\otimes f_{\sigma(k)}$$

The Hermitian product in \mathcal{H} has an obvious extension to a Hermitian product in $\mathcal{H}^{\otimes k}$, $\mathcal{H}^{\vee k}$ and $\mathcal{H}^{\wedge k}$:

•
•

$$\langle f_1 \otimes \cdots \otimes f_k | g_1 \otimes \cdots \otimes g_k \rangle = \prod_{i=1}^k \langle f_i | g_i \rangle \cdot \langle f_1 \vee \cdots \vee f_k | g_1 \vee \cdots \vee g_k \rangle = \frac{1}{(k!)^2} \sum_{\sigma_i \tau \in S_k} \prod_{i=1}^k \langle f_{\sigma(i)} | g_{\tau(i)} \rangle = \frac{1}{k!} \operatorname{per}(\langle f_i | g_j \rangle).$$

Here,

$$\operatorname{per}(a_k) = \frac{1}{k!} \sum_{\tau \in S_k} \prod_{i=1}^k a_{i\tau(i)}$$

is the permanent of the matrix $A = (a_{ij})$.

۲

$\langle f_1 \wedge \cdots \wedge f_k | g_1 \wedge \cdots \wedge g_k \rangle = rac{1}{k!} \det(\langle f_i | g_j \rangle).$

J.Grabowski (IMPAN)

A (1) × A (2) × A (2)

The Hermitian product in \mathcal{H} has an obvious extension to a Hermitian product in $\mathcal{H}^{\otimes k}$, $\mathcal{H}^{\vee k}$ and $\mathcal{H}^{\wedge k}$:

$$\langle f_1 \otimes \cdots \otimes f_k | g_1 \otimes \cdots \otimes g_k \rangle = \prod_{i=1}^k \langle f_i | g_i \rangle .$$

$$\langle f_1 \vee \cdots \vee f_k | g_1 \vee \cdots \vee g_k \rangle = \frac{1}{(k!)^2} \sum_{\sigma, \tau \in S_k} \prod_{i=1}^k \langle f_{\sigma(i)} | g_{\tau(i)} \rangle = \frac{1}{k!} \operatorname{per}(\langle f_i | g_j \rangle).$$

$$\operatorname{por}(a_{ij}) = \frac{1}{k!} \sum_{\tau \in S_k} \prod_{i=1}^{l} a_{i\tau(i)}$$

is the permanent of the matrix $A=(a_{ij}).$

۲

$\langle f_1 \wedge \cdots \wedge f_k | g_1 \wedge \cdots \wedge g_k \rangle = \frac{1}{k!} \det(\langle f_i | g_j \rangle).$

J.Grabowski (IMPAN)

Segre maps and entanglement

09/01/2012 10 / 25

The Hermitian product in \mathcal{H} has an obvious extension to a Hermitian product in $\mathcal{H}^{\otimes k}$, $\mathcal{H}^{\vee k}$ and $\mathcal{H}^{\wedge k}$:

イロン イロン イヨン

The Hermitian product in \mathcal{H} has an obvious extension to a Hermitian product in $\mathcal{H}^{\otimes k}$, $\mathcal{H}^{\vee k}$ and $\mathcal{H}^{\wedge k}$:

•
•
$$\langle f_1 \otimes \cdots \otimes f_k | g_1 \otimes \cdots \otimes g_k \rangle = \prod_{i=1}^k \langle f_i | g_i \rangle.$$

• $\langle f_1 \vee \cdots \vee f_k | g_1 \vee \cdots \vee g_k \rangle = \frac{1}{(k!)^2} \sum_{\sigma, \tau \in S_k} \prod_{i=1}^k \langle f_{\sigma(i)} | g_{\tau(i)} \rangle = \frac{1}{k!} \operatorname{per}(\langle f_i | g_j \rangle).$

Here,

$$ext{per}(a_{ij}) = rac{1}{k!} \sum_{ au \in S_k} \prod_{i=1}^k a_{i au(i)}$$

is the permanent of the matrix $A = (a_{ij})$.

 $\langle f_1 \wedge \cdots \wedge f_k | g_1 \wedge \cdots \wedge g_k \rangle = \frac{1}{k!} \det(\langle f_i | g_j \rangle).$

The Hermitian product in \mathcal{H} has an obvious extension to a Hermitian product in $\mathcal{H}^{\otimes k}$, $\mathcal{H}^{\vee k}$ and $\mathcal{H}^{\wedge k}$:

$$\langle f_1 \otimes \cdots \otimes f_k | g_1 \otimes \cdots \otimes g_k \rangle = \prod_{i=1}^k \langle f_i | g_i \rangle .$$
$$\langle f_1 \vee \cdots \vee f_k | g_1 \vee \cdots \vee g_k \rangle = \frac{1}{(k!)^2} \sum_{\sigma, \tau \in S_k} \prod_{i=1}^k \langle f_{\sigma(i)} | g_{\tau(i)} \rangle = \frac{1}{k!} \operatorname{per}(\langle f_i | g_j \rangle).$$

Here,

$$\operatorname{per}(a_{ij}) = \frac{1}{k!} \sum_{\tau \in S_k} \prod_{i=1}^k a_{i\tau(i)}$$

is the permanent of the matrix $A = (a_{ij})$.

$$\langle f_1 \wedge \cdots \wedge f_k | g_1 \wedge \cdots \wedge g_k \rangle = \frac{1}{k!} \det(\langle f_i | g_j \rangle).$$

J.Grabowski (IMPAN)

The Hermitian product in \mathcal{H} has an obvious extension to a Hermitian product in $\mathcal{H}^{\otimes k}$, $\mathcal{H}^{\vee k}$ and $\mathcal{H}^{\wedge k}$:

$$\langle f_1 \otimes \cdots \otimes f_k | g_1 \otimes \cdots \otimes g_k \rangle = \prod_{i=1}^n \langle f_i | g_i \rangle .$$
$$\langle f_1 \vee \cdots \vee f_k | g_1 \vee \cdots \vee g_k \rangle = \frac{1}{(k!)^2} \sum_{\sigma, \tau \in S_k} \prod_{i=1}^k \langle f_{\sigma(i)} | g_{\tau(i)} \rangle = \frac{1}{k!} \operatorname{per}(\langle f_i | g_j \rangle).$$

Here,

$$\operatorname{per}(a_{ij}) = \frac{1}{k!} \sum_{\tau \in S_k} \prod_{i=1}^k a_{i\tau(i)}$$

is the permanent of the matrix $A = (a_{ij})$.

$$\langle f_1 \wedge \cdots \wedge f_k | g_1 \wedge \cdots \wedge g_k \rangle = \frac{1}{k!} \det(\langle f_i | g_j \rangle).$$

These Hermitian products can be extended to contractions (inner products) between $\mathcal{H}^{\otimes k}$ $(\mathcal{H}^{\vee k}, \mathcal{H}^{\wedge k})$ on one hand, and $\mathcal{H}^{\otimes l}$ $(\mathcal{H}^{\vee l}, \mathcal{H}^{\wedge l})$ on the other, $l \leq k$.

• For $f = f_1 \otimes \cdots \otimes f_k \in \mathcal{H}^{\otimes k}$ and $g = g_1 \otimes \cdots \otimes g_l \in \mathcal{H}^{\otimes l}$,

 $i_g f = \langle g_1 \otimes \cdots \otimes g_l | f_1 \otimes \cdots \otimes f_l \rangle f_{l+1} \otimes \cdots \otimes f_k$

• If $f \in \mathcal{H}^{\vee k}$ $(f \in \mathcal{H}^{\wedge k})$ and $g \in \mathcal{H}^{\vee l}$ $(g \in \mathcal{H}^{\wedge l})$, then $\imath_g f \in \mathcal{H}^{\vee (k-l)}$ $(\imath_g f \in \mathcal{H}^{\wedge (k-l)})$.

In particular,

 $-t_{g_1\vee\cdots\vee g_{k-1}}f_1\vee\cdots\vee f_k = \frac{1}{k!}\sum_{j=1}(g_1\vee\cdots\vee g_{k-1})f_1\vee\cdots\vee f_k)f_j,$

 $\iota_{g_1\wedge\cdots\wedge g_{k-1}}f_1\wedge\cdots\wedge f_k=rac{1}{k!}\sum_{j=1}^k (-1)^{k-j}\langle g_1\wedge\cdots\wedge g_{k-1}|f_1\wedge \overset{j}{\cdots}\wedge f_k
angle f_j.$

These Hermitian products can be extended to contractions (inner products) between $\mathcal{H}^{\otimes k}$ ($\mathcal{H}^{\vee k}$, $\mathcal{H}^{\wedge k}$) on one hand, and $\mathcal{H}^{\otimes l}$ ($\mathcal{H}^{\vee l}$, $\mathcal{H}^{\wedge l}$) on the other, $l \leq k$.

• For $f = f_1 \otimes \cdots \otimes f_k \in \mathcal{H}^{\otimes k}$ and $g = g_1 \otimes \cdots \otimes g_l \in \mathcal{H}^{\otimes l}$, $\imath_g f = \langle g_1 \otimes \cdots \otimes g_l | f_1 \otimes \cdots \otimes f_l \rangle f_{l+1} \otimes \cdots \otimes f_k$.

• If $f \in \mathcal{H}^{\vee k}$ $(f \in \mathcal{H}^{\wedge k})$ and $g \in \mathcal{H}^{\vee l}$ $(g \in \mathcal{H}^{\wedge l})$, then $\imath_g f \in \mathcal{H}^{\vee (k-l)}$ $(\imath_g f \in \mathcal{H}^{\wedge (k-l)})$.

In particular,

 $-\epsilon_{g_1} \vee \cdots \vee \epsilon_{g_{k-1}} f_1 \vee \cdots \vee f_k = \frac{1}{k!} \sum_{i=1} \left(g_1 \vee \cdots \vee g_{k-1} \right) f_1 \vee \cdots \vee f_k \right) f_j.$

 $\iota_{\mathbf{g}_1\wedge\cdots\wedge\mathbf{g}_{k-1}}f_1\wedge\cdots\wedge f_k = rac{1}{k!}\sum_{j=1}^k (-1)^{k-j} \langle g_1\wedge\cdots\wedge g_{k-1}|f_1\wedge \stackrel{j}{\cdots}\wedge f_k
angle f_j.$

These Hermitian products can be extended to contractions (inner products) between $\mathcal{H}^{\otimes k}$ ($\mathcal{H}^{\vee k}$, $\mathcal{H}^{\wedge k}$) on one hand, and $\mathcal{H}^{\otimes l}$ ($\mathcal{H}^{\vee l}$, $\mathcal{H}^{\wedge l}$) on the other, $l \leq k$.

• For $f = f_1 \otimes \cdots \otimes f_k \in \mathcal{H}^{\otimes k}$ and $g = g_1 \otimes \cdots \otimes g_l \in \mathcal{H}^{\otimes l}$,

 $i_g f = \langle g_1 \otimes \cdots \otimes g_l | f_1 \otimes \cdots \otimes f_l \rangle f_{l+1} \otimes \cdots \otimes f_k$

• If $f \in \mathcal{H}^{\vee k}$ $(f \in \mathcal{H}^{\wedge k})$ and $g \in \mathcal{H}^{\vee l}$ $(g \in \mathcal{H}^{\wedge l})$, then $\imath_g f \in \mathcal{H}^{\vee (k-l)}$ $(\imath_g f \in \mathcal{H}^{\wedge (k-l)})$.

In particular,

 $\langle \langle g_1 \vee \cdots \vee g_{k-1} f_1 \rangle \vee \cdots \vee \langle f_k = rac{1}{k!} \sum_{i=1} \langle g_1 \vee \cdots \vee g_{k-1} | f_1 \rangle \vee \cdots \vee \langle f_k \rangle f_j,$

 $\iota_{\mathbf{g}_1\wedge\cdots\wedge\mathbf{g}_{k+1}}f_1\wedge\cdots\wedge f_k = rac{1}{k!}\sum_{i=1}^k (-1)^{k-j} \langle g_1\wedge\cdots\wedge g_{k+1}|f_1\wedge\cdots\wedge f_k
angle f_j.$

These Hermitian products can be extended to contractions (inner products) between $\mathcal{H}^{\otimes k}$ ($\mathcal{H}^{\vee k}$, $\mathcal{H}^{\wedge k}$) on one hand, and $\mathcal{H}^{\otimes l}$ ($\mathcal{H}^{\vee l}$, $\mathcal{H}^{\wedge l}$) on the other, $l \leq k$.

• For $f = f_1 \otimes \cdots \otimes f_k \in \mathcal{H}^{\otimes k}$ and $g = g_1 \otimes \cdots \otimes g_l \in \mathcal{H}^{\otimes l}$,

 $i_g f = \langle g_1 \otimes \cdots \otimes g_l | f_1 \otimes \cdots \otimes f_l \rangle f_{l+1} \otimes \cdots \otimes f_k$.

• If $f \in \mathcal{H}^{\vee k}$ $(f \in \mathcal{H}^{\wedge k})$ and $g \in \mathcal{H}^{\vee l}$ $(g \in \mathcal{H}^{\wedge l})$, then $\imath_g f \in \mathcal{H}^{\vee (k-l)}$ $(\imath_g f \in \mathcal{H}^{\wedge (k-l)})$.

• In particular,

$$i_{g_1 \vee \cdots \vee g_{k-1}} f_1 \vee \cdots \vee f_k = \frac{1}{k!} \sum_{j=1}^k \langle g_1 \vee \cdots \vee g_{k-1} | f_1 \vee \overset{\vee}{\cdots} \vee f_k \rangle f_j,$$

$$i_{g_1 \wedge \cdots \wedge g_{k-1}} f_1 \wedge \cdots \wedge f_k = \frac{1}{k!} \sum_{j=1}^k (-1)^{k-j} \langle g_1 \wedge \cdots \wedge g_{k-1} | f_1 \wedge \overset{\vee}{\cdots} \wedge f_k \rangle f_j.$$

These Hermitian products can be extended to contractions (inner products) between $\mathcal{H}^{\otimes k}$ ($\mathcal{H}^{\vee k}$, $\mathcal{H}^{\wedge k}$) on one hand, and $\mathcal{H}^{\otimes l}$ ($\mathcal{H}^{\vee l}$, $\mathcal{H}^{\wedge l}$) on the other, $l \leq k$.

• For $f = f_1 \otimes \cdots \otimes f_k \in \mathcal{H}^{\otimes k}$ and $g = g_1 \otimes \cdots \otimes g_l \in \mathcal{H}^{\otimes l}$,

 $i_g f = \langle g_1 \otimes \cdots \otimes g_l | f_1 \otimes \cdots \otimes f_l \rangle f_{l+1} \otimes \cdots \otimes f_k$.

• If $f \in \mathcal{H}^{\vee k}$ $(f \in \mathcal{H}^{\wedge k})$ and $g \in \mathcal{H}^{\vee l}$ $(g \in \mathcal{H}^{\wedge l})$, then $\imath_g f \in \mathcal{H}^{\vee (k-l)}$ $(\imath_g f \in \mathcal{H}^{\wedge (k-l)})$.

• In particular,

$$i_{g_1 \lor \dots \lor g_{k-1}} f_1 \lor \dots \lor f_k = rac{1}{k!} \sum_{j=1}^k \langle g_1 \lor \dots \lor g_{k-1} | f_1 \lor \stackrel{\checkmark}{\dots} \lor f_k
angle f_j,$$

 $g_1 \land \dots \land g_{k-1} f_1 \land \dots \land f_k = rac{1}{k!} \sum_{j=1}^k (-1)^{k-j} \langle g_1 \land \dots \land g_{k-1} | f_1 \land \stackrel{\checkmark}{\dots} \land f_k
angle f_j.$
Contractions

These Hermitian products can be extended to contractions (inner products) between $\mathcal{H}^{\otimes k}$ ($\mathcal{H}^{\vee k}$, $\mathcal{H}^{\wedge k}$) on one hand, and $\mathcal{H}^{\otimes l}$ ($\mathcal{H}^{\vee l}$, $\mathcal{H}^{\wedge l}$) on the other, $l \leq k$.

• For $f = f_1 \otimes \cdots \otimes f_k \in \mathcal{H}^{\otimes k}$ and $g = g_1 \otimes \cdots \otimes g_l \in \mathcal{H}^{\otimes l}$,

 $i_g f = \langle g_1 \otimes \cdots \otimes g_l | f_1 \otimes \cdots \otimes f_l \rangle f_{l+1} \otimes \cdots \otimes f_k$.

- If $f \in \mathcal{H}^{\vee k}$ $(f \in \mathcal{H}^{\wedge k})$ and $g \in \mathcal{H}^{\vee l}$ $(g \in \mathcal{H}^{\wedge l})$, then $\imath_g f \in \mathcal{H}^{\vee (k-l)}$ $(\imath_g f \in \mathcal{H}^{\wedge (k-l)})$.
- In particular,

$$i_{g_1 \vee \cdots \vee g_{k-1}} f_1 \vee \cdots \vee f_k = \frac{1}{k!} \sum_{j=1}^k \langle g_1 \vee \cdots \vee g_{k-1} | f_1 \vee \cdots \vee f_k \rangle f_j,$$

 $g_1 \wedge \cdots \wedge g_{k-1} f_1 \wedge \cdots \wedge f_k = \frac{1}{k!} \sum_{j=1}^k (-1)^{k-j} \langle g_1 \wedge \cdots \wedge g_{k-1} | f_1 \wedge \cdots \wedge f_k \rangle f_j.$

Contractions

These Hermitian products can be extended to contractions (inner products) between $\mathcal{H}^{\otimes k}$ ($\mathcal{H}^{\vee k}$, $\mathcal{H}^{\wedge k}$) on one hand, and $\mathcal{H}^{\otimes l}$ ($\mathcal{H}^{\vee l}$, $\mathcal{H}^{\wedge l}$) on the other, $l \leq k$.

• For $f = f_1 \otimes \cdots \otimes f_k \in \mathcal{H}^{\otimes k}$ and $g = g_1 \otimes \cdots \otimes g_l \in \mathcal{H}^{\otimes l}$,

 $i_g f = \langle g_1 \otimes \cdots \otimes g_l | f_1 \otimes \cdots \otimes f_l \rangle f_{l+1} \otimes \cdots \otimes f_k$.

- If $f \in \mathcal{H}^{\vee k}$ $(f \in \mathcal{H}^{\wedge k})$ and $g \in \mathcal{H}^{\vee l}$ $(g \in \mathcal{H}^{\wedge l})$, then $\imath_g f \in \mathcal{H}^{\vee (k-l)}$ $(\imath_g f \in \mathcal{H}^{\wedge (k-l)})$.
- In particular,

$$egin{aligned} & f_{g_1 ee \cdots ee g_{k-1}} f_1 ee \cdots ee f_k = rac{1}{k!} \sum_{j=1}^k \langle g_1 ee \cdots ee g_{k-1} | f_1 ee \stackrel{j}{\cdots} ee f_k
angle f_j, \ & g_1 \wedge \cdots \wedge g_{k-1} f_1 \wedge \cdots \wedge f_k = rac{1}{k!} \sum_{j=1}^k (-1)^{k-j} \langle g_1 \wedge \cdots \wedge g_{k-1} | f_1 \wedge \stackrel{j}{\cdots} \wedge f_k
angle f_j. \end{aligned}$$

2

Definition

Let $u \in \mathcal{H}^{\otimes k}$. By the S-rank of u, we understand the maximum of dimensions of the linear spaces $\imath_{\mathcal{H}}^{k-1}\sigma(u)$, for $\sigma \in S_k$, which are the images of the contraction maps

$$\mathcal{H}^{\otimes (k-1)} \ni \nu \mapsto \imath_{\nu} \sigma(u) \in \mathcal{H}.$$

Non-zero tensors of minimal S-rank in $\mathcal{H}^{\otimes k}$ (resp., $\mathcal{H}^{\vee k}$, $\mathcal{H}^{\wedge k}$) we will call simple (resp., simple symmetric, simple antisymmetric).

Note that for $u \in \mathcal{H}^{\lor k}$ (resp., $u \in \mathcal{H}^{\land k}$), the S-rank of u equals the dimension of the linear space which is the image of the contraction map,

$$\mathcal{H}^{\vee(k-1)} \ni \nu \mapsto \imath_{\nu} u \in \mathcal{H},$$

$$\mathcal{H}^{\wedge (k-1)} \ni \nu \mapsto \imath_{\nu} u \in \mathcal{H}.$$

Definition

Let $u \in \mathcal{H}^{\otimes k}$. By the S-rank of u, we understand the maximum of dimensions of the linear spaces $\iota_{\mathcal{H}}^{k-1}\sigma(u)$, for $\sigma \in S_k$, which are the images of the contraction maps

$$\mathcal{H}^{\otimes (k-1)} \ni \nu \mapsto \imath_{\nu} \sigma(u) \in \mathcal{H}.$$

Non-zero tensors of minimal S-rank in $\mathcal{H}^{\otimes k}$ (resp., $\mathcal{H}^{\vee k}$, $\mathcal{H}^{\wedge k}$) we will call simple (resp., simple symmetric, simple antisymmetric).

Note that for $u \in \mathcal{H}^{\lor k}$ (resp., $u \in \mathcal{H}^{\land k}$), the S-rank of u equals the dimension of the linear space which is the image of the contraction map,

$$\mathcal{H}^{\vee(k-1)} \ni \nu \mapsto \imath_{\nu} u \in \mathcal{H},$$

$$\mathcal{H}^{\wedge (k-1)} \ni \nu \mapsto \imath_{\nu} u \in \mathcal{H}.$$

Definition

Let $u \in \mathcal{H}^{\otimes k}$. By the S-rank of u, we understand the maximum of dimensions of the linear spaces $\iota_{\mathcal{H}}^{k-1}\sigma(u)$, for $\sigma \in S_k$, which are the images of the contraction maps

$$\mathcal{H}^{\otimes (k-1)} \ni \nu \mapsto \imath_{\nu} \sigma(u) \in \mathcal{H}.$$

Non-zero tensors of minimal S-rank in $\mathcal{H}^{\otimes k}$ (resp., $\mathcal{H}^{\vee k}$, $\mathcal{H}^{\wedge k}$) we will call simple (resp., simple symmetric, simple antisymmetric).

Note that for $u \in \mathcal{H}^{\vee k}$ (resp., $u \in \mathcal{H}^{\wedge k}$), the S-rank of u equals the dimension of the linear space which is the image of the contraction map,

$$\mathcal{H}^{\vee(k-1)} \ni \nu \mapsto \imath_{\nu} u \in \mathcal{H},$$

$$\mathcal{H}^{\wedge (k-1)} \ni \nu \mapsto \imath_{\nu} u \in \mathcal{H}.$$

A = A = A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Definition

Let $u \in \mathcal{H}^{\otimes k}$. By the S-rank of u, we understand the maximum of dimensions of the linear spaces $\iota_{\mathcal{H}}^{k-1}\sigma(u)$, for $\sigma \in S_k$, which are the images of the contraction maps

$$\mathcal{H}^{\otimes (k-1)} \ni \nu \mapsto \imath_{\nu} \sigma(u) \in \mathcal{H}.$$

Non-zero tensors of minimal S-rank in $\mathcal{H}^{\otimes k}$ (resp., $\mathcal{H}^{\vee k}$, $\mathcal{H}^{\wedge k}$) we will call simple (resp., simple symmetric, simple antisymmetric).

Note that for $u \in \mathcal{H}^{\vee k}$ (resp., $u \in \mathcal{H}^{\wedge k}$), the S-rank of u equals the dimension of the linear space which is the image of the contraction map,

 $\mathcal{H}^{\vee(k-1)} \ni \nu \mapsto \imath_{\nu} u \in \mathcal{H},$

$$\mathcal{H}^{\wedge (k-1)} \ni \nu \mapsto \imath_{\nu} u \in \mathcal{H}.$$

Assume that (e_i) is an orthonormal set in \mathcal{H} .

Example

The tensor $u=e_1\otimes e_1$ has the S-rank 1:

 $\iota_{ae_1+be_2}\sigma(u) = \iota_{ae_1+be_2}u = \langle ae_1+be_2|e_1
angle e_1 = ae_1$.

Example

The tensor $u_{\pm}=e_1\otimes e_2\pm e_2\otimes e_1$ has the S-rank 2:

 $egin{aligned} & u_{ae_1+be_2}\sigma(u) &= \pm u_{ae_1+be_2}u_{\pm} = \ \pm (ae_1+be_2|e_1)e_2 \pm (ae_1+be_2|e_2)e_1 = \pm ae_2 \pm be_1 \,. \end{aligned}$

Example

 $f_i(e_i)$ and (f_i) are orthonormal sets, $\lambda_i > 0,$ then the S-rank of .

Assume that (e_i) is an orthonormal set in \mathcal{H} .

Example

The tensor $u = e_1 \otimes e_1$ has the S-rank 1:

$$\imath_{ae_1+be_2}\sigma(u)=\imath_{ae_1+be_2}u=\langle ae_1+be_2|e_1
angle e_1=ae_1$$
 .

Example

The tensor $u_{\pm}=e_1\otimes e_2\pm e_2\otimes e_1$ has the S-rank 2:

$$\begin{split} \imath_{ae_1+be_2}\sigma(u) &= \pm \imath_{ae_1+be_2}u_{\pm} = \\ &\pm \langle ae_1+be_2|e_1\rangle e_2 \pm \langle ae_1+be_2|e_2\rangle e_1 = \pm ae_2 \pm be_1 \,. \end{split}$$

Example

If (e_i) and (f_i) are orthonormal sets, $\lambda_i > 0$, then the S-rank of $\sum_{i=1}^r \lambda_i e_i \otimes f_i$ is r, i.e., the S-rank equals the Schmidt rank.

J.Grabowski (IMPAN)

Segre maps and entanglement

09/01/2012 13 / 25

Assume that (e_i) is an orthonormal set in \mathcal{H} .

Example

The tensor $u = e_1 \otimes e_1$ has the S-rank 1:

$$\imath_{\mathsf{a}\mathsf{e}_1+\mathsf{b}\mathsf{e}_2}\sigma(u)=\imath_{\mathsf{a}\mathsf{e}_1+\mathsf{b}\mathsf{e}_2}u=\langle \mathsf{a}\mathsf{e}_1+\mathsf{b}\mathsf{e}_2|\mathsf{e}_1
angle\mathsf{e}_1=\mathsf{a}\mathsf{e}_1$$
 .

Example

The tensor $u_{\pm}=e_1\otimes e_2\pm e_2\otimes e_1$ has the S-rank 2:

$$\begin{split} \imath_{ae_1+be_2}\sigma(u) &= \pm \imath_{ae_1+be_2}u_{\pm} = \\ &\pm \langle ae_1+be_2|e_1\rangle e_2 \pm \langle ae_1+be_2|e_2\rangle e_1 = \pm ae_2 \pm be_1 \,. \end{split}$$

Example

If (e_i) and (f_i) are orthonormal sets, $\lambda_i > 0$, then the S-rank of $\sum_{i=1}^r \lambda_i e_i \otimes f_i$ is r, i.e., the S-rank equals the Schmidt rank.

J.Grabowski (IMPAN)

Segre maps and entanglement

Assume that (e_i) is an orthonormal set in \mathcal{H} .

Example

The tensor $u = e_1 \otimes e_1$ has the S-rank 1:

$$i_{ae_1+be_2}\sigma(u) = i_{ae_1+be_2}u = \langle ae_1 + be_2 | e_1 \rangle e_1 = ae_1$$

Example

The tensor $u_{\pm} = e_1 \otimes e_2 \pm e_2 \otimes e_1$ has the S-rank 2:

$$\begin{split} \imath_{ae_1+be_2}\sigma(u) &= \pm \imath_{ae_1+be_2}u_{\pm} = \\ &\pm \langle ae_1+be_2|e_1\rangle e_2 \pm \langle ae_1+be_2|e_2\rangle e_1 = \pm ae_2 \pm be_1 \,. \end{split}$$

Example

If (e_i) and (f_i) are orthonormal sets, $\lambda_i > 0$, then the S-rank of $\sum_{i=1}^r \lambda_i e_i \otimes f_i$ is r, i.e., the S-rank equals the Schmidt rank.

J.Grabowski (IMPAN)

Segre maps and entanglement

09/01/2012 13 / 25

Assume that (e_i) is an orthonormal set in \mathcal{H} .

Example

The tensor $u = e_1 \otimes e_1$ has the S-rank 1:

$$i_{ae_1+be_2}\sigma(u) = i_{ae_1+be_2}u = \langle ae_1 + be_2 | e_1 \rangle e_1 = ae_1$$

Example

The tensor $u_{\pm} = e_1 \otimes e_2 \pm e_2 \otimes e_1$ has the S-rank 2:

$$\begin{split} \imath_{ae_1+be_2}\sigma(u) &= \pm \imath_{ae_1+be_2}u_{\pm} = \\ &\pm \langle ae_1+be_2|e_1\rangle e_2 \pm \langle ae_1+be_2|e_2\rangle e_1 = \pm ae_2 \pm be_1 \,. \end{split}$$

Example

If (e_i) and (f_i) are orthonormal sets, $\lambda_i > 0$, then the S-rank of $\sum_{i=1}^{r} \lambda_i e_i \otimes f_i$ is r, i.e., the S-rank equals the Schmidt rank.

J.Grabowski (IMPAN)

Segre maps and entanglement

09/01/2012 13 / 25

Theorem

 The minimal possible S-rank of a non-zero tensor u ∈ H^{⊗k} equals 1. A tensor u ∈ H^{⊗k} is of S-rank 1 if and only if

$u = f_1 \otimes \cdots \otimes f_k, \quad f_l \in \mathcal{H}, \quad f_l \neq 0.$

The minimal possible S-rank of a non-zero tensor v ∈ H^{∨k} equals 1.
 A tensor v ∈ H^{∨k} is of S-rank 1 if and only if

$\mathbf{v} = f \otimes \cdots \otimes f, \quad f \in \mathcal{H}, \quad f \neq 0.$

The minimal possible S-rank of a non-zero tensor w ∈ H^{∧k} equals k.
 A tensor w ∈ H^{∧k} is of S-rank k if and only if

$w = f_1 \wedge \cdots \wedge f_k,$

where $f_1, \ldots, f_k \in \mathcal{H}$ are linearly independent.

・ロト ・日・ ・日・ ・日・

Theorem

The minimal possible S-rank of a non-zero tensor u ∈ H^{⊗k} equals 1.
 A tensor u ∈ H^{⊗k} is of S-rank 1 if and only if

$u = f_1 \otimes \cdots \otimes f_k, \quad f_i \in \mathcal{H}, \quad f_i \neq 0.$

The minimal possible S-rank of a non-zero tensor v ∈ H^{∨k} equals 1.
 A tensor v ∈ H^{∨k} is of S-rank 1 if and only if

$\mathbf{v}=f\otimes \cdots \otimes f, \quad f\in \mathcal{H}, \quad f eq 0.$

The minimal possible S-rank of a non-zero tensor w ∈ H^{∧k} equals k.
 A tensor w ∈ H^{∧k} is of S-rank k if and only if

$w = f_1 \wedge \cdots \wedge f_k,$

where $t_1,\ldots,t_k\in\mathcal{H}$ are linearly independent.

・ロット (日) ・ (日) ・ (日)

Theorem

The minimal possible S-rank of a non-zero tensor u ∈ H^{⊗k} equals 1.
 A tensor u ∈ H^{⊗k} is of S-rank 1 if and only if

 $u = f_1 \otimes \cdots \otimes f_k, \quad f_i \in \mathcal{H}, \quad f_i \neq 0.$

The minimal possible S-rank of a non-zero tensor v ∈ H^{vk} equals 1.
 A tensor v ∈ H^{vk} is of S-rank 1 if and only if

$\mathbf{v}=f\otimes\cdots\otimes f,\quad f\in\mathcal{H},\quad f eq0.$

The minimal possible S-rank of a non-zero tensor w ∈ H^{∧k} equals k.
 A tensor w ∈ H^{∧k} is of S-rank k if and only if

 $w = f_1 \wedge \cdots \wedge f_k,$

where $f_1, \ldots, f_k \in \mathcal{H}$ are linearly independent.

Theorem

 The minimal possible S-rank of a non-zero tensor u ∈ H^{⊗k} equals 1. A tensor u ∈ H^{⊗k} is of S-rank 1 if and only if

 $u = f_1 \otimes \cdots \otimes f_k, \quad f_i \in \mathcal{H}, \quad f_i \neq 0.$

The minimal possible S-rank of a non-zero tensor v ∈ H^{∨k} equals 1.
 A tensor v ∈ H^{∨k} is of S-rank 1 if and only if

$\mathbf{v} = f \otimes \cdots \otimes f, \quad f \in \mathcal{H}, \quad f \neq \mathbf{0}.$

The minimal possible S-rank of a non-zero tensor w ∈ H^{∧k} equals k.
 A tensor w ∈ H^{∧k} is of S-rank k if and only if

 $w = f_1 \wedge \cdots \wedge f_k,$

where $f_1, \ldots, f_k \in \mathcal{H}$ are linearly independent.

Theorem

 The minimal possible S-rank of a non-zero tensor u ∈ H^{⊗k} equals 1. A tensor u ∈ H^{⊗k} is of S-rank 1 if and only if

 $u = f_1 \otimes \cdots \otimes f_k, \quad f_i \in \mathcal{H}, \quad f_i \neq 0.$

The minimal possible S-rank of a non-zero tensor v ∈ H^{∨k} equals 1.
 A tensor v ∈ H^{∨k} is of S-rank 1 if and only if

 $v = f \otimes \cdots \otimes f, \quad f \in \mathcal{H}, \quad f \neq 0.$

The minimal possible S-rank of a non-zero tensor w ∈ H^{∧k} equals k.
 A tensor w ∈ H^{∧k} is of S-rank k if and only if

 $\mathsf{W} = \mathsf{f}_1 \wedge \cdots \wedge \mathsf{f}_k,$

where $f_1, \ldots, f_k \in \mathcal{H}$ are linearly independent.

Theorem

 The minimal possible S-rank of a non-zero tensor u ∈ H^{⊗k} equals 1. A tensor u ∈ H^{⊗k} is of S-rank 1 if and only if

 $u = f_1 \otimes \cdots \otimes f_k, \quad f_i \in \mathcal{H}, \quad f_i \neq 0.$

 The minimal possible S-rank of a non-zero tensor v ∈ H^{∨k} equals 1. A tensor v ∈ H^{∨k} is of S-rank 1 if and only if

$$v = f \otimes \cdots \otimes f, \quad f \in \mathcal{H}, \quad f \neq 0.$$

The minimal possible S-rank of a non-zero tensor w ∈ H^{∧k} equals k.
 A tensor w ∈ H^{∧k} is of S-rank k if and only if

 $w = f_1 \wedge \cdots \wedge f_k,$

where $f_1, \ldots, f_k \in \mathcal{H}$ are linearly independent.

Theorem

 The minimal possible S-rank of a non-zero tensor u ∈ H^{⊗k} equals 1. A tensor u ∈ H^{⊗k} is of S-rank 1 if and only if

 $u = f_1 \otimes \cdots \otimes f_k, \quad f_i \in \mathcal{H}, \quad f_i \neq 0.$

 The minimal possible S-rank of a non-zero tensor v ∈ H^{∨k} equals 1. A tensor v ∈ H^{∨k} is of S-rank 1 if and only if

 $v = f \otimes \cdots \otimes f, \quad f \in \mathcal{H}, \quad f \neq 0.$

 The minimal possible S-rank of a non-zero tensor w ∈ H^{∧k} equals k. A tensor w ∈ H^{∧k} is of S-rank k if and only if

 $w=f_1\wedge\cdots\wedge f_k,$

where $f_1, \ldots, f_k \in \mathcal{H}$ are linearly independent.

Theorem

 The minimal possible S-rank of a non-zero tensor u ∈ H^{⊗k} equals 1. A tensor u ∈ H^{⊗k} is of S-rank 1 if and only if

 $u = f_1 \otimes \cdots \otimes f_k, \quad f_i \in \mathcal{H}, \quad f_i \neq 0.$

 The minimal possible S-rank of a non-zero tensor v ∈ H^{∨k} equals 1. A tensor v ∈ H^{∨k} is of S-rank 1 if and only if

 $v = f \otimes \cdots \otimes f, \quad f \in \mathcal{H}, \quad f \neq 0.$

 The minimal possible S-rank of a non-zero tensor w ∈ H^{∧k} equals k. A tensor w ∈ H^{∧k} is of S-rank k if and only if

$$w=f_1\wedge\cdots\wedge f_k,$$

where $f_1, \ldots, f_k \in \mathcal{H}$ are linearly independent.

Definition

- A pure state p_x on H^{∨k} with x ∈ H^{∨k}, x ≠ 0, is called a bosonic simple pure state if x is a simple symmetric, x = f ⊗ ···· ⊗ f, tensor.
 If y is not simple symmetric, we call by a basened entropy of the symmetric.
 - A pure state (c) on (2011) with (c) is 2012, (c) sole (c) is called a free from one should pure state (c) on (2011) with (c) is 2010 problem in the problem in the pure called a free from (c) there is not some from the problem in the problem in the problem is called by the formation (c) and (c) is not some place in the problem in the problem is called by the formation (c) and (c) is a problem in the problem in the problem is called by the formation (c) and (c) is a problem in the problem in the problem in the problem is called by the formation (c).

- A pure state ρ_x on H^{∨k} with x ∈ H^{∨k}, x ≠ 0, is called a bosonic simple pure state if x is a simple symmetric, x = f ⊗ ··· ⊗ f, tensor. If x is not simple symmetric, we call ρ_x a bosonic entangled state.
- A pure state ρ_x on H^{∧k}) with x ∈ H^{∧k}, x ≠ 0, is called a fermionic simple pure state if x is a simple antisymmetric, x = f₁ ∧ · · · ∧ f_k, tensor. If x is not simple antisymmetric, we call ρ_x a fermionic entangled state.
- A mixed state ρ on H^{VK} (resp., on H^{AK}) we call bosonic (fermionic) simple mixed state if it can be written as a convex combination of bosonic (fermionic) simple pure states. In the other case, ρ is called bosonic (fermionic) entangled mixed state.

- A pure state ρ_x on H^{∨k} with x ∈ H^{∨k}, x ≠ 0, is called a bosonic simple pure state if x is a simple symmetric, x = f ⊗ ··· ⊗ f, tensor. If x is not simple symmetric, we call ρ_x a bosonic entangled state.
- A pure state ρ_x on H^{∧k}) with x ∈ H^{∧k}, x ≠ 0, is called a fermionic simple pure state if x is a simple antisymmetric, x = f₁ ∧ ··· ∧ f_k, tensor. If x is not simple antisymmetric, we call ρ_x a fermionic entangled state.
- A mixed state ρ on H^{×κ} (resp., on H^{∧κ}) we call bosonic (fermionic) simple mixed state if it can be written as a convex combination of bosonic (fermionic) simple pure states. In the other case, ρ is called bosonic (fermionic) entangled mixed state.

- A pure state ρ_x on H^{∨k} with x ∈ H^{∨k}, x ≠ 0, is called a bosonic simple pure state if x is a simple symmetric, x = f ⊗ ··· ⊗ f, tensor. If x is not simple symmetric, we call ρ_x a bosonic entangled state.
- A pure state ρ_x on H^{∧k}) with x ∈ H^{∧k}, x ≠ 0, is called a fermionic simple pure state if x is a simple antisymmetric, x = f₁ ∧ ··· ∧ f_k, tensor. If x is not simple antisymmetric, we call ρ_x a fermionic entangled state.
- A mixed state ρ on H^{VK} (resp., on H^{AK}) we call bosonic (fermionic) simple mixed state if it can be written as a convex combination of bosonic (fermionic) simple pure states. In the other case, ρ is called bosonic (fermionic) entangled mixed state.

- A pure state ρ_x on H^{∨k} with x ∈ H^{∨k}, x ≠ 0, is called a bosonic simple pure state if x is a simple symmetric, x = f ⊗ ··· ⊗ f, tensor. If x is not simple symmetric, we call ρ_x a bosonic entangled state.
- A pure state ρ_x on H^{∧k}) with x ∈ H^{∧k}, x ≠ 0, is called a fermionic simple pure state if x is a simple antisymmetric, x = f₁ ∧ ··· ∧ f_k, tensor. If x is not simple antisymmetric, we call ρ_x a fermionic entangled state.
- A mixed state ρ on H^{∨k} (resp., on H^{∧k}) we call bosonic (fermionic) simple mixed state if it can be written as a convex combination of bosonic (fermionic) simple pure states. In the other case, ρ is called bosonic (fermionic) entangled mixed state.

Definition

- A pure state ρ_x on H^{∨k} with x ∈ H^{∨k}, x ≠ 0, is called a bosonic simple pure state if x is a simple symmetric, x = f ⊗ ··· ⊗ f, tensor. If x is not simple symmetric, we call ρ_x a bosonic entangled state.
- A pure state ρ_x on H^{∧k}) with x ∈ H^{∧k}, x ≠ 0, is called a fermionic simple pure state if x is a simple antisymmetric, x = f₁ ∧ ··· ∧ f_k, tensor. If x is not simple antisymmetric, we call ρ_x a fermionic entangled state.
- A mixed state ρ on H^{Vk} (resp., on H^{Λk}) we call bosonic (fermionic) simple mixed state if it can be written as a convex combination of bosonic (fermionic) simple pure states. In the other case, ρ is called bosonic (fermionic) entangled mixed state.

Definition

- A pure state ρ_x on H^{∨k} with x ∈ H^{∨k}, x ≠ 0, is called a bosonic simple pure state if x is a simple symmetric, x = f ⊗ ··· ⊗ f, tensor. If x is not simple symmetric, we call ρ_x a bosonic entangled state.
- A pure state ρ_x on H^{∧k}) with x ∈ H^{∧k}, x ≠ 0, is called a fermionic simple pure state if x is a simple antisymmetric, x = f₁ ∧ ··· ∧ f_k, tensor. If x is not simple antisymmetric, we call ρ_x a fermionic entangled state.
- A mixed state ρ on H^{Vk} (resp., on H^{Λk}) we call bosonic (fermionic) simple mixed state if it can be written as a convex combination of bosonic (fermionic) simple pure states. In the other case, ρ is called bosonic (fermionic) entangled mixed state.

A (1) × A (2) × A (2) ×

It is clear that the Segre map for the Bose statistics should be

and for the Fermi statistics:

It is clear that the Segre map for the Bose statistics should be

and for the Fermi statistics:

It is clear that the Segre map for the Bose statistics should be

and for the Fermi statistics:

It is clear that the Segre map for the Bose statistics should be

and for the Fermi statistics:

where $\mathcal{H}_{\circ}^{\times k} = \mathcal{H}^{\times k} \setminus \{(x_1, \ldots, x_k) : x_1 \wedge \cdots \wedge x_k = 0\}$

and $(\mathbb{P}\mathcal{H})^{ imes k}_{\circ} = (\mathbb{P}\mathcal{H})^{ imes k} \setminus \{(\rho_{x_1}, \dots, \rho_{x_k}) : x_1 \wedge \dots \wedge x_k = 0\}.$

It is clear that the Segre map for the Bose statistics should be

and for the Fermi statistics:

where $\mathcal{H}_{\circ}^{\times k} = \mathcal{H}^{\times k} \setminus \{(x_1, \ldots, x_k) : x_1 \wedge \cdots \wedge x_k = 0\}$

and $(\mathbb{P}\mathcal{H})^{\times k}_{\circ} = (\mathbb{P}\mathcal{H})^{\times k} \setminus \{(\rho_{x_1}, \dots, \rho_{\tilde{x}_k}) : x_1 \wedge \dots \wedge x_k = 0\}.$

It is clear that the Segre map for the Bose statistics should be

and for the Fermi statistics:

where $\mathcal{H}_{\circ}^{\times k} = \mathcal{H}^{\times k} \setminus \{(x_1, \dots, x_k) : x_1 \wedge \dots \wedge x_k = 0\}$

and $(\mathbb{P}\mathcal{H})_{\circ}^{\times \kappa} = (\mathbb{P}\mathcal{H})^{\times \kappa} \setminus \{(\rho_{x_1}, \dots, \rho_{x_k}) : x_1 \wedge \dots \wedge x_k = 0\}.$

It is clear that the Segre map for the Bose statistics should be

and for the Fermi statistics:

Note that the condition $x_1 \wedge \cdots \wedge x_k \neq 0$ does not depend on the choice of the vectors x_1, \ldots, x_k in their projective classes and means that $\rho_{x_1}, \ldots, \rho_{x_k}$ do not lie in a common projective hyperspace.

The subset $\mathcal{H}_{\circ}^{\times k}$ (resp., $(\mathbb{P}\mathcal{H})_{\circ}^{\times k}$) is open and dense in $\mathcal{H}^{\times k}$ (resp., $(\mathbb{P}\mathcal{H})^{\times k}$).

Theorem

A bosonic (fermionic) pure state $\rho \in \mathbb{P}(\mathcal{H}^{\vee k})$ (resp., $\rho \in \mathbb{P}(\mathcal{H}^{\wedge k})$) is entangled if and only if it lies outside the range of the Segre map

 $\mathsf{Seg}_k^{\vee}: \mathbb{P}\mathcal{H} \to \mathbb{P}(\mathcal{H}^{\vee k}) \quad (\mathrm{resp.}, \quad \mathsf{Seg}_k^{\wedge}: (\mathbb{P}\mathcal{H})_{\circ}^{\times k} \to \mathbb{P}(\mathcal{H}^{\wedge k})).$

A mixed bosonic (fermionic) state is entangled if and only if it lies outside the convex hull of the range of the corresponding Segre map.

(4回) (4 回) (4 回)

Note that the condition $x_1 \wedge \cdots \wedge x_k \neq 0$ does not depend on the choice of the vectors x_1, \ldots, x_k in their projective classes and means that $\rho_{x_1}, \ldots, \rho_{x_k}$ do not lie in a common projective hyperspace.

The subset $\mathcal{H}_{\circ}^{\times k}$ (resp., $(\mathbb{P}\mathcal{H})_{\circ}^{\times k}$) is open and dense in $\mathcal{H}^{\times k}$ (resp., $(\mathbb{P}\mathcal{H})^{\times k}$).

Theorem

A bosonic (fermionic) pure state $\rho \in \mathbb{P}(\mathcal{H}^{\vee k})$ (resp., $\rho \in \mathbb{P}(\mathcal{H}^{\wedge k})$) is entangled if and only if it lies outside the range of the Segre map

 $\mathsf{Seg}_k^ee: \mathbb{P}\mathcal{H} o \mathbb{P}(\mathcal{H}^{ee k}) \quad (ext{resp.}, \quad \mathsf{Seg}_k^\wedge: (\mathbb{P}\mathcal{H})_\circ^{ imes k} o \mathbb{P}(\mathcal{H}^{\wedge k})) \,.$

A mixed bosonic (fermionic) state is entangled if and only if it lies outside the convex hull of the range of the corresponding Segre map.

Note that the condition $x_1 \wedge \cdots \wedge x_k \neq 0$ does not depend on the choice of the vectors x_1, \ldots, x_k in their projective classes and means that $\rho_{x_1}, \ldots, \rho_{x_k}$ do not lie in a common projective hyperspace.

The subset $\mathcal{H}_{\circ}^{\times k}$ (resp., $(\mathbb{P}\mathcal{H})_{\circ}^{\times k}$) is open and dense in $\mathcal{H}^{\times k}$ (resp., $(\mathbb{P}\mathcal{H})^{\times k}$).

Theorem

A bosonic (fermionic) pure state $\rho \in \mathbb{P}(\mathcal{H}^{\vee k})$ (resp., $\rho \in \mathbb{P}(\mathcal{H}^{\wedge k})$) is entangled if and only if it lies outside the range of the Segre map

 $\mathsf{Seg}_k^{\vee}: \mathbb{P}\mathcal{H} \to \mathbb{P}(\mathcal{H}^{\vee k}) \quad (\mathrm{resp.}, \quad \mathsf{Seg}_k^{\wedge}: (\mathbb{P}\mathcal{H})_{\circ}^{\times k} \to \mathbb{P}(\mathcal{H}^{\wedge k})).$

A mixed bosonic (fermionic) state is entangled if and only if it lies outside the convex hull of the range of the corresponding Segre map.

イロト イヨト イヨト イヨト
Bosonic and fermionic Segre maps

Note that the condition $x_1 \wedge \cdots \wedge x_k \neq 0$ does not depend on the choice of the vectors x_1, \ldots, x_k in their projective classes and means that $\rho_{x_1}, \ldots, \rho_{x_k}$ do not lie in a common projective hyperspace.

The subset $\mathcal{H}_{\circ}^{\times k}$ (resp., $(\mathbb{P}\mathcal{H})_{\circ}^{\times k}$) is open and dense in $\mathcal{H}^{\times k}$ (resp., $(\mathbb{P}\mathcal{H})^{\times k}$).

Theorem

A bosonic (fermionic) pure state $\rho \in \mathbb{P}(\mathcal{H}^{\vee k})$ (resp., $\rho \in \mathbb{P}(\mathcal{H}^{\wedge k})$) is entangled if and only if it lies outside the range of the Segre map

 $\mathsf{Seg}_k^{\vee}: \mathbb{P}\mathcal{H} \to \mathbb{P}(\mathcal{H}^{\vee k}) \quad (\mathrm{resp.}, \quad \mathsf{Seg}_k^{\wedge}: (\mathbb{P}\mathcal{H})_{\circ}^{\times k} \to \mathbb{P}(\mathcal{H}^{\wedge k})) \,.$

A mixed bosonic (fermionic) state is entangled if and only if it lies outside the convex hull of the range of the corresponding Segre map.

イロト イヨト イヨト

Bosonic and fermionic Segre maps

Note that the condition $x_1 \wedge \cdots \wedge x_k \neq 0$ does not depend on the choice of the vectors x_1, \ldots, x_k in their projective classes and means that $\rho_{x_1}, \ldots, \rho_{x_k}$ do not lie in a common projective hyperspace.

The subset $\mathcal{H}_{\circ}^{\times k}$ (resp., $(\mathbb{P}\mathcal{H})_{\circ}^{\times k}$) is open and dense in $\mathcal{H}^{\times k}$ (resp., $(\mathbb{P}\mathcal{H})^{\times k}$).

Theorem

A bosonic (fermionic) pure state $\rho \in \mathbb{P}(\mathcal{H}^{\vee k})$ (resp., $\rho \in \mathbb{P}(\mathcal{H}^{\wedge k})$) is entangled if and only if it lies outside the range of the Segre map

 $\mathsf{Seg}_k^{\vee}: \mathbb{P}\mathcal{H} \to \mathbb{P}(\mathcal{H}^{\vee k}) \quad (\mathrm{resp.}, \quad \mathsf{Seg}_k^{\wedge}: (\mathbb{P}\mathcal{H})_{\circ}^{\times k} \to \mathbb{P}(\mathcal{H}^{\wedge k})) \,.$

A mixed bosonic (fermionic) state is entangled if and only if it lies outside the convex hull of the range of the corresponding Segre map.

イロト イポト イヨト イヨト 三日

 The subspaces H^{∨k} and H^{∧k} form particular irreducible parts of the 'diagonal' representation of the compact group U(H) in the Hilbert space H^{⊗k},

$$U(x_1 \otimes \cdots \otimes x_k) = U(x_1) \otimes \cdots \otimes U(x_k)$$
.

• We can identify the symmetry group S_k with the group of certain unitary operators on the Hilbert space \mathcal{H}^k in the obvious way,

$$\sigma(x_1\otimes\cdots\otimes x_k)=x_{\sigma(1)}\otimes\cdots\otimes x_{\sigma(k)}.$$

- The operators of S_k intertwine the unitary action of $U(\mathcal{H})$.
- For k > 2, there are other irreducible parts of the above representation of U(H) associated with invariant subspaces of the S_k-action. We shall call them (generalized) k-parastatistics.

 The subspaces H^{∨k} and H^{∧k} form particular irreducible parts of the 'diagonal' representation of the compact group U(H) in the Hilbert space H^{⊗k},

$$U(x_1 \otimes \cdots \otimes x_k) = U(x_1) \otimes \cdots \otimes U(x_k).$$

• We can identify the symmetry group S_k with the group of certain unitary operators on the Hilbert space \mathcal{H}^k in the obvious way,

$$\sigma(x_1\otimes\cdots\otimes x_k)=x_{\sigma(1)}\otimes\cdots\otimes x_{\sigma(k)}.$$

• The operators of S_k intertwine the unitary action of $U(\mathcal{H})$.

 For k > 2, there are other irreducible parts of the above representation of U(H) associated with invariant subspaces of the S_k-action. We shall call them (generalized) k-parastatistics.

• The subspaces $\mathcal{H}^{\vee k}$ and $\mathcal{H}^{\wedge k}$ form particular irreducible parts of the 'diagonal' representation of the compact group $U(\mathcal{H})$ in the Hilbert space $\mathcal{H}^{\otimes k}$,

$$U(x_1 \otimes \cdots \otimes x_k) = U(x_1) \otimes \cdots \otimes U(x_k).$$

• We can identify the symmetry group S_k with the group of certain unitary operators on the Hilbert space \mathcal{H}^k in the obvious way,

$$\sigma(x_1\otimes\cdots\otimes x_k)=x_{\sigma(1)}\otimes\cdots\otimes x_{\sigma(k)}.$$

• The operators of S_k intertwine the unitary action of $U(\mathcal{H})$.

 For k > 2, there are other irreducible parts of the above representation of U(H) associated with invariant subspaces of the S_k-action. We shall call them (generalized) k-parastatistics.

A B > A B > A B >

• The subspaces $\mathcal{H}^{\vee k}$ and $\mathcal{H}^{\wedge k}$ form particular irreducible parts of the 'diagonal' representation of the compact group $U(\mathcal{H})$ in the Hilbert space $\mathcal{H}^{\otimes k}$,

$$U(x_1 \otimes \cdots \otimes x_k) = U(x_1) \otimes \cdots \otimes U(x_k).$$

• We can identify the symmetry group S_k with the group of certain unitary operators on the Hilbert space \mathcal{H}^k in the obvious way,

$$\sigma(x_1\otimes\cdots\otimes x_k)=x_{\sigma(1)}\otimes\cdots\otimes x_{\sigma(k)}.$$

• The operators of S_k intertwine the unitary action of $U(\mathcal{H})$.

 For k > 2, there are other irreducible parts of the above representation of U(H) associated with invariant subspaces of the S_k-action. We shall call them (generalized) k-parastatistics.

(4月) × (1) × (

• The subspaces $\mathcal{H}^{\vee k}$ and $\mathcal{H}^{\wedge k}$ form particular irreducible parts of the 'diagonal' representation of the compact group $U(\mathcal{H})$ in the Hilbert space $\mathcal{H}^{\otimes k}$,

$$U(x_1 \otimes \cdots \otimes x_k) = U(x_1) \otimes \cdots \otimes U(x_k).$$

• We can identify the symmetry group S_k with the group of certain unitary operators on the Hilbert space \mathcal{H}^k in the obvious way,

$$\sigma(x_1\otimes\cdots\otimes x_k)=x_{\sigma(1)}\otimes\cdots\otimes x_{\sigma(k)}.$$

• The operators of S_k intertwine the unitary action of $U(\mathcal{H})$.

For k > 2, there are other irreducible parts of the above representation of U(H) associated with invariant subspaces of the S_k-action. We shall call them (generalized) k-parastatistics.

・ 何・ ・ ヨ・ ・ ヨ・

• The subspaces $\mathcal{H}^{\vee k}$ and $\mathcal{H}^{\wedge k}$ form particular irreducible parts of the 'diagonal' representation of the compact group $U(\mathcal{H})$ in the Hilbert space $\mathcal{H}^{\otimes k}$,

$$U(x_1 \otimes \cdots \otimes x_k) = U(x_1) \otimes \cdots \otimes U(x_k).$$

• We can identify the symmetry group S_k with the group of certain unitary operators on the Hilbert space \mathcal{H}^k in the obvious way,

$$\sigma(x_1\otimes\cdots\otimes x_k)=x_{\sigma(1)}\otimes\cdots\otimes x_{\sigma(k)}.$$

• The operators of S_k intertwine the unitary action of $U(\mathcal{H})$.

For k > 2, there are other irreducible parts of the above representation of U(H) associated with invariant subspaces of the S_k-action. We shall call them (generalized) k-parastatistics.

- Any of these k-parastatistics (i.e., any irreducible subspace of the tensor product H^{⊗k}) is associated with a Young tableau α with k-boxes (chambers). The corresponding irreducible subrepresentation in H^{⊗k} we denote H^α.
- Any irreducible representation H^α contains cyclic vectors which are of highest weight relative to some choice of a maximal torus and Borel subgroups in U(H). We will call them α-simple tensors or simple tensors in H^α.
- Such vectors can be viewed as generalized coherent states or as the 'most classical' states with respect to their correlation properties. These tensors represent the minimal amount of quantum correlations for tensors in H^a, namely the quantum correlations forced directly by the particular parastatistics.

- Any of these k-parastatistics (i.e., any irreducible subspace of the tensor product H^{⊗k}) is associated with a Young tableau α with k-boxes (chambers). The corresponding irreducible subrepresentation in H^{⊗k} we denote H^α.
- Any irreducible representation H^α contains cyclic vectors which are of highest weight relative to some choice of a maximal torus and Borel subgroups in U(H). We will call them α-simple tensors or simple tensors in H^α.
- Such vectors can be viewed as generalized coherent states or as the 'most classical' states with respect to their correlation properties. These tensors represent the minimal amount of quantum correlations for tensors in H^a, namely the quantum correlations forced directly by the particular parastatistics.

- Any of these k-parastatistics (i.e., any irreducible subspace of the tensor product H^{⊗k}) is associated with a Young tableau α with k-boxes (chambers). The corresponding irreducible subrepresentation in H^{⊗k} we denote H^α.
- Any irreducible representation \mathcal{H}^{α} contains cyclic vectors which are of highest weight relative to some choice of a maximal torus and Borel subgroups in $U(\mathcal{H})$. We will call them α -simple tensors or simple tensors in \mathcal{H}^{α} .
- Such vectors can be viewed as generalized coherent states or as the 'most classical' states with respect to their correlation properties. These tensors represent the minimal amount of quantum correlations for tensors in H^a, namely the quantum correlations forced directly by the particular parastatistics.

· • 🗇 • • • • • • • • • • • •

- Any of these k-parastatistics (i.e., any irreducible subspace of the tensor product H^{⊗k}) is associated with a Young tableau α with k-boxes (chambers). The corresponding irreducible subrepresentation in H^{⊗k} we denote H^α.
- Any irreducible representation H^α contains cyclic vectors which are of highest weight relative to some choice of a maximal torus and Borel subgroups in U(H). We will call them α-simple tensors or simple tensors in H^α.
- Such vectors can be viewed as generalized coherent states or as the 'most classical' states with respect to their correlation properties. These tensors represent the minimal amount of quantum correlations for tensors in H^α, namely the quantum correlations forced directly by the particular parastatistics.

- Any of these k-parastatistics (i.e., any irreducible subspace of the tensor product H^{⊗k}) is associated with a Young tableau α with k-boxes (chambers). The corresponding irreducible subrepresentation in H^{⊗k} we denote H^α.
- Any irreducible representation H^α contains cyclic vectors which are of highest weight relative to some choice of a maximal torus and Borel subgroups in U(H). We will call them α-simple tensors or simple tensors in H^α.
- Such vectors can be viewed as generalized coherent states or as the 'most classical' states with respect to their correlation properties. These tensors represent the minimal amount of quantum correlations for tensors in \mathcal{H}^{α} , namely the quantum correlations forced directly by the particular parastatistics.

(4月) (4日) (4日)

Definition

Consider partitions of k: $k = \lambda_1 + \cdots + \lambda_r$, where $\lambda_1 \ge \cdots \ge \lambda_r \ge 1$. To a partition $\lambda = (\lambda_1, \ldots, \lambda_r)$ is associated a *Young diagram* with λ_i boxes in the *i*th row, the rows of boxes lined up on the left. Define a *tableau* on a given Young diagram to be a numbering of the boxes by the integers $1, \ldots, k$, and denote with Y(k) the set of all Young tableaux with k boxes.

Theorem

To each $\alpha \in Y(k)$ corresponds an irreducible component \mathcal{H}^{α} in $\mathcal{H}^{\otimes k}$. A tensor $v \in \mathcal{H}^{\alpha}$ is simple if and only if it has the minimal S-rank among non-zero tensors from \mathcal{H}^{α} . This minimal S-rank equals the number r of rows in the corresponding Young diagram and the simple tensor reads as $v = \pi^{\alpha} \left(e_{\alpha(1)} \otimes \cdots \otimes e_{\alpha(k)} \right),$

where e_1, \ldots, e_r are some linearly independent vectors in \mathcal{H} and $\alpha(i)$ is the number of the row in which the box with the number *i* appears in the tableaux α .

Definition

Consider partitions of k: $k = \lambda_1 + \dots + \lambda_r$, where $\lambda_1 \ge \dots \ge \lambda_r \ge 1$. To a partition $\lambda = (\lambda_1, \dots, \lambda_r)$ is associated a *Young diagram* with λ_i boxes in the *i*th row, the rows of boxes lined up on the left. Define a *tableau* on a given Young diagram to be a numbering of the boxes by the integers $1, \dots, k$, and denote with Y(k) the set of all Young tableaux with k boxes.

Theorem

To each $\alpha \in Y(k)$ corresponds an irreducible component \mathcal{H}^{α} in $\mathcal{H}^{\otimes k}$. A tensor $v \in \mathcal{H}^{\alpha}$ is simple if and only if it has the minimal S-rank among non-zero tensors from \mathcal{H}^{α} . This minimal S-rank equals the number r of rows in the corresponding Young diagram and the simple tensor reads as $v = \pi^{\alpha} \left(e_{\alpha(1)} \otimes \cdots \otimes e_{\alpha(k)} \right),$

where e_1, \ldots, e_r are some linearly independent vectors in \mathcal{H} and $\alpha(i)$ is the number of the row in which the box with the number i appears in the tableaux α .

Definition

Consider partitions of k: $k = \lambda_1 + \dots + \lambda_r$, where $\lambda_1 \ge \dots \ge \lambda_r \ge 1$. To a partition $\lambda = (\lambda_1, \dots, \lambda_r)$ is associated a Young diagram with λ_i boxes in the *i*th row, the rows of boxes lined up on the left. Define a *tableau* on a given Young diagram to be a numbering of the boxes by the integers $1, \dots, k$, and denote with Y(k) the set of all Young tableaux with k boxes.

Theorem

To each $\alpha \in Y(k)$ corresponds an irreducible component \mathcal{H}^{α} in $\mathcal{H}^{\otimes k}$. A tensor $v \in \mathcal{H}^{\alpha}$ is simple if and only if it has the minimal S-rank among non-zero tensors from \mathcal{H}^{α} . This minimal S-rank equals the number r of rows in the corresponding Young diagram and the simple tensor reads as $v = \pi^{\alpha} \left(e_{\alpha(1)} \otimes \cdots \otimes e_{\alpha(k)} \right),$

where e_1, \ldots, e_r are some linearly independent vectors in \mathcal{H} and $\alpha(i)$ is the number of the row in which the box with the number i appears in the tableaux α .

Definition

Consider partitions of k: $k = \lambda_1 + \dots + \lambda_r$, where $\lambda_1 \ge \dots \ge \lambda_r \ge 1$. To a partition $\lambda = (\lambda_1, \dots, \lambda_r)$ is associated a Young diagram with λ_i boxes in the *i*th row, the rows of boxes lined up on the left. Define a *tableau* on a given Young diagram to be a numbering of the boxes by the integers $1, \dots, k$, and denote with Y(k) the set of all Young tableaux with k boxes.

Theorem

To each $\alpha \in Y(k)$ corresponds an irreducible component \mathcal{H}^{α} in $\mathcal{H}^{\otimes k}$. A tensor $v \in \mathcal{H}^{\alpha}$ is simple if and only if it has the minimal S-rank among non-zero tensors from \mathcal{H}^{α} . This minimal S-rank equals the number r of rows in the corresponding Young diagram and the simple tensor reads as $v = \pi^{\alpha} \left(e_{\alpha(1)} \otimes \cdots \otimes e_{\alpha(k)} \right),$

where e_1, \ldots, e_r are some linearly independent vectors in \mathcal{H} and $\alpha(i)$ is the number of the row in which the box with the number *i* appears in the tableaux α .

J.Grabowski (IMPAN)

For k = 3, besides symmetric and antisymmetric tensors associated with

the Young tableaux $\alpha_0 = 1 2 3$ and $\alpha_3 = \frac{1}{2}$, we have two

additional irreducible parts associated with the Young tableaux

$$\alpha_1 = \begin{array}{c}
1 & 2 \\
3 &
\end{array}$$
 and $\alpha_2 = \begin{array}{c}
1 & 3 \\
2 &
\end{array}$

Hence,

$$\mathcal{H}^{\otimes 3} = \mathcal{H}^{\wedge 3} \oplus \mathcal{H}^{\alpha_1} \oplus \mathcal{H}^{\alpha_2} \oplus \mathcal{H}^{\vee 3}\,,$$

with

$$\pi^{\alpha_i}: \mathcal{H}^{\otimes 3} \to \mathcal{H}^{\alpha_i},$$

 $\pi^{\alpha_1}(x_1 \otimes x_2 \otimes x_3) = \frac{1}{3}(x_1 \otimes x_2 \otimes x_3 + x_2 \otimes x_1 \otimes x_3 - x_3 \otimes x_2 \otimes x_1 - x_3 \otimes x_1 \otimes x_2),$ and $\pi^{\alpha_2}(x_1 \otimes x_2 \otimes x_3) = \frac{1}{3}(x_1 \otimes x_2 \otimes x_3 + x_3 \otimes x_2 \otimes x_1 - x_2 \otimes x_1 \otimes x_3 - x_2 \otimes x_3 \otimes x_1).$

For k = 3, besides symmetric and antisymmetric tensors associated with

the Young tableaux $\alpha_0 = \boxed{1 \ 2 \ 3}$ and $\alpha_3 = \boxed{1 \ 2 \ 3}$, we have two

additional irreducible parts associated with the Young tableaux

$$\alpha_1 = \begin{array}{c} 1 & 2 \\ \hline 3 \end{array}$$
 and $\alpha_2 = \begin{array}{c} 1 & 3 \\ \hline 2 \end{array}$

Hence

$$\mathcal{H}^{\otimes 3} = \mathcal{H}^{\wedge 3} \oplus \mathcal{H}^{\alpha_1} \oplus \mathcal{H}^{\alpha_2} \oplus \mathcal{H}^{\vee 3} \,,$$

with

$$\pi^{\alpha_i}: \mathcal{H}^{\otimes 3} \to \mathcal{H}^{\alpha_i},$$

 $\pi^{\alpha_1}(x_1 \otimes x_2 \otimes x_3) = \frac{1}{3}(x_1 \otimes x_2 \otimes x_3 + x_2 \otimes x_1 \otimes x_3 - x_3 \otimes x_2 \otimes x_1 - x_3 \otimes x_1 \otimes x_2),$ and $\pi^{\alpha_2}(x_1 \otimes x_2 \otimes x_3) = \frac{1}{3}(x_1 \otimes x_2 \otimes x_3 + x_3 \otimes x_2 \otimes x_1 - x_2 \otimes x_1 \otimes x_3 - x_2 \otimes x_3 \otimes x_1).$

For k = 3, besides symmetric and antisymmetric tensors associated with

the Young tableaux $\alpha_0 = 1 2 3$ and $\alpha_3 = \frac{1}{2}$, we have two

additional irreducible parts associated with the Young tableaux

$$\alpha_1 = \begin{bmatrix} 1 & 2 \\ 3 \end{bmatrix}$$
 and $\alpha_2 = \begin{bmatrix} 1 & 3 \\ 2 \end{bmatrix}$.

Hence,

$$\mathcal{H}^{\otimes 3} = \mathcal{H}^{\wedge 3} \oplus \mathcal{H}^{\alpha_1} \oplus \mathcal{H}^{\alpha_2} \oplus \mathcal{H}^{\vee 3} \,,$$

with

 $\pi^{\alpha_i}: \mathcal{H}^{\otimes 3} \to \mathcal{H}^{\alpha_i},$

 $\pi^{\alpha_1}(x_1 \otimes x_2 \otimes x_3) = \frac{1}{3}(x_1 \otimes x_2 \otimes x_3 + x_2 \otimes x_1 \otimes x_3 - x_3 \otimes x_2 \otimes x_1 - x_3 \otimes x_1 \otimes x_2),$ and $\pi^{\alpha_2}(x_1 \otimes x_2 \otimes x_3) = \frac{1}{3}(x_1 \otimes x_2 \otimes x_3 + x_3 \otimes x_2 \otimes x_1 - x_2 \otimes x_1 \otimes x_3 - x_2 \otimes x_3 \otimes x_1).$

For k = 3, besides symmetric and antisymmetric tensors associated with

the Young tableaux $\alpha_0 = 1 2 3$ and $\alpha_3 = \frac{1}{2}$, we have two

additional irreducible parts associated with the Young tableaux

$$\alpha_1 = \begin{bmatrix} 1 & 2 \\ 3 \end{bmatrix}$$
 and $\alpha_2 = \begin{bmatrix} 1 & 3 \\ 2 \end{bmatrix}$.

Hence,

$$\mathcal{H}^{\otimes 3} = \mathcal{H}^{\wedge 3} \oplus \mathcal{H}^{\alpha_1} \oplus \mathcal{H}^{\alpha_2} \oplus \mathcal{H}^{\vee 3} \,,$$

with

 $\pi^{\alpha_i}: \mathcal{H}^{\otimes 3} \to \mathcal{H}^{\alpha_i},$

 $\begin{aligned} \pi^{\alpha_1}(x_1 \otimes x_2 \otimes x_3) &= \frac{1}{3}(x_1 \otimes x_2 \otimes x_3 + x_2 \otimes x_1 \otimes x_3 - x_3 \otimes x_2 \otimes x_1 - x_3 \otimes x_1 \otimes x_2), \\ \text{and} \\ \pi^{\alpha_2}(x_1 \otimes x_2 \otimes x_3) &= \frac{1}{3}(x_1 \otimes x_2 \otimes x_3 + x_3 \otimes x_2 \otimes x_1 - x_2 \otimes x_1 \otimes x_3 - x_2 \otimes x_3 \otimes x_1). \end{aligned}$

For k = 3, besides symmetric and antisymmetric tensors associated with

the Young tableaux $\alpha_0 = 1 2 3$ and $\alpha_3 = \frac{1}{2}$, we have two

additional irreducible parts associated with the Young tableaux

$$\alpha_1 = \begin{bmatrix} 1 & 2 \\ 3 \end{bmatrix}$$
 and $\alpha_2 = \begin{bmatrix} 1 & 3 \\ 2 \end{bmatrix}$.

Hence,

$$\mathcal{H}^{\otimes 3} = \mathcal{H}^{\wedge 3} \oplus \mathcal{H}^{\alpha_1} \oplus \mathcal{H}^{\alpha_2} \oplus \mathcal{H}^{\vee 3} \,,$$

with

$$\pi^{\alpha_i}:\mathcal{H}^{\otimes 3}\to\mathcal{H}^{\alpha_i},$$

 $\pi^{\alpha_1}(x_1 \otimes x_2 \otimes x_3) = \frac{1}{3}(x_1 \otimes x_2 \otimes x_3 + x_2 \otimes x_1 \otimes x_3 - x_3 \otimes x_2 \otimes x_1 - x_3 \otimes x_1 \otimes x_2),$ and $\pi^{\alpha_2}(x_1 \otimes x_2 \otimes x_3) = \frac{1}{3}(x_1 \otimes x_2 \otimes x_3 + x_3 \otimes x_2 \otimes x_1 - x_2 \otimes x_1 \otimes x_3 - x_2 \otimes x_3 \otimes x_1).$

For k = 3, besides symmetric and antisymmetric tensors associated with

the Young tableaux $\alpha_0 = 1 2 3$ and $\alpha_3 = \frac{1}{2}$, we have two

additional irreducible parts associated with the Young tableaux

$$\alpha_1 = \begin{bmatrix} 1 & 2 \\ 3 \end{bmatrix}$$
 and $\alpha_2 = \begin{bmatrix} 1 & 3 \\ 2 \end{bmatrix}$.

Hence,

$$\mathcal{H}^{\otimes 3} = \mathcal{H}^{\wedge 3} \oplus \mathcal{H}^{\alpha_1} \oplus \mathcal{H}^{\alpha_2} \oplus \mathcal{H}^{\vee 3} \,,$$

with

$$\pi^{\alpha_i}: \mathcal{H}^{\otimes 3} \to \mathcal{H}^{\alpha_i},$$

 $\pi^{\alpha_1}(x_1 \otimes x_2 \otimes x_3) = \frac{1}{3}(x_1 \otimes x_2 \otimes x_3 + x_2 \otimes x_1 \otimes x_3 - x_3 \otimes x_2 \otimes x_1 - x_3 \otimes x_1 \otimes x_2),$ and $\pi^{\alpha_2}(x_1 \otimes x_2 \otimes x_3) = \frac{1}{3}(x_1 \otimes x_2 \otimes x_3 + x_3 \otimes x_2 \otimes x_1 - x_2 \otimes x_1 \otimes x_3 - x_2 \otimes x_3 \otimes x_1).$

The simple tensors (the highest weight vectors) in \mathcal{H}^{α_1} can be written as

$$egin{array}{rcl} & & = & \pi^{lpha_1}(x_{lpha_1(1)}\otimes x_{lpha_1(2)}\otimes x_{lpha_1(3)}) \ & & = & \pi^{lpha_1}(x_1\otimes x_1\otimes x_2) \ & & = & rac{2}{3}(x_1\otimes x_1\otimes x_2-x_2\otimes x_1\otimes x_1) \ & & = & \lambda(e_1\otimes e_1\otimes e_2-e_2\otimes e_1\otimes e_1)\,, \end{array}$$

for certain choice of an orthonormal basis e_i in \mathcal{H} and $\lambda \neq 0$. Analogously, the simple tensors in \mathcal{H}^{α_2} take the form

$$\begin{array}{lll} v_{\lambda}^{\alpha_2} & = & \pi^{\alpha_2}(x_{\alpha_2(1)}\otimes x_{\alpha_2(2)}\otimes x_{\alpha_2(3)}) \\ & = & \pi^{\alpha_2}(x_1\otimes x_2\otimes x_1) \\ & = & \lambda(e_1\otimes e_2\otimes e_1 - e_2\otimes e_1\otimes e_1) \end{array}$$

J.Grabowski (IMPAN)

The simple tensors (the highest weight vectors) in \mathcal{H}^{α_1} can be written as

$$\begin{aligned}
\mathbf{v}_{\boldsymbol{\lambda}}^{\boldsymbol{\alpha_{1}}} &= \pi^{\alpha_{1}}(x_{\alpha_{1}(1)} \otimes x_{\alpha_{1}(2)} \otimes x_{\alpha_{1}(3)}) \\
&= \pi^{\alpha_{1}}(x_{1} \otimes x_{1} \otimes x_{2}) \\
&= \frac{2}{3}(x_{1} \otimes x_{1} \otimes x_{2} - x_{2} \otimes x_{1} \otimes x_{1}) \\
&= \lambda(e_{1} \otimes e_{1} \otimes e_{2} - e_{2} \otimes e_{1} \otimes e_{1}),
\end{aligned}$$

for certain choice of an orthonormal basis e_i in \mathcal{H} and $\lambda \neq 0$. Analogously, the simple tensors in \mathcal{H}^{α_2} take the form

$$egin{array}{rcl} egin{array}{rcl} v_\lambda^{lpha_2}&=&\pi^{lpha_2}(x_{lpha_2(1)}\otimes x_{lpha_2(2)}\otimes x_{lpha_2(3)})\ &=&\pi^{lpha_2}(x_1\otimes x_2\otimes x_1)\ &=&\lambda(e_1\otimes e_2\otimes e_1-e_2\otimes e_1\otimes e_1) \end{array}$$

() <) <)</p>

The simple tensors (the highest weight vectors) in \mathcal{H}^{α_1} can be written as

$$\begin{aligned}
\mathbf{v}_{\boldsymbol{\lambda}}^{\alpha_{1}} &= \pi^{\alpha_{1}}(x_{\alpha_{1}(1)} \otimes x_{\alpha_{1}(2)} \otimes x_{\alpha_{1}(3)}) \\
&= \pi^{\alpha_{1}}(x_{1} \otimes x_{1} \otimes x_{2}) \\
&= \frac{2}{3}(x_{1} \otimes x_{1} \otimes x_{2} - x_{2} \otimes x_{1} \otimes x_{1}) \\
&= \lambda(e_{1} \otimes e_{1} \otimes e_{2} - e_{2} \otimes e_{1} \otimes e_{1}),
\end{aligned}$$

for certain choice of an orthonormal basis e_i in \mathcal{H} and $\lambda \neq 0$. Analogously, the simple tensors in \mathcal{H}^{α_2} take the form

$$egin{array}{rcl} egin{array}{rcl} v_\lambda^{lpha_2}&=&\pi^{lpha_2}(x_{lpha_2(1)}\otimes x_{lpha_2(2)}\otimes x_{lpha_2(3)})\ &=&\pi^{lpha_2}(x_1\otimes x_2\otimes x_1)\ &=&\lambda(e_1\otimes e_2\otimes e_1-e_2\otimes e_1\otimes e_1) \end{array}$$

J.Grabowski (IMPAN)

The simple tensors (the highest weight vectors) in \mathcal{H}^{α_1} can be written as

$$\begin{aligned} \nu_{\lambda}^{\alpha_{1}} &= \pi^{\alpha_{1}} (x_{\alpha_{1}(1)} \otimes x_{\alpha_{1}(2)} \otimes x_{\alpha_{1}(3)}) \\ &= \pi^{\alpha_{1}} (x_{1} \otimes x_{1} \otimes x_{2}) \\ &= \frac{2}{3} (x_{1} \otimes x_{1} \otimes x_{2} - x_{2} \otimes x_{1} \otimes x_{1}) \\ &= \lambda (e_{1} \otimes e_{1} \otimes e_{2} - e_{2} \otimes e_{1} \otimes e_{1}), \end{aligned}$$

for certain choice of an orthonormal basis e_i in \mathcal{H} and $\lambda \neq 0$. Analogously, the simple tensors in \mathcal{H}^{α_2} take the form

$$\begin{array}{lll} v_{\lambda}^{\alpha_2} & = & \pi^{\alpha_2}(x_{\alpha_2(1)}\otimes x_{\alpha_2(2)}\otimes x_{\alpha_2(3)}) \\ & = & \pi^{\alpha_2}(x_1\otimes x_2\otimes x_1) \\ & = & \lambda(e_1\otimes e_2\otimes e_1 - e_2\otimes e_1\otimes e_1) \end{array}$$

The simple tensors (the highest weight vectors) in \mathcal{H}^{α_1} can be written as

$$\begin{aligned} \nu_{\lambda}^{\alpha_{1}} &= \pi^{\alpha_{1}} (x_{\alpha_{1}(1)} \otimes x_{\alpha_{1}(2)} \otimes x_{\alpha_{1}(3)}) \\ &= \pi^{\alpha_{1}} (x_{1} \otimes x_{1} \otimes x_{2}) \\ &= \frac{2}{3} (x_{1} \otimes x_{1} \otimes x_{2} - x_{2} \otimes x_{1} \otimes x_{1}) \\ &= \lambda (e_{1} \otimes e_{1} \otimes e_{2} - e_{2} \otimes e_{1} \otimes e_{1}), \end{aligned}$$

for certain choice of an orthonormal basis e_i in \mathcal{H} and $\lambda \neq 0$. Analogously, the simple tensors in \mathcal{H}^{α_2} take the form

$$\begin{array}{lll} v_{\lambda}^{\alpha_2} & = & \pi^{\alpha_2}(x_{\alpha_2(1)}\otimes x_{\alpha_2(2)}\otimes x_{\alpha_2(3)}) \\ & = & \pi^{\alpha_2}(x_1\otimes x_2\otimes x_1) \\ & = & \lambda(e_1\otimes e_2\otimes e_1 - e_2\otimes e_1\otimes e_1) \end{array}$$

The simple tensors (the highest weight vectors) in \mathcal{H}^{α_1} can be written as

$$\begin{aligned} \nu_{\lambda}^{\alpha_{1}} &= \pi^{\alpha_{1}}(x_{\alpha_{1}(1)}\otimes x_{\alpha_{1}(2)}\otimes x_{\alpha_{1}(3)}) \\ &= \pi^{\alpha_{1}}(x_{1}\otimes x_{1}\otimes x_{2}) \\ &= \frac{2}{3}(x_{1}\otimes x_{1}\otimes x_{2}-x_{2}\otimes x_{1}\otimes x_{1}) \\ &= \lambda(e_{1}\otimes e_{1}\otimes e_{2}-e_{2}\otimes e_{1}\otimes e_{1}) \end{aligned}$$

for certain choice of an orthonormal basis e_i in $\mathcal H$ and $\lambda \neq 0$. Analogously, the simple tensors in $\mathcal H^{\alpha_2}$ take the form

$$\begin{array}{lll} v_{\lambda}^{\alpha_2} & = & \pi^{\alpha_2}(x_{\alpha_2(1)}\otimes x_{\alpha_2(2)}\otimes x_{\alpha_2(3)}) \\ & = & \pi^{\alpha_2}(x_1\otimes x_2\otimes x_1) \\ & = & \lambda(e_1\otimes e_2\otimes e_1 - e_2\otimes e_1\otimes e_1) \end{array}$$

The simple tensors (the highest weight vectors) in \mathcal{H}^{α_1} can be written as

$$\begin{aligned} \nu_{\lambda}^{\alpha_{1}} &= \pi^{\alpha_{1}}(x_{\alpha_{1}(1)}\otimes x_{\alpha_{1}(2)}\otimes x_{\alpha_{1}(3)}) \\ &= \pi^{\alpha_{1}}(x_{1}\otimes x_{1}\otimes x_{2}) \\ &= \frac{2}{3}(x_{1}\otimes x_{1}\otimes x_{2}-x_{2}\otimes x_{1}\otimes x_{1}) \\ &= \lambda(e_{1}\otimes e_{1}\otimes e_{2}-e_{2}\otimes e_{1}\otimes e_{1}) \end{aligned}$$

for certain choice of an orthonormal basis e_i in \mathcal{H} and $\lambda \neq 0$. Analogously, the simple tensors in \mathcal{H}^{α_2} take the form

$$\begin{array}{lll} v_{\lambda}^{\alpha_2} & = & \pi^{\alpha_2}(x_{\alpha_2(1)}\otimes x_{\alpha_2(2)}\otimes x_{\alpha_2(3)}) \\ & = & \pi^{\alpha_2}(x_1\otimes x_2\otimes x_1) \\ & = & \lambda(e_1\otimes e_2\otimes e_1 - e_2\otimes e_1\otimes e_1) \end{array}$$

The simple tensors (the highest weight vectors) in \mathcal{H}^{α_1} can be written as

$$\begin{aligned} \mathsf{v}_{\lambda}^{\alpha_1} &= \pi^{\alpha_1}(\mathsf{x}_{\alpha_1(1)}\otimes\mathsf{x}_{\alpha_1(2)}\otimes\mathsf{x}_{\alpha_1(3)}) \\ &= \pi^{\alpha_1}(\mathsf{x}_1\otimes\mathsf{x}_1\otimes\mathsf{x}_2) \\ &= \frac{2}{3}(\mathsf{x}_1\otimes\mathsf{x}_1\otimes\mathsf{x}_2-\mathsf{x}_2\otimes\mathsf{x}_1\otimes\mathsf{x}_1) \\ &= \lambda(e_1\otimes e_1\otimes e_2-e_2\otimes e_1\otimes e_1) \,, \end{aligned}$$

for certain choice of an orthonormal basis e_i in \mathcal{H} and $\lambda \neq 0$. Analogously, the simple tensors in \mathcal{H}^{α_2} take the form

$$\begin{array}{lll} \mathbf{v}_{\lambda}^{\alpha_{2}} &=& \pi^{\alpha_{2}}(x_{\alpha_{2}(1)}\otimes x_{\alpha_{2}(2)}\otimes x_{\alpha_{2}(3)})\\ &=& \pi^{\alpha_{2}}(x_{1}\otimes x_{2}\otimes x_{1})\\ &=& \lambda(e_{1}\otimes e_{2}\otimes e_{1}-e_{2}\otimes e_{1}\otimes e_{1}) \end{array}$$

()

The simple tensors (the highest weight vectors) in \mathcal{H}^{α_1} can be written as

$$\begin{split} \nu_{\lambda}^{\alpha_1} &= \pi^{\alpha_1} (x_{\alpha_1(1)} \otimes x_{\alpha_1(2)} \otimes x_{\alpha_1(3)}) \\ &= \pi^{\alpha_1} (x_1 \otimes x_1 \otimes x_2) \\ &= \frac{2}{3} (x_1 \otimes x_1 \otimes x_2 - x_2 \otimes x_1 \otimes x_1) \\ &= \lambda (e_1 \otimes e_1 \otimes e_2 - e_2 \otimes e_1 \otimes e_1) \,, \end{split}$$

for certain choice of an orthonormal basis e_i in \mathcal{H} and $\lambda \neq 0$. Analogously, the simple tensors in \mathcal{H}^{α_2} take the form

$$\begin{array}{lll} \mathbf{v}_{\lambda}^{\alpha_2} &=& \pi^{\alpha_2}(x_{\alpha_2(1)}\otimes x_{\alpha_2(2)}\otimes x_{\alpha_2(3)}) \\ &=& \pi^{\alpha_2}(x_1\otimes x_2\otimes x_1) \\ &=& \lambda(e_1\otimes e_2\otimes e_1-e_2\otimes e_1\otimes e_1) \end{array}$$

The simple tensors (the highest weight vectors) in \mathcal{H}^{α_1} can be written as

$$egin{array}{rcl} & x_{\lambda} & = & \pi^{lpha_1}(x_{lpha_1(1)}\otimes x_{lpha_1(2)}\otimes x_{lpha_1(3)}) \ & = & \pi^{lpha_1}(x_1\otimes x_1\otimes x_2) \ & = & rac{2}{3}(x_1\otimes x_1\otimes x_2-x_2\otimes x_1\otimes x_1) \ & = & \lambda(e_1\otimes e_1\otimes e_2-e_2\otimes e_1\otimes e_1)\,, \end{array}$$

for certain choice of an orthonormal basis e_i in $\mathcal H$ and $\lambda \neq 0$. Analogously, the simple tensors in $\mathcal H^{\alpha_2}$ take the form

$$\begin{array}{lll} v_{\lambda}^{\alpha_2} & = & \pi^{\alpha_2}(x_{\alpha_2(1)}\otimes x_{\alpha_2(2)}\otimes x_{\alpha_2(3)}) \\ & = & \pi^{\alpha_2}(x_1\otimes x_2\otimes x_1) \\ & = & \lambda(e_1\otimes e_2\otimes e_1 - e_2\otimes e_1\otimes e_1) \end{array}$$

The simple tensors (the highest weight vectors) in \mathcal{H}^{α_1} can be written as

$$egin{array}{rcl} & & = & \pi^{lpha_1}(x_{lpha_1(1)}\otimes x_{lpha_1(2)}\otimes x_{lpha_1(3)}) \ & & = & \pi^{lpha_1}(x_1\otimes x_1\otimes x_2) \ & & = & rac{2}{3}(x_1\otimes x_1\otimes x_2-x_2\otimes x_1\otimes x_1) \ & & = & \lambda(e_1\otimes e_1\otimes e_2-e_2\otimes e_1\otimes e_1)\,, \end{array}$$

for certain choice of an orthonormal basis e_i in \mathcal{H} and $\lambda \neq 0$.

Analogously, the simple tensors in \mathcal{H}^{α_2} take the form

$$egin{array}{rcl} & & = & \pi^{lpha_2}(x_{lpha_2(1)}\otimes x_{lpha_2(2)}\otimes x_{lpha_2(3)}) \ & & = & \pi^{lpha_2}(x_1\otimes x_2\otimes x_1) \ & & = & \lambda(e_1\otimes e_2\otimes e_1-e_2\otimes e_1\otimes e_1) \end{array}$$

A E > A E >

The simple tensors (the highest weight vectors) in \mathcal{H}^{α_1} can be written as

$$egin{array}{rcl} & x_\lambda & x_$$

for certain choice of an orthonormal basis e_i in \mathcal{H} and $\lambda \neq 0$. Analogously, the simple tensors in \mathcal{H}^{α_2} take the form

$$egin{array}{rcl} egin{array}{rcl} v_\lambda^{lpha_2}&=&\pi^{lpha_2}(x_{lpha_2(1)}\otimes x_{lpha_2(2)}\otimes x_{lpha_2(3)})\ &=&\pi^{lpha_2}(x_1\otimes x_2\otimes x_1)\ &=&\lambda(e_1\otimes e_2\otimes e_1-e_2\otimes e_1\otimes e_1) \end{array}$$

A E > A E >

The simple tensors (the highest weight vectors) in \mathcal{H}^{α_1} can be written as

$$egin{array}{rcl} & x_{\lambda} & = & \pi^{lpha_1}(x_{lpha_1(1)}\otimes x_{lpha_1(2)}\otimes x_{lpha_1(3)}) \ & = & \pi^{lpha_1}(x_1\otimes x_1\otimes x_2) \ & = & rac{2}{3}(x_1\otimes x_1\otimes x_2-x_2\otimes x_1\otimes x_1) \ & = & \lambda(e_1\otimes e_1\otimes e_2-e_2\otimes e_1\otimes e_1)\,, \end{array}$$

for certain choice of an orthonormal basis e_i in \mathcal{H} and $\lambda \neq 0$. Analogously, the simple tensors in \mathcal{H}^{α_2} take the form

$$\begin{aligned} \mathbf{v}_{\boldsymbol{\lambda}}^{\boldsymbol{\alpha_2}} &= \pi^{\alpha_2}(x_{\alpha_2(1)} \otimes x_{\alpha_2(2)} \otimes x_{\alpha_2(3)}) \\ &= \pi^{\alpha_2}(x_1 \otimes x_2 \otimes x_1) \\ &= \lambda(e_1 \otimes e_2 \otimes e_1 - e_2 \otimes e_1 \otimes e_1) \end{aligned}$$

J.Grabowski (IMPAN)

A E > A E >
The simple tensors (the highest weight vectors) in \mathcal{H}^{α_1} can be written as

$$egin{array}{rcl} & x_\lambda & x_$$

for certain choice of an orthonormal basis e_i in \mathcal{H} and $\lambda \neq 0$. Analogously, the simple tensors in \mathcal{H}^{α_2} take the form

$$\mathbf{v}_{\boldsymbol{\lambda}}^{\boldsymbol{\alpha_2}} = \pi^{\alpha_2} (x_{\alpha_2(1)} \otimes x_{\alpha_2(2)} \otimes x_{\alpha_2(3)})$$

= $\pi^{\alpha_2} (x_1 \otimes x_2 \otimes x_1)$
= $\lambda (e_1 \otimes e_2 \otimes e_1 - e_2 \otimes e_1 \otimes e_1)$

J.Grabowski (IMPAN)

The simple tensors (the highest weight vectors) in \mathcal{H}^{α_1} can be written as

$$egin{array}{rcl} & x_\lambda & x_$$

for certain choice of an orthonormal basis e_i in \mathcal{H} and $\lambda \neq 0$. Analogously, the simple tensors in \mathcal{H}^{α_2} take the form

$$\begin{aligned} \mathbf{v}_{\lambda}^{\alpha_2} &= \pi^{\alpha_2}(\mathbf{x}_{\alpha_2(1)}\otimes\mathbf{x}_{\alpha_2(2)}\otimes\mathbf{x}_{\alpha_2(3)}) \\ &= \pi^{\alpha_2}(\mathbf{x}_1\otimes\mathbf{x}_2\otimes\mathbf{x}_1) \\ &= \lambda(e_1\otimes e_2\otimes e_1 - e_2\otimes e_1\otimes e_1) \end{aligned}$$

J.Grabowski (IMPAN)

The simple tensors (the highest weight vectors) in \mathcal{H}^{α_1} can be written as

$$egin{array}{rcl} & x_\lambda & x_$$

for certain choice of an orthonormal basis e_i in \mathcal{H} and $\lambda \neq 0$. Analogously, the simple tensors in \mathcal{H}^{α_2} take the form

$$\begin{aligned} \mathbf{v}_{\lambda}^{\alpha_2} &= \pi^{\alpha_2} (\mathbf{x}_{\alpha_2(1)} \otimes \mathbf{x}_{\alpha_2(2)} \otimes \mathbf{x}_{\alpha_2(3)}) \\ &= \pi^{\alpha_2} (\mathbf{x}_1 \otimes \mathbf{x}_2 \otimes \mathbf{x}_1) \\ &= \lambda (e_1 \otimes e_2 \otimes e_1 - e_2 \otimes e_1 \otimes e_1) \end{aligned}$$

J.Grabowski (IMPAN)

The simple tensors (the highest weight vectors) in \mathcal{H}^{α_1} can be written as

$$egin{array}{rcl} & x_\lambda & x_$$

for certain choice of an orthonormal basis e_i in \mathcal{H} and $\lambda \neq 0$. Analogously, the simple tensors in \mathcal{H}^{α_2} take the form

$$\begin{aligned} \mathbf{v}_{\lambda}^{\alpha_2} &= \pi^{\alpha_2} (\mathbf{x}_{\alpha_2(1)} \otimes \mathbf{x}_{\alpha_2(2)} \otimes \mathbf{x}_{\alpha_2(3)}) \\ &= \pi^{\alpha_2} (\mathbf{x}_1 \otimes \mathbf{x}_2 \otimes \mathbf{x}_1) \\ &= \lambda (e_1 \otimes e_2 \otimes e_1 - e_2 \otimes e_1 \otimes e_1) \end{aligned}$$

J.Grabowski (IMPAN)

The simple tensors (the highest weight vectors) in \mathcal{H}^{α_1} can be written as

$$egin{array}{rcl} & x_\lambda & x_$$

for certain choice of an orthonormal basis e_i in \mathcal{H} and $\lambda \neq 0$. Analogously, the simple tensors in \mathcal{H}^{α_2} take the form

$$\begin{aligned} \mathbf{v}_{\lambda}^{\alpha_2} &= \pi^{\alpha_2}(\mathbf{x}_{\alpha_2(1)}\otimes\mathbf{x}_{\alpha_2(2)}\otimes\mathbf{x}_{\alpha_2(3)}) \\ &= \pi^{\alpha_2}(\mathbf{x}_1\otimes\mathbf{x}_2\otimes\mathbf{x}_1) \\ &= \lambda(e_1\otimes e_2\otimes e_1 - e_2\otimes e_1\otimes e_1). \end{aligned}$$

J.Grabowski (IMPAN)

The simple tensors (the highest weight vectors) in \mathcal{H}^{α_1} can be written as

$$egin{array}{rcl} & x_\lambda & x_$$

for certain choice of an orthonormal basis e_i in \mathcal{H} and $\lambda \neq 0$. Analogously, the simple tensors in \mathcal{H}^{α_2} take the form

$$\begin{aligned} v_{\lambda}^{\alpha_2} &= \pi^{\alpha_2}(x_{\alpha_2(1)}\otimes x_{\alpha_2(2)}\otimes x_{\alpha_2(3)}) \\ &= \pi^{\alpha_2}(x_1\otimes x_2\otimes x_1) \\ &= \lambda(e_1\otimes e_2\otimes e_1 - e_2\otimes e_1\otimes e_1). \end{aligned}$$

Definition

- We say that a pure state ρ_ν on H^{⊗k} obeys a parastatistics α ∈ Y(k) (is a pure α-state for short) if v ∈ H^α, i.e. ρ is a pure state on the Hilbert space H^α.
- A pure state ρ on H^{Sk} obeying a parastatistics α is called a simple pure α-state if ρ is represented by an α-simple tensor in H^α. If ρ is not simple α-state, we call it an entangled pure α-state.
- A mixed state ρ on H^α we call a simple α-state if it can be written as a convex combination of simple pure α-states. In the other case, ρ is called an entangled mixed α-state.

Simple pure α -states can be characterized in terms of generalized Segre maps.

イロト イヨト イヨト

Definition

- We say that a pure state ρ_v on H^{⊗k} obeys a parastatistics α ∈ Y(k) (is a pure α-state for short) if v ∈ H^α, i.e. ρ is a pure state on the Hilbert space H^α.
- A pure state ρ on H^{⊗k} obeying a parastatistics α is called a simple pure α-state if ρ is represented by an α-simple tensor in H^α. If ρ is not simple α-state, we call it an entangled pure α-state.
- A mixed state ρ on H^α we call a simple α-state if it can be written as a convex combination of simple pure α-states. In the other case, ρ is called an entangled mixed α-state.

Simple pure α -states can be characterized in terms of generalized Segremaps.

→ Ξ → → Ξ

Definition

- We say that a pure state ρ_v on H^{⊗k} obeys a parastatistics α ∈ Y(k) (is a pure α-state for short) if v ∈ H^α, i.e. ρ is a pure state on the Hilbert space H^α.
- A pure state ρ on H^{⊗k} obeying a parastatistics α is called a simple pure α-state if ρ is represented by an α-simple tensor in H^α. If ρ is not simple α-state, we call it an entangled pure α-state.

 A mixed state ρ on H^α we call a simple α-state if it can be written as a convex combination of simple pure α-states. In the other case, ρ is called an entangled mixed α-state.

Simple pure α -states can be characterized in terms of generalized Segre maps.

Definition

- We say that a pure state ρ_v on H^{⊗k} obeys a parastatistics α ∈ Y(k) (is a pure α-state for short) if v ∈ H^α, i.e. ρ is a pure state on the Hilbert space H^α.
- A pure state ρ on H^{⊗k} obeying a parastatistics α is called a simple pure α-state if ρ is represented by an α-simple tensor in H^α. If ρ is not simple α-state, we call it an entangled pure α-state.
- A mixed state ρ on H^α we call a simple α-state if it can be written as a convex combination of simple pure α-states. In the other case, ρ is called an entangled mixed α-state.

Simple pure α -states can be characterized in terms of generalized Segremaps.

Definition

- We say that a pure state ρ_v on H^{⊗k} obeys a parastatistics α ∈ Y(k) (is a pure α-state for short) if v ∈ H^α, i.e. ρ is a pure state on the Hilbert space H^α.
- A pure state ρ on H^{⊗k} obeying a parastatistics α is called a simple pure α-state if ρ is represented by an α-simple tensor in H^α. If ρ is not simple α-state, we call it an entangled pure α-state.
- A mixed state ρ on H^α we call a simple α-state if it can be written as a convex combination of simple pure α-states. In the other case, ρ is called an entangled mixed α-state.

Simple pure α -states can be characterized in terms of generalized Segre maps.

References

- J. Grabowski, M. Kuś, and G. Marmo. Entanglement for multipartite systems of indistinguishable particles. *J. Phys. A: Math. Gen.* 44:175302 (21pp), 2011.
- J. Grabowski, M. Kuś, and G. Marmo. Segre maps and entanglement for multipartite systems of indistinguishable particles. *arXiv:1111.4812*.
 - H. S. Green.

A generalized method of field quantization. *Phys. Rev.*, 90:270273, 1953.

K. Eckert, J. Schliemann, D. Bruß, and M Lewenstein. Quantum correlations in systems of identical particles. *Ann. Phys.*, 299:88–127, 2002.

G. Ghirardi and L. Marinatto. Identical particles and entanglement. *Optics and Spectroscopy*, 99(3):386–390, 2005.

J.Grabowski (IMPAN)

Segre maps and entanglement

09/01/2012 24 / 25

THANK YOU FOR YOUR ATTENTION!

<u><ロ></u><四> <四> <四> <三> <三>