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Background on states

Quantum system is described by a Hilbert space H.

Pure state |¢) is a unit vector in H:
(wlp) = [l]* =

Mixed state p is a trace one positive semidefinite operator on
‘H. For example

p= ZPJWJ 1/’/ ij—1

j=1

L(H) = {bounded operators on H}
S(H) = {density matrices on H}
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Background on entanglement

A compound or bipartite system has state space H1 ® Ho.
There are product states in H{ ® Ho of the form

1) @ [t2)

as well as non-product states, for example
1

Sloeomem]

For mixed states the relevant property is separability: the state
p12 € S(H1 ® Ho) is separable if

P12 ZZP/‘U/'@T/'
J

with states o; € S(H1), 77 € S(Hz), and >_ pj = 1.
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Background on PPT

If a state pqo is separable then the partial transpose is positive:
P12 = ZP/‘ 0j ® Tj
j
(I@T)prz = Y _pojeT
J

The converse is true for low dimensional states, but false in
general.

Since PPT is much easier to check than separability, it provides
a convenient proxy for measuring entanglement . . .
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Background on entropy

The von Neumann entropy of the state p is
S(p) = —Trplogp, pe S(H)

and the related Renyi entropies are defined for r > 0,r # 1 by

1
Sr(p) = = log Tr p"

It follows that

lim Sr(p) = S(p)

Entropy measures the information content or disorder of a
state. Thus S;(p) > 0, with equality if and only if p = |¢) (3| isin
a pure state.
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Background on channels

A quantum channel on H is a completely positive trace
preserving (CPTP) map

A L(H) — L(H)

The operational meaning of the channel can be seen using the
Lindbald-Stinespring representation: there is some ancillary
space & (the environment), some unitary map U € L(H ® &),
and some state w € S(&), such that for all M € L(H)

AM) = Tre [U(M ® w) U*]

where Tr ¢ denotes the partial trace over the environment.

[...where U = e M is the unitary dynamics generated by a
Hamiltonian operator H which entangles H and £]
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Background on channels

More generally a quantum channel is a CPTP map between
different spaces

A L(Hy) — L(Hp)

Questions of interest include:
@ what is the maximum rate of information transfer using .A?
@ how noisy is a typical output state A(|¢)(|) from the
channel?
@ what is the entanglement of a typical output state

(1 A)([¥)@1)?
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Background on random states

Random states and random channels in high-dimensional
spaces have played an important role in recent advances in
QIT.

Randomness for pure states is straightforward: the unit vectors
|#]| = 1 in C? can be identified with the real sphere S29-1,
Normalized uniform measure on S29~" provides the probability
measure.

Alternatively, normalized Haar measure on the unitary group
U(d) descends to the uniform measure on |) via the
representation

[¥) = Ulo)

where |1)o) is some fixed unit state.
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Background on random channels

Random channels are also easy to define using the
Lindblad-Stinespring representation. A channel

A L£(CY9) — £(C") is derived from an isometric embedding
W:cC? - CkeC" with W*W = I, where £ = C" is the
environment. The relation is

.A(p) =Tren Wp w*

Every such embedding W can be written as W = UW, for
some unitary matrix U € U(kn). Then the normalized Haar
measure on U(kn) provides a probability measure on
embeddings, and hence on random channels.
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Random mixed states

Not so clear how to define random mixed states. One way is to
consider reduced density matrices p = Tr2|¢) ()| where the |¢)
are random pure states on a bipartite space.

More generally: apply a channel A to random pure states |¢),
then the outputs A(|1)(+/|) are random mixed states.

Our focus: consider a fixed channel A : £(C?) — £(CY). Take
many independent copies A®" applied to random input states
|4) € S(CI). Then analyze properties of typical output states
A®"(|4)(+)]) using a regularized version of output entropy.

Idea: average behavior becomes typical in high dimensions.
Analagous to the convergence of the empirical entropy for a
classical random sequence.
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Why random?

There is often a concentration of measure phenomenon which
allows properties of ‘typical’ states and channels to be
computed using average values.

Example: fixed unit vector |¢g) € C", random unit vector |¢),
then

E[Iwlo) ] = -

Concentration of measure:

1 2
(|l - 1| > ) <2e70r2
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The basic result used to derive such bounds is

Theorem (Levy’s Lemma)

Let f : Sk — R be a function with Lipschitz constant n (with
respect to the Euclidean norm), and X € Sk be chosen
uniformly at random. Then

P(If(X) ~ BI{(X)]| > a) < 2 exp (~C(k + 1)0?/i?)

for an absolute constant C > 0 (may be chosen as
C=(97%In2)7").
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Then the above result about state overlap follows by applying
Levy’s Lemma with

k = 2n — 1 (real dimension of the unit sphere in C"),
X = |¢) arandom state, and

F(X) = [(v]do) 2.

The Lipschitz constant is n = 2, since

[(¥]30) 2 — |{8lwo)]? < 2|1 — ¢z

By a random state here we mean |)) = U|vy), where U is a
random unitary (Haar measure on unitary group).
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A channel A can be described in Kraus form
k
Alp) = AcoAe Y AcAc=1
=1 i

Alternatively it is given by the Choi matrix
Choi(A) = (I ® A)(IME) (ME])

where |ME) is the maximally entangled state

ME) = 3" 1) i)
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Schatten norms

For r > 1 define the Schatten norm of the state p

lolle = (Tr o)
and the corresponding Renyi entropy

r 1
Sr(p) = ———log ||p||r = -—log Tr p"
1—r 1—r

The entropy of an output state from the channel is
1
Sr(A([e) (1)) = 37— log Tr (A(1v) (1))’

We will be concerned with the output entropy of a typical state
from a high-dimensional channel A.

Concentration of measure will apply, and so typical output
states will have entropy close to the average value:

E[S:(A(|%)(¥]))]
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Average output entropy

Fix a channel A, define the average output entropy for one
channel use

Sr(A) = E[S:(A([¥)(v])]
where average runs over random input states.

We are mostly interested in the regularized version: take many
copies of the channel A®" with n — .

What is typical behavior of A®"(])(v|) for a random input state
|1)?
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Regularized

Define the regularized average entropy:
oo 1
579(4) = liminf * S (A®) = liminf — E[S,(A®"(j4) (4)])]
Why liminf? no easy subadditivity bound to get the existence of
the limit.

Difficult to directly compute the expected value of the entropy.
So try to get it another way:

SHA) = 1 Ellog(A(u) ()]

B(A) = g E[Te (A(1¥) (¥]))]
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Again the regularized version:
9(A) = liminf L 3,(A°")

Goal: use concentration of measure to show that for a typical

sequence of input states [t,) € (C?)®",
1
SH(A®"(Jwn) (o)) — 87 (A) = 57 (A)

The method will be to prove convergence first for the easier
quantity 5,(A®M), then relate this to the average entropy.
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Lipschitz constants

The quantity 5,(A) is more tractable, so we want to relate it to
the average Renyi entropy. Jensen'’s inequality goes one way:
Sr(A) > Br(A)

The regularized quantities can be related by applying a
concentration of measure argument. This requires some
estimates of Lipschitz constants and averages. Assume
henceforth that d is both input and output dimension of A.
Define the function f, by

f(1) = Tr (A®"(|v) (o))"

The Lipschitz constant depends on n. Assume there is x(r) < 1
such that

() = fa(@)] < Cr(r)" ¢ — 8|2
Also assume there is a(r) > 0 such that
E[fa(¢)] = Ca(r)"
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Concentration

Theorem
Suppose that v2da(r) > k(r). Then

: o

n 1 n
S SH(AS) =~ B(A)

as n — oo. Furthermore, if the limit
1
9(A) = Jim — 3 (A®")

exists, then for a.e. sequence of input states {|yn)} the
entropies {1 S;(A®"(|v:n) (1n|)) converge to 57 (A).
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Concentration

So if we can
@ upper bound the Lipschitz constant of Tr (A®"(|¢)(1]))" by
Cr(r)"and
@ lower bound the expected value of Tr (A®"(|¢)(1]))" by
Ca(r)" and show that
@ v2da(r) > k(r)
then we get concentration of measure and hence convergence.
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Concentration

So progress depends on two things:

@ compute expected value Tr (A®"(|¢)(1]))": for integer r
this is feasible

@ estimate Lipschitz constant of Tr (A®"(|+))(1|))": for some
simple channels this is feasible
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Gy as a sum

The quantity 5,(.A) can be analyzed when r is a positive
integer, r > 2. Note that

T (A(lv) (w])

T ( 3 a><aA(x><xw><¢y><y)b><b)

aab7xvy
r

= Z H Aa,-x,-y;ai+1 H<Xl‘w> <¢’yf>

a;,X;,Yi i=1 j=1
where the matrix elements are

Aaxyp = (8l A(|X)(y])1b)

The channel piece is separated from the input state. Can
evaluate average over |¢) using the Weingarten calculus.
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Weingarten calculus

r
E[H<x,-|ur0><ow*|y,->]—ck,r S SO

j=1 aeSym(r)

where Sym(r) is the symmetric group on r letters, and the
constant is
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Gy as a sum

At the end of the day we get
E[Tr (A9} (@)1= Crr Y Qa(a)
aeSym(r)

where

r

QA(a) = ZTV HAX,',Xa(i)a Ax,y = A(’X><}/D

Xi i=1

Note that A(|x)(y|) are the blocks of the Choi matrix of A.

C. King and D. Moser, Northeastern University Properties of typical output states from product channels



Product channel property

Key property is: for any permutation «
Ques(a) = Qa(a) Qs(a)
Hence

E[Tr (A®" (1) (%)) 1= Chr > Qa(a)"

aeSym(r)

As n — oo, the largest term dominates.
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Theorem
For integerr > 2 let

Qmax = aergyan)‘l((r) |Qa(a)l.
Then
o9 4) = rlog d,-__|019 Qmax

In some situations the liminf in the definition of 5;°9(A) can be
replaced by lim.

If the maximum Qmax IS attained for a unique «, or if the
channel A is entrywise positive, then

FI(A) = lim *ﬂr(A@’")
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Two special permutations

When o

id is the identity permutation,
Qa(id) = Tr (A(D)"
When o =(12---r),
Qa(12---r) = Tr(Choi(A)")
For r = 2 these are the only permutations.

Proposition

B59(A) = 2log d — log max{ Tr(A(/))?, Tr(Choi(A)?)}
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Special case: Entanglement-breaking

An E-B channel has the form

Alp) = ok Tr (Xkp)
k

where {0k} are density matrices, and { X} are POVM.
Suppose in addition that for all m and all kq, ..., km,

m
Tr (H ok,> >0
i=1

Proposition

For all E-B channels satisfying this condition, all integerr > 2,

rlogd —log Tr(A(1))"

B39 (A) = —
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Special case: Werner-Holevo

Recall 1
- T
WH(p) = - 1 [Irp/ P }

Can show that
Tr(Choi(WH)") < d

hence

Qnr(12---r) < Qup(id)

So for r = 2 get maximal output entropy:

So Y (WH) = log d

Other values of r??
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Special case: qubit depolarizing

Ax(p) =Ap+ —5—Trpl
Main result: maximum is achieved at either identity or cycle
(12---r). So
QAA(OC) < max{QAA(id),QAX(12---r)} (1)
= max{2, Tr (Choi(A,)") (2

Proposition

For all integerr > 2, all0 < X\ <1,

BrY(Ay) = r% min{1,2r — log[(1 +3)\)" +3(1 — )]}
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Special case: depolarizing channel

Also have concentration of measure for interval of values of \.
Recall condition for concentration: need

V2da(r) > k(r)
where Q
a(r) = (’;fax

and x(r) is growth rate of Lipschitz constant for

Tr (AX)®"([w)(]))"
For qubit depolarizing get explicit bound

/@(r)g)\+1\;§/\
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Special case: qubit depolarizing

Proposition

For all integer r > 2, there are 0 < ¢, < dr < 1 such that for all
A€ [0,¢c]Uladr, 1],

reg

(B2) = B79(A,)

Typical behavior also holds in this range.

Note: as r — o0, ¢, — 1/3, dr — 1.
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Figure: B9(Ax) and B57(A)).
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AN~
o1
(00}
w
(@) ]

.458 | .878
10 || .381 | .953
100 || .338 | .995

Table: Range parameters for qubit depolarizing
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Qubit depolarizing

Conjecture that for all A, for all r

—reg

S, (Ax) = Br9(A))

and this is empirical entropy for typical output state as n — ~c.

Conjecture that same holds for all qubit channels, also
depolarizing in higher dimensions.

Technical obstacles: compute Qmnax-
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PPT for typical mixed states

Z = identity map:Z(p)=p

T = transpose map: 7T (p)=p'
T

P = tracemap: P(p) = MI

d

Test for separability of bipartite state: pq» is entangled if
(Z ® T)p12 is not positive semidefinite.

Define Ag, a0, = Za, ® T4, ® Pg, ON tripartite space. So

1
-Ad1,d27d3(‘¢> (]) = (Id1 ® Td1),012 ® FS /
where p1» is the mixed state obtained by tracing over third
factor. So with a random state |4), this is a random mixed state
on the first two factors. Thus Ag, g, 4, (|¥) (¥]) is the partial
transpose of a random mixed state.
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Also define 7 = (12---r) € Sym(r).

a7r_1 — QT |— ol—
E [Tr Agy ap.5 ([0 (0])7] = S ™ 177 g™ =" gl =2+

(67

where |«| is number of conjugacy classes in a.

Now consider di = db = d and d; = d%, and d — oco. Fix r =2,
then

s<2 = py9=log4

s>2 = (57 =log(2+s)
So transition point at s = 2. Conjecture this is the transition
from a.s. PPT to a.s. non-PPT.

[Ref: recent work of Aubrun, Szarek and Ye]
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PPT for depolarizing channel

Now consider a product of qubit depolarizing channels applied
to a random input state:

piz = (AT ® AL (1) (W)

For A < 1/3 we know that A, is entanglement-breaking, and
hence p15 is always separable.

What happens for A > 1/37 Is the state entangled a.s. for
A>1/3?

Address this by looking at PPT behavior of p1» as n,m — oo.
Take n = nx and m = n(1 — x) with 0 < x < 1. Examine
entropy as a function of x.

11 (1—x .
Gr(N) = 7= lim_—log ETr (AF™ @ TAT™ ™)) ()
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Future directions

Entanglement of typical output state? PPT transition for
ASNX (T o A)®n(1—x)

max  Qa(e)* Qa(yay ")
aeSym(r)

where ~ is the permutation

y:1l—=r2—-r—-1,3—-r—-2,...

e.g. Ay is E-B for A < 1/3. Is entanglement non-zero for typical
output state for A > 1/37?
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