

Properties of typical output states from product channels

C. King and D. Moser, Northeastern University

Marseilles, January 12, 2012

- 1) Background
- 2) Random states and channels
- 3) Average output entropy per channel use
- 4) Typical behavior of output states from multi-product channels
- 5) Special cases
- 6) Typical behavior of partial transpose output states
- 7) Future directions

Background on states

Quantum system is described by a Hilbert space \mathcal{H} .

Pure state $|\psi\rangle$ is a unit vector in \mathcal{H} :

$$\langle\psi|\psi\rangle = \|\psi\|^2 = 1$$

Mixed state ρ is a trace one positive semidefinite operator on \mathcal{H} . For example

$$\rho = \sum_{j=1}^n p_j |\psi_j\rangle\langle\psi_j|, \quad \sum_j p_j = 1$$

$$\begin{aligned}\mathcal{L}(\mathcal{H}) &= \{\text{bounded operators on } \mathcal{H}\} \\ \mathcal{S}(\mathcal{H}) &= \{\text{density matrices on } \mathcal{H}\}\end{aligned}$$

Background on entanglement

A compound or bipartite system has state space $\mathcal{H}_1 \otimes \mathcal{H}_2$.
There are product states in $\mathcal{H}_1 \otimes \mathcal{H}_2$ of the form

$$|\psi_1\rangle \otimes |\psi_2\rangle$$

as well as non-product states, for example

$$\frac{1}{\sqrt{2}} \left[|0\rangle \otimes |0\rangle + |1\rangle \otimes |1\rangle \right]$$

For mixed states the relevant property is *separability*: the state $\rho_{12} \in \mathcal{S}(\mathcal{H}_1 \otimes \mathcal{H}_2)$ is separable if

$$\rho_{12} = \sum_j p_j \sigma_j \otimes \tau_j$$

with states $\sigma_j \in \mathcal{S}(\mathcal{H}_1)$, $\tau_j \in \mathcal{S}(\mathcal{H}_2)$, and $\sum p_j = 1$.

If a state ρ_{12} is separable then the partial transpose is positive:

$$\rho_{12} = \sum_j p_j \sigma_j \otimes \tau_j$$

$$(I \otimes \mathcal{T})\rho_{12} = \sum_j p_j \sigma_j \otimes \tau_j^T$$

The converse is true for low dimensional states, but false in general.

Since PPT is much easier to check than separability, it provides a convenient proxy for measuring entanglement . . .

Background on entropy

The von Neumann entropy of the state ρ is

$$S(\rho) = -\text{Tr } \rho \log \rho, \quad \rho \in \mathcal{S}(\mathcal{H})$$

and the related Renyi entropies are defined for $r > 0, r \neq 1$ by

$$S_r(\rho) = \frac{1}{1-r} \log \text{Tr } \rho^r$$

It follows that

$$\lim_{r \rightarrow 1} S_r(\rho) = S(\rho)$$

Entropy measures the information content or disorder of a state. Thus $S_r(\rho) \geq 0$, with equality if and only if $\rho = |\psi\rangle\langle\psi|$ is in a pure state.

Background on channels

A quantum channel on \mathcal{H} is a completely positive trace preserving (CPTP) map

$$\mathcal{A} : \mathcal{L}(\mathcal{H}) \rightarrow \mathcal{L}(\mathcal{H})$$

The operational meaning of the channel can be seen using the Lindbald-Stinespring representation: there is some ancillary space \mathcal{E} (the environment), some unitary map $U \in \mathcal{L}(\mathcal{H} \otimes \mathcal{E})$, and some state $\omega \in \mathcal{S}(\mathcal{E})$, such that for all $M \in \mathcal{L}(\mathcal{H})$

$$\mathcal{A}(M) = \text{Tr}_{\mathcal{E}} \left[U(M \otimes \omega) U^* \right]$$

where $\text{Tr}_{\mathcal{E}}$ denotes the partial trace over the environment.

[... where $U = e^{-iHt}$ is the unitary dynamics generated by a Hamiltonian operator H which entangles \mathcal{H} and \mathcal{E}]

Background on channels

More generally a quantum channel is a CPTP map between different spaces

$$\mathcal{A} : \mathcal{L}(\mathcal{H}_1) \rightarrow \mathcal{L}(\mathcal{H}_2)$$

Questions of interest include:

- what is the maximum rate of information transfer using \mathcal{A} ?
- how noisy is a typical output state $\mathcal{A}(|\psi\rangle\langle\psi|)$ from the channel?
- what is the entanglement of a typical output state $(I \otimes \mathcal{A})(|\psi\rangle\langle\psi|)$?

Background on random states

Random states and random channels in high-dimensional spaces have played an important role in recent advances in QIT.

Randomness for pure states is straightforward: the unit vectors $\|\psi\| = 1$ in \mathbb{C}^d can be identified with the real sphere S^{2d-1} . Normalized uniform measure on S^{2d-1} provides the probability measure.

Alternatively, normalized Haar measure on the unitary group $\mathcal{U}(d)$ descends to the uniform measure on $|\psi\rangle$ via the representation

$$|\psi\rangle = U|\psi_0\rangle$$

where $|\psi_0\rangle$ is some fixed unit state.

Background on random channels

Random channels are also easy to define using the Lindblad-Stinespring representation. A channel $\mathcal{A} : \mathcal{L}(\mathbb{C}^d) \rightarrow \mathcal{L}(\mathbb{C}^n)$ is derived from an isometric embedding $W : \mathbb{C}^d \rightarrow \mathbb{C}^k \otimes \mathbb{C}^n$, with $W^*W = I$, where $\mathcal{E} = \mathbb{C}^n$ is the environment. The relation is

$$\mathcal{A}(\rho) = \text{Tr}_{\mathbb{C}^n} W \rho W^*$$

Every such embedding W can be written as $W = UW_0$ for some unitary matrix $U \in \mathcal{U}(kn)$. Then the normalized Haar measure on $\mathcal{U}(kn)$ provides a probability measure on embeddings, and hence on random channels.

Not so clear how to define random mixed states. One way is to consider reduced density matrices $\rho = \text{Tr}_2 |\psi\rangle\langle\psi|$ where the $|\psi\rangle$ are random pure states on a bipartite space.

More generally: apply a channel \mathcal{A} to random pure states $|\psi\rangle$, then the outputs $\mathcal{A}(|\psi\rangle\langle\psi|)$ are random mixed states.

Our focus: consider a fixed channel $\mathcal{A} : \mathcal{L}(\mathbb{C}^d) \rightarrow \mathcal{L}(\mathbb{C}^d)$. Take many independent copies $\mathcal{A}^{\otimes n}$ applied to random input states $|\psi\rangle \in \mathcal{S}(\mathbb{C}^{dn})$. Then analyze properties of typical output states $\mathcal{A}^{\otimes n}(|\psi\rangle\langle\psi|)$ using a regularized version of output entropy.

Idea: average behavior becomes typical in high dimensions. Analogous to the convergence of the empirical entropy for a classical random sequence.

Why random?

There is often a concentration of measure phenomenon which allows properties of ‘typical’ states and channels to be computed using average values.

Example: fixed unit vector $|\psi_0\rangle \in \mathbb{C}^n$, random unit vector $|\psi\rangle$, then

$$\mathbb{E} \left[|\langle \psi | \psi_0 \rangle|^2 \right] = \frac{1}{n}$$

Concentration of measure:

$$P \left(\left| |\langle \psi | \psi_0 \rangle|^2 - \frac{1}{n} \right| > a \right) \leq 2e^{-Cna^2}$$

The basic result used to derive such bounds is

Theorem (Levy's Lemma)

Let $f : S^k \rightarrow \mathbb{R}$ be a function with Lipschitz constant η (with respect to the Euclidean norm), and $X \in S^k$ be chosen uniformly at random. Then

$$P(|f(X) - \mathbb{E}[f(X)]| > \alpha) \leq 2 \exp\left(-C(k+1)\alpha^2/\eta^2\right)$$

for an absolute constant $C > 0$ (may be chosen as $C = (9\pi^3 \ln 2)^{-1}$).

Then the above result about state overlap follows by applying Levy's Lemma with

$k = 2n - 1$ (real dimension of the unit sphere in \mathbb{C}^n),

$X = |\psi\rangle$ a random state, and

$f(X) = |\langle\psi|\psi_0\rangle|^2$.

The Lipschitz constant is $\eta = 2$, since

$$|\langle\psi|\psi_0\rangle|^2 - |\langle\phi|\psi_0\rangle|^2 \leq 2\|\psi - \phi\|_2$$

By a *random state* here we mean $|\psi\rangle = U|\psi_0\rangle$, where U is a random unitary (Haar measure on unitary group).

A channel \mathcal{A} can be described in Kraus form

$$\mathcal{A}(\rho) = \sum_{i=1}^k A_k \rho A_k^*, \quad \sum_i A_k^* A_k = I$$

Alternatively it is given by the Choi matrix

$$Choi(\mathcal{A}) = (I \otimes \mathcal{A})(|ME\rangle\langle ME|)$$

where $|ME\rangle$ is the maximally entangled state

$$|ME\rangle = \sum_i |i\rangle \otimes |i\rangle$$

Schatten norms

For $r \geq 1$ define the Schatten norm of the state ρ

$$\|\rho\|_r = (\mathrm{Tr} \rho^r)^{1/r}$$

and the corresponding Renyi entropy

$$S_r(\rho) = \frac{r}{1-r} \log \|\rho\|_r = \frac{1}{1-r} \log \mathrm{Tr} \rho^r$$

The entropy of an output state from the channel is

$$S_r(\mathcal{A}(|\psi\rangle\langle\psi|)) = \frac{1}{1-r} \log \mathrm{Tr} (\mathcal{A}(|\psi\rangle\langle\psi|))^r$$

We will be concerned with the output entropy of a *typical state* from a high-dimensional channel \mathcal{A} .

Concentration of measure will apply, and so typical output states will have entropy close to the average value:

$$\mathbb{E}[S_r(\mathcal{A}(|\psi\rangle\langle\psi|))]$$

Average output entropy

Fix a channel \mathcal{A} , define the *average output entropy* for one channel use

$$\overline{S}_r(\mathcal{A}) = \mathbb{E}[S_r(\mathcal{A}(|\psi\rangle\langle\psi|))]$$

where average runs over random input states.

We are mostly interested in the regularized version: take many copies of the channel $\mathcal{A}^{\otimes n}$ with $n \rightarrow \infty$.

What is typical behavior of $\mathcal{A}^{\otimes n}(|\psi\rangle\langle\psi|)$ for a random input state $|\psi\rangle$?

Define the regularized average entropy:

$$\overline{S}_r^{\text{reg}}(\mathcal{A}) = \liminf_{n \rightarrow \infty} \frac{1}{n} \overline{S}_r(\mathcal{A}^{\otimes n}) = \liminf_{n \rightarrow \infty} \frac{1}{n} \mathbb{E}[S_r(\mathcal{A}^{\otimes n}(|\psi\rangle\langle\psi|))]$$

Why \liminf ? no easy subadditivity bound to get the existence of the limit.

Difficult to directly compute the expected value of the entropy.
So try to get it another way:

$$\overline{S}_r(\mathcal{A}) = \frac{1}{1-r} \mathbb{E}[\log(\mathcal{A}(|\psi\rangle\langle\psi|))^r]$$

$$\beta_r(\mathcal{A}) = \frac{1}{1-r} \log \mathbb{E}[\text{Tr}(\mathcal{A}(|\psi\rangle\langle\psi|))^r]$$

Again the regularized version:

$$\beta_r^{\text{reg}}(\mathcal{A}) = \liminf_{n \rightarrow \infty} \frac{1}{n} \beta_r(\mathcal{A}^{\otimes n})$$

Goal: use concentration of measure to show that for a typical sequence of input states $|\psi_n\rangle \in (\mathbb{C}^d)^{\otimes n}$,

$$\frac{1}{n} S_r(\mathcal{A}^{\otimes n}(|\psi_n\rangle\langle\psi_n|)) \rightarrow \overline{S}_r^{\text{reg}}(\mathcal{A}) = \beta_r^{\text{reg}}(\mathcal{A})$$

The method will be to prove convergence first for the easier quantity $\beta_r(\mathcal{A}^{\otimes n})$, then relate this to the average entropy.

Lipschitz constants

The quantity $\beta_r(\mathcal{A})$ is more tractable, so we want to relate it to the average Renyi entropy. Jensen's inequality goes one way:

$$\overline{S}_r(\mathcal{A}) \geq \beta_r(\mathcal{A})$$

The regularized quantities can be related by applying a concentration of measure argument. This requires some estimates of Lipschitz constants and averages. Assume henceforth that d is both input and output dimension of \mathcal{A} . Define the function f_n by

$$f_n(\psi) = \text{Tr} (\mathcal{A}^{\otimes n} (|\psi\rangle\langle\psi|))^r$$

The Lipschitz constant depends on n . Assume there is $\kappa(r) < 1$ such that

$$|f_n(\psi) - f_n(\phi)| \leq C\kappa(r)^n \|\psi - \phi\|_2$$

Also assume there is $\alpha(r) > 0$ such that

$$\mathbb{E}[f_n(\psi)] \geq C\alpha(r)^n$$

Theorem

Suppose that $\sqrt{2d}\alpha(r) > \kappa(r)$. Then

$$\left| \frac{1}{n} \bar{S}_r(\mathcal{A}^{\otimes n}) - \frac{1}{n} \beta_r(\mathcal{A}^{\otimes n}) \right| \rightarrow 0$$

as $n \rightarrow \infty$. Furthermore, if the limit

$$\beta_r^{\text{reg}}(\mathcal{A}) = \lim_{n \rightarrow \infty} \frac{1}{n} \beta_r(\mathcal{A}^{\otimes n})$$

exists, then for a.e. sequence of input states $\{|\psi_n\rangle\}$ the entropies $\{\frac{1}{n} S_r(\mathcal{A}^{\otimes n}(|\psi_n\rangle\langle\psi_n|))\}$ converge to $\bar{S}_r^{\text{reg}}(\mathcal{A})$.

So if we can

- upper bound the Lipschitz constant of $\text{Tr} (\mathcal{A}^{\otimes n}(|\psi\rangle\langle\psi|))^r$ by $C\kappa(r)^n$ and
- lower bound the expected value of $\text{Tr} (\mathcal{A}^{\otimes n}(|\psi\rangle\langle\psi|))^r$ by $C\alpha(r)^n$ and show that
- $\sqrt{2d}\alpha(r) > \kappa(r)$

then we get concentration of measure and hence convergence.

So progress depends on two things:

- compute expected value $\text{Tr} (\mathcal{A}^{\otimes n}(|\psi\rangle\langle\psi|))^r$: for integer r
this is feasible
- estimate Lipschitz constant of $\text{Tr} (\mathcal{A}^{\otimes n}(|\psi\rangle\langle\psi|))^r$: for some
simple channels this is feasible

β_r as a sum

The quantity $\beta_r(\mathcal{A})$ can be analyzed when r is a positive integer, $r \geq 2$. Note that

$$\begin{aligned}\text{Tr} (\mathcal{A}(|\psi\rangle\langle\psi|))^r &= \text{Tr} \left(\sum_{a,b,x,y} |a\rangle\langle a| \mathcal{A} \left(|x\rangle\langle x|\psi\rangle\langle\psi|y\rangle\langle y| \right) |b\rangle\langle b| \right)^r \\ &= \sum_{a_i, x_i, y_i} \prod_{i=1}^r \mathcal{A}_{a_i x_i y_i a_{i+1}} \prod_{j=1}^r \langle x_j | \psi \rangle \langle \psi | y_j \rangle\end{aligned}$$

where the matrix elements are

$$\mathcal{A}_{axyb} = \langle a | \mathcal{A}(|x\rangle\langle y|) | b \rangle$$

The channel piece is separated from the input state. Can evaluate average over $|\psi\rangle$ using the Weingarten calculus.

Weingarten calculus

$$\mathbb{E} \left[\prod_{j=1}^r \langle x_j | U | 0 \rangle \langle 0 | U^* | y_j \rangle \right] = C_{k,r} \sum_{\alpha \in Sym(r)} \delta_{x_{\alpha(1)} y_1} \dots \delta_{x_{\alpha(r)} y_r}$$

where $Sym(r)$ is the symmetric group on r letters, and the constant is

$$C_{k,r} = \sum_{\gamma \in Sym(r)} Wg(k, \gamma) = \prod_{j=0}^{r-1} \frac{1}{k+j} \simeq k^{-r}$$

At the end of the day we get

$$\mathbb{E}[\text{Tr} (\mathcal{A}(|\psi\rangle\langle\psi|))^r] = C_{k,r} \sum_{\alpha \in \text{Sym}(r)} Q_{\mathcal{A}}(\alpha)$$

where

$$Q_{\mathcal{A}}(\alpha) = \sum_{x_i} \text{Tr} \prod_{i=1}^r \mathcal{A}_{x_i, x_{\alpha(i)}}, \quad \mathcal{A}_{x,y} = \mathcal{A}(|x\rangle\langle y|)$$

Note that $\mathcal{A}(|x\rangle\langle y|)$ are the blocks of the Choi matrix of \mathcal{A} .

Key property is: for any permutation α

$$Q_{\mathcal{A} \otimes \mathcal{B}}(\alpha) = Q_{\mathcal{A}}(\alpha) Q_{\mathcal{B}}(\alpha)$$

Hence

$$\mathbb{E}[\text{Tr} (\mathcal{A}^{\otimes n} (|\psi\rangle\langle\psi|))^r] = C_{k,r} \sum_{\alpha \in \text{Sym}(r)} Q_{\mathcal{A}}(\alpha)^n$$

As $n \rightarrow \infty$, the largest term dominates.

Theorem

For integer $r \geq 2$ let

$$Q_{\max} = \max_{\alpha \in \text{Sym}(r)} |Q_{\mathcal{A}}(\alpha)|.$$

Then

$$\beta_r^{\text{reg}}(\mathcal{A}) = \frac{r \log d - \log Q_{\max}}{r - 1}$$

In some situations the \liminf in the definition of $\beta_r^{\text{reg}}(\mathcal{A})$ can be replaced by \lim .

Theorem

If the maximum Q_{\max} is attained for a unique α , or if the channel \mathcal{A} is entrywise positive, then

$$\beta_r^{\text{reg}}(\mathcal{A}) = \lim_{n \rightarrow \infty} \frac{1}{n} \beta_r(\mathcal{A}^{\otimes n})$$

Two special permutations

When $\alpha = id$ is the identity permutation,

$$Q_{\mathcal{A}}(id) = \text{Tr}(\mathcal{A}(I))^r$$

When $\alpha = (12 \cdots r)$,

$$Q_{\mathcal{A}}(12 \cdots r) = \text{Tr}(Choi(\mathcal{A})^r)$$

For $r = 2$ these are the only permutations.

Proposition

$$\beta_2^{\text{reg}}(\mathcal{A}) = 2 \log d - \log \max\{\text{Tr}(\mathcal{A}(I))^2, \text{Tr}(Choi(\mathcal{A})^2)\}$$

Special case: Entanglement-breaking

An E-B channel has the form

$$\mathcal{A}(\rho) = \sum_k \sigma_k \text{Tr}(X_k \rho)$$

where $\{\sigma_k\}$ are density matrices, and $\{X_k\}$ are POVM. Suppose in addition that for all m and all k_1, \dots, k_m ,

$$\text{Tr} \left(\prod_{i=1}^m \sigma_{k_i} \right) \geq 0$$

Proposition

For all E-B channels satisfying this condition, all integer $r \geq 2$,

$$\beta_2^{\text{reg}}(\mathcal{A}) = \frac{r \log d - \log \text{Tr}(\mathcal{A}(I))^r}{r - 1}$$

Recall

$$\mathcal{WH}(\rho) = \frac{1}{d-1} \left[\text{Tr} \rho I - \rho^T \right]$$

Can show that

$$\text{Tr} (Choi(\mathcal{WH}))^r \leq d$$

hence

$$Q_{\mathcal{WH}}(12 \cdots r) \leq Q_{\mathcal{WH}}(id)$$

So for $r = 2$ get maximal output entropy:

$$\overline{S}_2^{\text{reg}}(\mathcal{WH}) = \log d$$

Other values of r ??

Special case: qubit depolarizing

$$\Delta_\lambda(\rho) = \lambda\rho + \frac{1-\lambda}{2} \text{Tr } \rho I$$

Main result: maximum is achieved at either identity or cycle $(12 \cdots r)$. So

$$Q_{\Delta_\lambda}(\alpha) \leq \max\{Q_{\Delta_\lambda}(id), Q_{\Delta_\lambda}(12 \cdots r)\} \quad (1)$$

$$= \max\{2, \text{Tr}(Choi(\Delta_\lambda))^r\} \quad (2)$$

Proposition

For all integer $r \geq 2$, all $0 \leq \lambda \leq 1$,

$$\beta_r^{\text{reg}}(\Delta_\lambda) = \frac{1}{r-1} \min\{1, 2r - \log[(1+3\lambda)^r + 3(1-\lambda)^r]\}$$

Special case: depolarizing channel

Also have concentration of measure for interval of values of λ .
Recall condition for concentration: need

$$\sqrt{2d}\alpha(r) > \kappa(r)$$

where

$$\alpha(r) = \frac{Q_{\max}}{d^r}$$

and $\kappa(r)$ is growth rate of Lipschitz constant for
 $\text{Tr}(\Delta_\lambda)^{\otimes n}(|\psi\rangle\langle\psi|))^r$.

For qubit depolarizing get explicit bound

$$\kappa(r) \leq \lambda + \frac{1 - \lambda}{\sqrt{2}}$$

Proposition

For all integer $r \geq 2$, there are $0 < c_r < d_r < 1$ such that for all $\lambda \in [0, c_r] \cup [d_r, 1]$,

$$\overline{S}_r^{\text{reg}}(\Delta_\lambda) = \beta_r^{\text{reg}}(\Delta_\lambda)$$

Typical behavior also holds in this range.

Note: as $r \rightarrow \infty$, $c_r \rightarrow 1/3$, $d_r \rightarrow 1$.

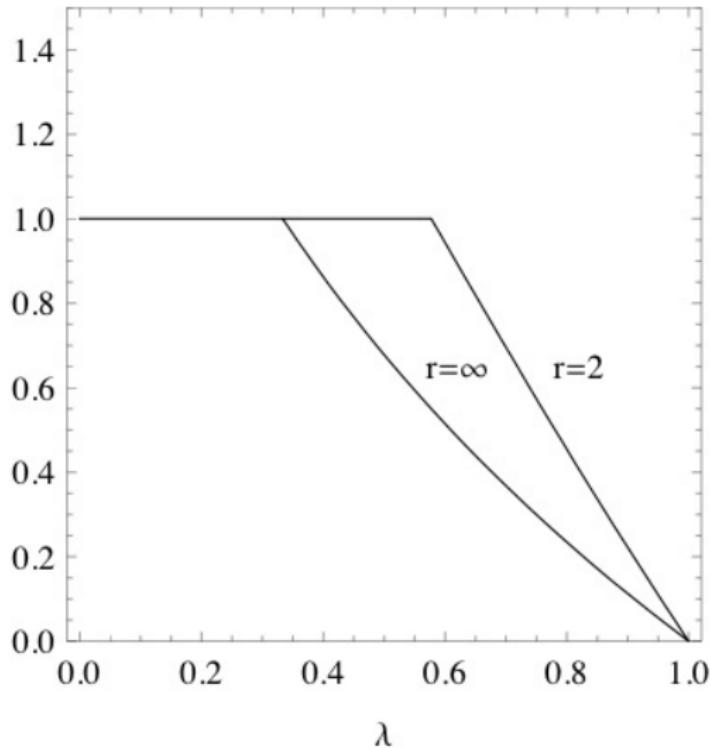


Figure: $\beta_2^{\text{reg}}(\Delta_\lambda)$ and $\beta_\infty^{\text{reg}}(\Delta_\lambda)$.

r	c_r	d_r
2	.577	.732
3	.5	.835
4	.458	.878
10	.381	.953
100	.338	.995

Table: Range parameters for qubit depolarizing

Conjecture that for all λ , for all r

$$\overline{S}_r^{\text{reg}}(\Delta_\lambda) = \beta_r^{\text{reg}}(\Delta_\lambda)$$

and this is empirical entropy for typical output state as $n \rightarrow \infty$.

Conjecture that same holds for all qubit channels, also depolarizing in higher dimensions.

Technical obstacles: compute Q_{\max} .

\mathcal{I} = identity map : $\mathcal{I}(\rho) = \rho$

\mathcal{T} = transpose map : $\mathcal{T}(\rho) = \rho^T$

\mathcal{P} = trace map : $\mathcal{P}(\rho) = \frac{\text{Tr}(\rho)}{d} I$

Test for separability of bipartite state: ρ_{12} is entangled if $(\mathcal{I} \otimes \mathcal{T})\rho_{12}$ is not positive semidefinite.

Define $\mathcal{A}_{d_1, d_2, d_3} = \mathcal{I}_{d_1} \otimes \mathcal{T}_{d_1} \otimes \mathcal{P}_{d_3}$ on tripartite space. So

$$\mathcal{A}_{d_1, d_2, d_3}(|\psi\rangle\langle\psi|) = (\mathcal{I}_{d_1} \otimes \mathcal{T}_{d_1})\rho_{12} \otimes \frac{1}{d_3} I$$

where ρ_{12} is the mixed state obtained by tracing over third factor. So with a random state $|\psi\rangle$, this is a random mixed state on the first two factors. Thus $\mathcal{A}_{d_1, d_2, d_3}(|\psi\rangle\langle\psi|)$ is the partial transpose of a random mixed state.

Also define $\pi = (12 \cdots r) \in Sym(r)$.

$$\mathbb{E} [\text{Tr } \mathcal{A}_{d_1, d_2, d_3} (|\psi\rangle\langle\psi|)^r] = \sum_{\alpha} d_1^{|\alpha\pi^{-1}|-r} d_2^{|\alpha\pi|-r} d_3^{|\alpha|-2r+1}$$

where $|\alpha|$ is number of conjugacy classes in α .

Now consider $d_1 = d_2 = d$ and $d_3 = d^s$, and $d \rightarrow \infty$. Fix $r = 2$, then

$$\begin{aligned} s < 2 &\Rightarrow \beta_2^{\text{reg}} = \log 4 \\ s > 2 &\Rightarrow \beta_2^{\text{reg}} = \log(2 + s) \end{aligned}$$

So transition point at $s = 2$. Conjecture this is the transition from a.s. PPT to a.s. non-PPT.

[Ref: recent work of Aubrun, Szarek and Ye]

PPT for depolarizing channel

Now consider a product of qubit depolarizing channels applied to a random input state:

$$\rho_{12} = (\Delta_\lambda^{\otimes n} \otimes \Delta_\lambda^{\otimes m})(|\psi\rangle\langle\psi|)$$

For $\lambda \leq 1/3$ we know that Δ_λ is entanglement-breaking, and hence ρ_{12} is always separable.

What happens for $\lambda > 1/3$? Is the state entangled a.s. for $\lambda > 1/3$?

Address this by looking at PPT behavior of ρ_{12} as $n, m \rightarrow \infty$. Take $n = nx$ and $m = n(1 - x)$ with $0 < x < 1$. Examine entropy as a function of x .

$$\beta_r(\lambda) = \frac{1}{1-r} \lim_{n \rightarrow \infty} \frac{1}{n} \log \mathbb{E} \text{Tr} (\Delta_\lambda^{\otimes nx} \otimes \mathcal{T} \Delta_\lambda^{\otimes n(1-x)})(|\psi\rangle\langle\psi|)^r$$

Entanglement of typical output state? PPT transition for
 $\mathcal{A}^{\otimes nx} \otimes (\mathcal{T} \circ \mathcal{A})^{\otimes n(1-x)}$

$$\max_{\alpha \in \text{Sym}(r)} Q_{\mathcal{A}}(\alpha)^x Q_{\mathcal{A}}(\gamma \alpha \gamma^{-1})^{1-x}$$

where γ is the permutation

$$\gamma : 1 \rightarrow r, 2 \rightarrow r-1, 3 \rightarrow r-2, \dots$$

e.g. Δ_{λ} is E-B for $\lambda \leq 1/3$. Is entanglement non-zero for typical output state for $\lambda > 1/3$?