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The Black Hole-Qubit Correspondence

Recently a striking correspondence has been discovered between
two seemingly unrelated fields.

1 Black hole solutions in String Theory (ST)

2 Multipartite entanglement in Quantum Information (QI)

The basic correspondence is between black hole entropy formulas of
extremal black hole solutions in string theory and formulas for pure
state entanglement measures of multipartite entangled systems
with both distinguishable and indistinguishable constituents.
Though the physical basis of the correspondence (if any) is still
unknown it has repeatedly proved to be useful for obtaining
interesting results on both sides. In this talk we emphasize the
QI theoretic side, with occasional references to the ST side.
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Motivation: Entanglement from homology and cohomology

Main idea: Wrapped membranes around homology cycles of
extra dimensions should give rise to qubits.

”To wrap or not to wrap that is the qubit” (M. J. Duff).

We would like to make this idea precise by obtaining simple
entangled systems from the cohomology of the extra dimensions.
Here we consider merely tori.

Wrapped brane configurations with different winding numbers are
known to give rise to charges of both electric and magnetic
type in our the 4D low energy world. Such winding configurations
account for the microstates of certain elementary black hole
solutions.

The shape and size of the extra dimensions is subject to quantum
fluctuations. These fluctuations can be described by scalar fields
called moduli. Here we show how we can construct and use pure
entangled states depending on both the charges and the moduli.
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Homology base

A

B

AA′
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The torus T 2 arising from a lattice of C

τ

1
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Complex structure and Kähler structure deformations
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One-qubit systems from deformed tori

Consider T 2 with its deformations labelled by

τ ≡ x − iy y > 0

The complex coordinate on T 2 is z = u + τv . The space of
deformations M has a Kähler metric

ds2
M = 2Gττdτdτ =

dx2 + dy 2

2y 2

Gττ = ∂τ∂τK =
1

4y 2
K = − log(2y).

Define
Ω0 ≡ dz = du + τdv ∈ H1,0(T 2,C)

Then by virtue of ∫
T 2

du ∧ dv = 1∫
T 2

Ω0 ∧ Ω0 = ie−K
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The volume form on T 2 is

ω = idz ∧ dz .

The Hodge star ∗ is acting as

∗dz = idz , ∗dz = −idz

In order to reinterpret one-forms on T 2 as qubits we use the
hermitian inner product

〈ξ|η〉 ≡
∫

T 2

ξ ∧ ∗η, ξ, η ∈ H1(T 2,C)

Define the one-form Ω as

Ω ≡ eK/2Ω0

then the correspondence

iΩ↔ |0〉, iΩ↔ |1〉

defines the orthonormal computational base.
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Remark: Notice that the symbols |0〉 and |1〉 would rather define
a family of basis states labelled by the complex deformation
parameter τ . Hence the notation |0, τ〉, |1, τ〉 would be more
appropriate.
Define the flat covariant derivative as

Dτ̂Ω ≡ (τ − τ)DτΩ ≡ (τ − τ)

(
∂τ +

1

2
∂τK

)
Ω = Ω

Dτ̂Ω ≡ (τ − τ)

(
∂τ −

1

2
∂τK

)
Ω = 0

Then
Dτ̂ ↔ σ+, Dτ̂ ↔ σ−, ∗ ↔ −σ3

Hence the covariant derivatives act as projective bit flip errors,
and the Hodge star as the negative of the parity check operator.
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In the case of wrapped branes as qubits the homology classes are
real hence Γ ∈ H1(T 2,R)

Γ = pα− qβ, α = du, β = dv .

One can express this in the Hodge diagonal basis as

Γ = −eK/2(pτ + q)iΩ + eK/2(pτ + q)iΩ.

According to our correspondence between one-forms and qubits we
can represent this as a state in the computational base satisfying
an extra reality condition

|Γ〉 = Γ0|0〉+ Γ1|1〉, Γ1 = −Γ0 = eK/2(pτ + q). (1)
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The state |Γ〉 is unnormalized with norm squared satisfying

||Γ||2 = 〈Γ|Γ〉 = 2eK |pτ + q|2 =
1

y
|pτ + q|2

It is a unitary and a symplectic i.e. SL(2,R) invariant at the same
time. The latter means that under the set of combined
transformations

τ 7→ aτ + b

cτ + d
,

(
−p
q

)
7→
(

d c
b a

)(
−p
q

)
(2)

||Γ||2 remains invariant.
Notice also that in matrix representation the state |Γ〉 can be given
the form(

Γ0

Γ1

)
=

1√
2y

(
τ −1
−τ 1

)(
−p
q

)
=

1√
2

(
i −1
i 1

)
1
√

y

(
y 0
−x 1

)(
−p
q

)
With new notational conventions our state can be given the
deceptively simple appearance

|Γ〉 = S|γ〉 = US |γ〉, |γ〉 = −p|0〉+ q|1〉
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T 2 × T 2 × T 2 and three qubits

Coordinates

za = ua + τ ava, τ a = xa − iya ya > 0, a = 1, 2, 3

Holomorphic three-form

Ω0 = dz1 ∧ dz2 ∧ dz3.

We have as usual∫
T 6

Ω0 ∧ Ω0 = i(8y 1y 2y 3) = ie−K

Gab = ∂a∂bK

is a Kähler metric on the manifold M' [SL(2,R)/SO(2)]×3 The
flat covariant derivatives are

DâΩ = (τ a − τ a)DaΩ = (τ a − τ a)

(
∂a +

1

2
∂aK

)
Ω
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T 2 × T 2 × T 2 and three qubits

Ω = eK/2dz1 ∧ dz2 ∧ dz3, Ω = eK/2dz1 ∧ dz2 ∧ dz3,

D1̂Ω = eK/2dz1 ∧ dz2 ∧ dz3, D
1̂
Ω = eK/2dz1 ∧ dz2 ∧ dz3,

D2̂Ω = eK/2dz1 ∧ dz2 ∧ dz3, D
2̂
Ω = eK/2dz1 ∧ dz2 ∧ dz3,

D3̂Ω = eK/2dz1 ∧ dz2 ∧ dz3, D
3̂
Ω = eK/2dz1 ∧ dz2 ∧ dz3

Now we regard the 8 complex dimensional untwisted primitive part
of the 20 dimensional space H3(T 6,C) ≡ H3,0⊕H2,1⊕H1,2⊕H0,3

equipped with the Hermitian inner product

〈ϕ|η〉 ≡
∫

T 6

ϕ ∧ ∗η

as a Hilbert space isomorphic to H ≡ (C2)×3 ' C8 of three qubits.
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T 2 × T 2 × T 2 and three qubits

We define the basis states of our computational base to be given
by the correspondence

−iΩ↔ |000〉 −iD1̂Ω↔ |001〉 −iD2̂Ω↔ |010〉 −iD3̂Ω↔ |100〉

−iΩ↔ |111〉 −iD
1̂
Ω↔ |110〉 −iD

2̂
Ω↔ |101〉 −iD

3̂
Ω↔ |011〉

(D1̂,D2̂,D3̂)↔ (I ⊗ I ⊗ σ+, I ⊗ σ+ ⊗ I , σ+ ⊗ I ⊗ I )

(D
1̂
,D

2̂
,D

3̂
)↔ (I ⊗ I ⊗ σ−, I ⊗ σ− ⊗ I , σ− ⊗ I ⊗ I )

∗ ↔ −σ3 ⊗ σ3 ⊗ σ3
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Wrapped three-branes on T 2 × T 2 × T 2

Now for a real three-form representing the cohomology class of a
wrapped D3 brane configuration we take

Γ = pIαI − qIβ
I ∈ H3(T 6,Z),

with summation on I = 0, 1, 2, 3 and

α0 = du1 ∧ du2 ∧ du3, β0 = −dv 1 ∧ dv 2 ∧ dv 3

α1 = dv 1 ∧ du2 ∧ du3, β1 = du1 ∧ dv 2 ∧ dv 3

with the remaining ones obtained via cyclic permutation. With the
choice of orientation∫

T 6

(du1 ∧ dv 1) ∧ (du2 ∧ dv 2) ∧ (du3 ∧ dv 3) = 1

we have ∫
T 6

αI ∧ βJ = δJI

.
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A charge and moduli dependent three-qubit state

Define

W = q0+q1τ
1+q2τ

2+q3τ
3+p1τ2τ3+p2τ1τ3+p3τ1τ2−p0τ1τ2τ3

Using the correspondence between three-forms and three-qubit
states we can write Γ↔ |Γ〉 where

|Γ〉 = Γ000|000〉+ Γ001|001〉+ · · ·+ Γ110|110〉+ Γ111|111〉,

where
Γ111 = −eK/2W (τ3, τ2, τ1) = Γ000,

Γ001 = −eK/2W (τ3, τ2, τ1) = Γ110

and the remaining amplitudes are given by cyclic permutation.
Let us put the 8 charges pI and qI with I = 0, 1, 2, 3 to a 2× 2× 2
array γkji k , j , i = 0, 1 as follows(

γ000 γ001 γ010 γ100

γ111 γ110 γ101 γ011

)
=

(
−p0 −p1 −p2 −p3

−q0 q1 q2 q3

)
Péter Lévay Entanglement from deformed tori



An alternative form

The three-qubit state |Γ〉 can alternatively be written in the
following form

|Γ〉 = S3 ⊗ S2 ⊗ S1|γ〉

|γ〉 = γ000|000〉+ γ001|001〉+ · · ·+ γ110|110〉+ γ111|111〉

and the matrix representative of the operator S3 ⊗ S2 ⊗ S1 is

1√
8y 3y 2y 1

(
τ3 −1
−τ3 1

)
⊗
(
τ2 −1
−τ2 1

)
⊗
(
τ1 −1
−τ1 1

)
One-half the norm 1

2 ||Γ||
2 is

eK (|W (τ3, τ3, τ1)|2+|W (τ3, τ2, τ1)|2+W (τ3, τ2, τ1)|2+|W (τ3, τ2, τ1)|2)

This quantity in the string theoretical context can be reinterpreted
as the charge and moduli dependent Black Hole Potential VBH .

Péter Lévay Entanglement from deformed tori



Fermionic entanglement and T 6

We choose analytic coordinates for the complex torus such that
the holomorphic one-forms are defined as

dza = dua + τ abdvb

where now τ ab, 0 ≤ a, b ≤ 3 is the period matrix of the torus
with the convention

τ ab = xab − iyab. (3)

For principally polarized Abelian verieties we have the additional
constraints

τ ab = τba, yab > 0.

We choose as usual Ω0 = dz1 ∧ dz2 ∧ dz3, and the orientation∫
T 6

du1 ∧ dv 1 ∧ du2 ∧ dv 2 ∧ du3 ∧ dv 3 = 1

.
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Fermionic entanglement and T 6

Now we exploit the full 20 dimensional space of H3(T 6,C). We
expand Γ ∈ H3(T 6,C) in the basis

α0 = du1 ∧ du2 ∧ du3, αab =
1

2
εaa′b′dua′ ∧ dub′ ∧ dvb

β0 = −dv 1 ∧ dv 2 ∧ dv 3, βab =
1

2
εba′b′dua ∧ dva′ ∧ dvb′

.

Now
Ω0 = α0 + τ abαab + τ ]abβ

ba − (Detτ)β0,

where ττ ] = Det(τ)1.
An element Γ of H2(T 6,C) can be expanded as

Γ = p0α0 + Pabαab − Qabβ
ab − q0β

0. (4)

We can rewrite this as

Γ =
∑

1≤A<B<C≤6

γABC f A ∧ f B ∧ f C
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Fermionic entanglement and T 6

Here

(f 1, f 2, f 3, f 4, f 5, f 6) = (du1, du2, du3, dv 1, dv 2, dv 3).

and γABC is a completely antisymmetric tensor of rank three with
20 independent components. Using

(1, 2, 3, 4, 5, 6)↔ (1, 2, 3, 1, 2, 3)

the identification between the components of γABC and the
charges is

p0 = γ123,

P11 P12 P13

P21 P22 P23

P31 P32 P33

 =

γ231 γ232 γ233

γ311 γ312 γ313

γ121 γ122 γ123

 ,

q0 = −γ123,

Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

 =

γ123 γ131 γ112

γ223 γ231 γ212

γ323 γ331 γ312

 .

Γ can also be regarded as an unnormalzed three fermion state with
six single particle states.
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Fermionic entanglement and T 6

Using new moduli dependent basis vectors

eA = f A′
SA′A, SA′A =

(
I I
τ τ

)
one can write

Γ =
1

6!
ΓA′B′C ′

(
−ieK/2eA′ ∧ eB′ ∧ eC ′

)
,

where
ΓA′B′C ′ = SA′ASB′BSC ′CγABC ,

and

S ≡ −ie−K/6S−1 = −ie−K/6(τ − τ)−1

(
−τ I
τ −I

)
.
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Fermionic entanglement and T 6

Notice also that the basis states

EA ∧ EB ∧ EC ≡ −ieK/2eA ∧ eB ∧ eC 1 ≤ A < B < C ≤ 6,

now form an orthonormal basis with respect to the usual Hermitian
inner product

〈ϕ|η〉 ≡
∫

T 6

ϕ ∧ ∗η, ϕ, η ∈ H3(T 6,C)

It is also important to realize that now we have the same matrix
S ∈ GL(6,C) acting on all indices of γABC .
This reflects the fact known from the theory of quantum
entanglement that the SLOCC group for a quantum system
consisting of indistinguishable subsystems is represented by the
same GL(6,C) matrix acting on each entry of a tensor representing
the set of amplitudes of the system.
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T 2 × T 2 × T 2 alias three qubits embedded in T 6 as three
fermions

How do we recover the case of three qubits? In order to see this
just notice that in the three qubit case we merely have γABC with
labels 123, 123, . . . , 123, 123. Moreover, the 3× 3 matrix τ is now
diagonal, hence the form of S is

S =
1

2
e−K/6



−τ1/y 1 0 0 1/y 1 0 0
0 −τ2/y 2 0 0 1/y 2 0
0 0 −τ3/y 3 0 0 1/y 3

τ1/y 1 0 0 −1/y 1 0 0
0 τ2/y 2 0 0 −1/y 2 0
0 0 τ3/y 3 0 0 −1/y 3


Let us use the correspondence 321↔ 000, 321↔ 001 etc. Looking
at the structure of the tensor product S ⊗ S ⊗ S and recalling that
e−K/2 =

√
8y 1y 2y 3 we quickly recover the structure of the

matrices S3 ⊗ S2 ⊗ S1 known from the three qubit case.
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Effective low energy 4D field content in the IIB picture

Geometry: M × K now : K = T 2 × T 2 × T 2 or T 6

1 gµν(x)↔ describing the 4D spacetime geometry of M

2 τ a(x), a = 1, . . . h2,1(K )↔ volume preserving fluctuations
of K

3 Gab(x)↔ metric on the space of deformations M of K .

4 F I
µν(x), I = 0, 1, . . . h2,1(K )↔ Maxwell-type fields

5 NIJ(τ(x))↔ coupling depending on the deformation fields

h2,1 ≡ dimH2,1(K ,C)

For T 2 × T 2 × T 2 and T 6 respectively we have

h2,1 = 3, h2,1 = 9
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The bosonic part of the 4D Effective Action

S =
1

8πGN

∫
d4x

√
|g |{−R

2
+ Gab∂µτ

a∂ντ
bgµν

+ (ImNIJF IFJ + ReNIJF I ∗FJ)}+ . . .

Our aim is to solve the Euler-Lagrange equations arising from this
action under special conditions.7→Black Hole Solutions
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Extremal Black Hole Solutions

The solutions we are searching for are

1 Static

2 Spherically symmetric

3 Asymptotically Minkowski

4 Extremal

5 Supersymmetric (BPS)

The solutions we find are of extremal Reissner-Nordström type.
Supersymmetric solitons.
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If we take the ansatz for the space-time metric

ds2 = gµνdxµdxν = −e2U(r)dt2 + e−2U(r)
(
dr 2 + r 2dΩ2

)
and introduce a spherically symmetric ansatz also for the
gauge-fields F I with electric and magnetic charges qI and pI and
employing the new variable

% ≡ 1

r

we get the action (T ≡
∫

dt is the elapsed time and dot denotes
d
d%)

S4D/T =
1

2GN

∫ ∞
0

d%

(
U̇2 + Gab τ̇

aτ̇
b

+ GN
1

2
||Γ||2

)
The equations derived from this effective action describe the
RADIAL dynamics of the space-time warp factor and the
fluctuating extra dimensions in the near horizon %→∞ limit.
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The attractor geometry
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Near horizon geometry

The near horizon geometry of the black hole turns out to be
AdS2 × S2

ds2 =

(
− 4r 2

GN ||Γ||2∞
dt2 +

GN ||Γ||2∞
4r 2

dr 2

)
+

GN

4
||Γ||2∞

(
dθ2 + sin2θdΦ2

)
The horizon area is

A = πGN ||Γ||2∞
hence the thermodynamic Bekenstein-Hawking entropy is

SBH =
A

4GN
=
π

4
||Γ||2∞
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Black Hole Entropy and the Three-Tangle. T 2 × T 2 × T 2

Solving the equations of motion yields the stabilized values τ a(∞)
in terms of the charges pI and qI , I = 0, 1, 2, 3 which gives the
three-qubit state on the event horizon

|Γ〉∞ = (−D)1/4
(
e iα|000〉∞ − e−iα|111〉∞

)
tanα =

√
−D

p0

2p1p2p3 + p0(p0q0 + p1q1 + p2q2 + p3q3)

D = (p0q0 + p1q1 + p2q2 + p3q3)2

− 4((p1q1)(p2q2) + (p2q2)(p3q3) + (p3q3)(p1q1))

+ 4p0q1q2q3 − 4qop1p2p3

Now the entropy is

SBH = π
√
−D(|γ〉)

Note that in the theory of three-qubit entanglement the quantity
τ3 = 4|D(|γ〉)| is a genuine entanglement measure of the charge
state |γ〉.
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Black Hole Entropy and the generalization of the
three-tangle for Three-Fermions on C6. T 6

Solving the equations of motion yields the stabilized values τab(∞)
in terms of the 20 charges p0, q0, Pab and Qab a, b = 1, 2, 3 which
gives the three-fermion state on the event horizon

Γ∞ = (−D)1/4
(

e iαE 1 ∧ E 2 ∧ E 3 − e−iαE 1 ∧ E 2 ∧ E 3
)

tanα =
√
−D p0

2DetP + p0(Tr(PQ) + p0q0)

D = (p0q0 + Tr(PQ))2 − 4Tr(P]Q]) + 4p0Det(Q)− 4q0Det(P)

Now the entropy is

SBH = π
√
−D(γ)
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Application: Classification of three fermions with six single
particle states

Let V = C6 and V ∗ its dual. Let {eA} with A = 1, . . . 6 an
orthonormal basis for V ∗. Then a three-fermion state is
represented by the three-form

γ =
1

3!
γABC eA ∧ eB ∧ eC ∈ ∧3V ∗

The SLOCC equivalence classes are defined as

γ′ ∼ γ iff γ′ = (S ⊗ S ⊗ S)γ, S ∈ GL(6,C)

How to obtain the different SLOCC orbits?

Idea: use D(γ) occurring in the entropy formula as a genuine
tripartite measure similar to the three-tangle in the
three-qubit case. Motivation : D is an SL(6,C) invariant.
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Classification of three fermions with six single particle
states

Notice that D(γ) can be written in the alternative form

D(γ) = −1

3
εABCDEFγABC γ̃DEF

where γ̃ is called the dual state of γ

γ̃ABC =
1

72
εKLMK ′L′M′

γAKLγMBCγK ′L′M′

It can be shown that γ̃ is a GL(6,C) covariant i.e.

γ̃ 7→ (S ⊗ S ⊗ S)γ̃

hence D(γ) is an SL(6,C) invariant as claimed.

For normalized states the analogue of the three-tangle is

0 ≤ T ≡ 4|D(γ)| ≤ 1
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Classification of three fermions with six single particle
states

P. Lévay and P. Vrana ,Phys. Rev. A78, 022329 (2008)
G. B. Gurevich, Trudy Sem. Vektor. Tenzor. Anal. 6, 28 (1948)
There are four disjoint SLOCC classes with representatives

γ =
1

2
(e1∧e2∧e3+e1∧e2∧e3+e1∧e2∧e3+e1∧e2∧e3), T (γ) 6= 0

γ =
1√
3

(e1∧e2∧e3+e1∧e2∧e3+e1∧e2∧e3), T (γ) = 0, γ̃ 6= 0

γ =
1√
2

(e1∧e2∧e3+e1∧e2∧e3), T (γ) = 0, γ̃ = 0, PA,B(γ) 6= 0

γ = e1 ∧ e2 ∧ e3, T (γ) = 0, γ̃ = 0, PA,B(γ) = 0

PA,B(γ) ≡
4∑

i=1

(−1)i−1γA1A2Bi
γB1B2B3B4B̂i
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Conclusions

1 We have shown how qubits are emerging from the geometry
of tori serving as extra dimensions in IIB compactifications.

2 By identifying the Hilbert space where these qubits live inside
the cohomology of tori we clarified the meaning of the phrase
”To wrap or not to wrap, that is the qubit” of Duff et.al.

3 Our results provide a framework for understanding the
attractor mechanism as a ”distillation” procedure.

4 The idea ”Qubits from extra dimensions” also turn out to
be very useful for generalizing our results to flux attractors.

5 For toroidal models one can also show that the natural arena
where qubits show up is the realm of fermionic entanglement
of indistinguishable constituents. The notion fermionic is
associated with the structure of p -forms related to p-branes.

6 The idea can also be generalized for Calabi-Yau
compactifications. In this case two and three partite systems
like a qubit and a qudit, and two qubits and a qudit arise.
d = h2,1 + 1.
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