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Description of Quantum Entanglement

I Quantum Entanglement = "... a correlation that is stronger then any classical
correlation" (J. Bell)

I System composed of L subsystems

I Problem 1: Construction of Entanglement measure which enables to distinguish
between entangled and not entangled states + ’ hierarchy’

I Problem 2: Local transformations

I Symplectic Geometry of Entanglement = An approach to these problems via tools
of Symplectic Geometry



Symplectic geometry and classical mechanics
I Dynamics
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I Hamilton function
H : M → R

I Flow (classical dynamics)
M 3 x 7→ φH

t (x) ∈ M

I Vector field
XH(x) =

d
dt
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Symplectic geometry and classical mechanics

I (M, ω) - symplectic manifold,

I dω = 0, ω - nondegenerate

I To find XH for a given H we need ω:

dH = ω(XH , ·)

I Dynamics (flow)
d
dt

x(t) = XH(x(t))

I The Poisson bracket of two functions F,G on M

{F,G} = ω(XF,XG) = XF(G)

I Homomorphism of Lie algebras

(F(M) , {·, ·})→ (χ(M) , [·, ·])



Symplectic group actions
I K – compact semisimple Lie group + symplectic action on M

K × M 3 (g, x) 7→ Φg(x) ∈ M, Φg1g2 = Φg1 (Φg2 (x)), Φ
∗
g ω = ω

I k – Lie algebra of K
I Let ξ ∈ k, then

I exp tξ - a one parameter subgroup of K
I Φexp tξ - a one parameter subgroup of symplectomorphisms of M

I Define a fundamental vector field ξ̂

ξ̂(x) =
d
dt
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Φexp tξ(x).

I Lie algebra of fundamental vector fields

[ξ̂1, ξ̂2] = [̂ξ1, ξ2]
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Symplectic group actions

I Lie derivative of ω in the ξ̂ direction

0 = Lξ̂ω = dω(ξ̂, ·) + iξ̂dω = dω(ξ̂, ·)

I Locally there exist Hamilton function µξ : M → R for ξ̂, i.e.

dµξ(·) = ω(ξ̂, ·)

I This function can be chosen to be linear in ξ, i.e.

µξ(x) = 〈µ(x), ξ〉, µ(x) ∈ k∗,

where 〈 , 〉 is the pairing between k and k∗.

I The maps µξ defines the moment/momentum map µ : M → k∗.



Coadjoint action. Symplectic structure on coadjoint orbits

I The group K acts in a natural way on its algebra k

AdgX = gXg−1
.

I The coadjoint action Ad∗g on k∗ is the dual one

〈Ad∗g α, X〉 = 〈α,Adg−1 X〉 = 〈α, g−1Xg〉,

I k∗ is Poisson manifold with the Lie-Poisson bracket {·, ·}k.
I Coadjoint orbits Ωα = {Ad∗g α, g ∈ K}, are symplectic leaves of {·, ·}k
I The symplectic form ω at β ∈ Ωα is

ω(X̃, Ỹ)(β) = 〈β, [X, Y]〉

I µ can be chosen equivariant with respect to the coadjoint action of K, i.e.

µ (Φg(x)) = Ad∗g µ(x),



Geometric Structure



Orbits of group actions and the momentum map
I Two symplectic structures connected by the momentum map:

I on M
I on coadjoint orbits

I An orbit Ox of K action on M is mapped onto a coadjoint orbit Ωµ(x) w k∗ via
momentum map µ.
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Orbits of group actions and the momentum map
I In general, however, it is not a diffeomorphism between Ox and Ωµ(x).

I There exist two interesting subgroups of K to consider

I stabilizer of the points on the orbit of the action on M (i.e. a subgroup which does not
move them), Stab(x)

I stabilizer of the elements of the coadjoint action on the corresponding coadjoint orbit,
Stab(µ(x))

I An orbit Ox on M is diffeomorphic to the corresponding coadjoint orbit Ωµ(x) iff
both stabilizers are equal.

I If this is the case the orbit on M is symplectic (since the corresponding coadjoint
orbit is), i.e. the symplectic form on M restricted to this orbit is nondegenerate
(Kostant-Sternberg).

I Otherwise the orbit Ox is not symplectic, the symplectic form is degenerate and
the dimension of the degeneracy can be a useful characterization of orbits.

D(x) = dim(Ox)− dim(Ωµ(x)) = dim(Stab(µ(x)))− dim(Stab(x))

I In general coadjoint orbits encode only partial information about orbits in M.



Quantum mechanics

I Pure states - points in the projective space P(H), where H - underlying Hilbert
space

I The projective space M = P(H) is a symplectic manifold

I Any vector from T[v]P(H) can be written as [Av], where A ∈ su(H) and

ω([Av], [Bv]) = −
i〈[A , B]v|v〉

2〈v|v〉

I The unitary group SU(H) acts on M = P(H) via symplectomorphisms.

I The momentum map for this action

µ
(
[v]
)
(X) = −

i
2
〈v|X|v〉
〈v|v〉

,



Quantum mechanics. Separable and entangled states

I Composite (L-partite) systems

Hc = H1 ⊗ · · · ⊗ HL

(for simplicity, let’s assume all Hi are the same, say H ' CN )
I Quantum state is separable (not entangled) iff it is simple tensor

v = v1 ⊗ v2 · · · ⊗ vL, vj ∈ Hj

otherwise it is entangled.

I Separability (entanglement) of states is invariant under the direct product (local
unitary operations)

K = SU(N)× · · · × SU(N)

I Using our machinery we can attack some interesting problems
I How the degeneracy of the symplectic form of an orbit is connected with entanglement

properties of the states on it?
I How to check that two states are locally unitary equivalent (i.e., they belong to the same

orbit of K)
I How to define quantum correlations if there is no tensor product structure

(indistinguishable particles)



Geometric structure - Quantum Entanglement



Two identical but distinguishable particles
I Hilbert space H = CN ⊗ CN with the natural action of K = SU(N)× SU(N),

g = SpanR{X1 ⊗ I, I ⊗ X2}, where X1, X2 ∈ su(N)

I Quantum state |Ψ〉

|Ψ〉 =
N∑

i,j=1

Cij|i〉 ⊗ |j〉, Cij ∈ C.

can be transformed by the K-action to the canonical (’Schmidt’) form

|u〉 =
∑

i

λi|i〉 ⊗ |i〉

I Let mi = the multiplicity of distinct λi, and m0 corresponds to λ0 = 0
I Dimension of degeneracy

D(|Ψ〉) = dim(O|Ψ〉)− dim(µ(O|Ψ〉)) =
r∑

n=1

m2
n − 1.

I Separable states form the only symplectic orbit D(|Ψ〉) = 0

I The degree of degeneracy is well defined entanglement measure



Maximally entangled state

I Maximally entangled state

|Ψ〉 =
1
√

N

N∑
i=1

|i〉 ⊗ |i〉.

I The restriction of symplectic form ω to O|Ψ〉 is zero and

dimO|Ψ〉 =
1
2

dimP(H)

I The orbit through the maximally entangled state is lagrangian (maximally non
symplectic)



Symplectic geometry of entanglement - many particles

I L-particles, H = CN ⊗ . . .⊗ CN , K = SU(N)×L

I The orbit of separable states is symplectic (the degeneracy of ω equals 0,
D(|Ψ〉) = 0). Moreover it is the only symplectic orbit

I It is an orbit of the Perelomov coherent states for the irreducible representation of
K on H (the orbit through the highest weight vector of the representation).

I The degeneracy is maximal for the maximally entangled states

I The degree of degeneracy is well defined entanglement measure



|GHZL〉 state

I The |GHZL〉 state of L-qubits

|GHZL〉 =
1
√

2
(|0〉⊗L + |1〉⊗L)

I For |GHZL〉 we have
ω|O|GHZL〉

= 0

I Dimension dimO|GHZL〉 = 2L + 1, when L > 2 and dimO|GHZ2〉 = 3

I When L = 2 or L = 3 then an orbit O|GHZL〉 is lagrangian

I When L > 3 the orbit O|GHZL〉 is isotropic (its dimension is too small to be
lagrangian)



Local Unitary Equivalence
I Two states are Locally Unitary equivalent (LU-equivalent) iff

|v1〉 = U1 ⊗ . . .⊗ UL|v2〉.

I Or equivalently
[v1] = [U1 ⊗ . . .⊗ ULv2].

I A pure state of a bipartite system

|Ψ〉 =
∑

ij

cij|ei〉 ⊗ |fj〉

can be transformed by local unitary transformations to the canonical (’Schmidt’)
form

|u〉 =
∑

i

λi|ai〉 ⊗ |bi〉

I Two states are locally unitary equivalent iff they have the same Schmidt
decomposition

I There is no direct analog of the Schmidt decomposition for systems with more
than 2 components.



Canonical forms
I In general an orbit Ox does not contain any distinguished point, but corresponding coadjoint

orbit Ωµ(x) has such a point
I Each orbit of the coadjoint action intersects the subspace t∗ in k∗ which is dual to the

maximal commutative subalgebra of k
I Let x ∈ M, then µ(x) ∈ k∗ and there is g ∈ K such that Ad∗g (µ(x)) ∈ t∗.

Let us call x′ = Φg(x) - canonical form of x
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Canonical form

Properties of canonical form

I It is given up to the action of G = Stab(µ(x′))/Stab(x′)

I Points on the same orbit have the same (modulo G) canonical forms

I For x, y on the same orbit µ(x′) = µ(y′) (x′, y′ are in the same fiber of µ)

I In other words, if |v〉 and |u〉 are LU-equivalent then their canonical forms belong
to the same fiber of the moment map, µ([v′]) = µ([u′]), but this can happen also
for LU-nonequivalent states

I The problem arises since there might be different orbits in M which are mapped by
µ on the same coadjoint orbit



LU-equivalence and fibers of momentum map

I but if the fiber of the moment map lies entirely in the orbit (i.e., the tangent space
to the fiber is a subspace of the tangent space of the orbit) then all states in the
fiber are LU-equivalent

I Fact: the tangent space to the fiber of µ over [v] is contained in the ω-orthogonal
complement of the tangent space at [v] to the orbit through [v]

I If the orbit is coisotropic (i.e., contains its ω - orthogonal complement) then the
states in the same fiber are LU-equivalent

I Example: The orbit through |GHZ3〉 is coisotropic - using this fact we find simple
solution of LU-equivalence problem for any three qubit states

I It turns out that even in two-partite case not all orbits are coisotropic although µ
fibers are contained in them.



Summary and other applications
The presented construction works for

I arbitrary number of subsystems
I arbitrary (finite) dimensions of subsystems
I ... but also for systems of identical (undistinguishable) particles (fermions, bosons)

where we have to consider only the antisymmetric or symmetric part of the full
Hilbert space, or when there is no tensor structure

I We have only to adjust appropriately our definition of ’locality’ of transformations

I Distinguishable particles
I spaceH = CN1 ⊗ CN2 ⊗ · · · ⊗ CNn

I group of local transformations K = SU(N1)× SU(N2) · · · × SU(Nn)

I Fermions (Schliemann et al. 2001)
I spaceH = CN ∧ CN ∧ · · · ∧ CN

I group of local transformations K = SU(N)

I Bosons (Eckert et al. 2002)
I spaceH = CN ∨ CN ∨ · · · ∨ CN

I group of local transformations K = SU(N)
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