
Chapitre 1

Géométrie affine

On travaille sur un corps K. Dans la plupart des cas, ce sera R mais on pourra par-
fois considérer d’autres corps comme C, Q ou les corps finis. Tous les espaces vectoriels
considérés seront sur le corps K et de dimension finie.

1.1 Sous-espaces affines d’un espace vectoriel

Avant de définir les espaces affines abstraits, revenons sur le cas plus concret des sous-
espaces affines d’un espace vectoriel. Soit E un espace vectoriel. Pour tout x dans E, la
translation de vecteur x est l’application τx : E → E définie par y 7→ x+ y. L’application
τx est bijective et τ−1

x = τ−x. Elle est linéaire uniquement dans le cas x = 0. On a de plus
τx ◦ τy = τx+y : l’ensemble des translations forme un groupe isomorphe à (E,+).

On dit qu’une partie F ⊂ E est un sous-espace affine (s.e.a.) s’il existe x ∈ E et un
sous-espace vectoriel F ⊂ E tels que

F = τx(F ) = x+ F = {x+ y : y ∈ F}.

Dans ce cas, on a nécessairement x ∈ F puisque 0 ∈ F . Si x1 et x2 sont dans F , alors
x1 − x2 ∈ F : on retrouve F comme l’ensemble des différences entre éléments de F . En
particulier, le sous-espace vectoriel F est unique. On dit que F est le sous-espace affine de
direction F passant par x. Bien sûr, x n’est pas uniquement déterminé par cette condition :
pour tout x′ dans F , on a F = x′ + F .

Un sous-espace vectoriel E ⊂ V est stable par combinaisons linéaires : pour des familles
finies (xi)i∈I dans E et (λi)i∈I dans K on a∑

i∈I
λixi ∈ E

(cela se démontre par récurrence sur |I| ; pour |I| = 2 c’est la définition de sous-espace
vectoriel). Les combinaisons linéaires permettent d’expliciter la notion d’espace vectoriel
engendré : si (Ei) est une famille quelconque de sous-espaces vectoriels de V , leur intersec-
tion

⋂
Ei est aussi un sous-espace vectoriel. On peut donc définir le sous-espace vectoriel

engendré par une partie A ⊂ V , noté Vect(A), comme l’intersection de la famille de tous
les sous-espaces vectoriels contenant A. On peut aussi l’écrire comme

Vect(A) =

{∑
i∈I

λixi : I fini , λi ∈ K, xi ∈ A

}
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puisque le membre de droite forme un sous-espace vectoriel qui est inclus dans tout sous-
espace vectoriel contenant A.

De la même manière, on peut définir le sous-espace affine engendré par une partie A ⊂
V . On pourrait rester dans le cadre "concret" des sous-espaces affines d’un espace vectoriel,
mais pour des applications ultérieures il est utile de disposer d’une notion abstraite d’espace
affine.

1.2 Espaces affines abstraits

Dans l’exemple d’un sous-espace affine F = x + F ⊂ E du paragraphe précédent, les
points (les éléments du sous-espace affine F) et les vecteurs (les éléments du sous-espace
vectoriel F ) sont tous deux inclus dans E. Dans la définition d’un espace affine abstrait,
ce n’est pas le cas ; il n’est pas possible de définir 2M où M + N pour des points M,N
de F .

[faire un dessin]
Rappelons le vocabulaire des actions de groupes. Une action d’un groupe G (d’élément

neutre e) sur un ensemble X est la donnée d’une fonction µ : G × X dans X qui vérifie
les axiomes µ(e, x) = x et µ(g, µ(h, x)) = µ(gh, x) pour tous g, h dans G et x ∈ X. Il est
habituel d’écrire g · x plutôt que µ(g, x), voire x+ g lorsque le groupe G est abélien.

On dit qu’une action est simplement transitive si pour tous x, y dans X, il existe un
unique g ∈ G tel que g · x = y. Autrement dit, pour tout x dans X, l’application g 7→ g · x
est une bijection de G sur X.

Définition. On appelle espace affine la donnée d’un ensemble E non vide et d’une action
simplement transitive de (E,+) sur E , où E est un espace vectoriel. On dit que E est la
direction de E . On appelle dimension de E la dimension de E. On appelle droite affine un
espace affine de dimension 1, plan affine un espace affine de dimension 2.

Dans ce contexte, le éléments de E sont appelés les points et sont habituellement notés
par des lettres majuscules A,B,C,M, . . . . Les éléments de E sont appelées les vecteurs et
habituellement notés par des symboles comme

−→
0 , −→u . L’action est notée additivement :

A+−→u est un point.

Exemple. L’action de (V,+) sur V par translation µ(x, y) = x+y est simplement transitive
(comme pour tout groupe) : tout espace vectoriel peut donc être vu comme un espace affine.

Étant donnés deux points A et B de E , on note
−−→
AB l’unique élément de E tel que

A+
−−→
AB = B. L’axiome d’action de groupe donne immédiatement la relation de Chasles

−−→
AB +

−−→
BC =

−→
AC.

On a également
−→
AA =

−→
0 et

−−→
AB = −

−−→
BA.

Un espace affine est un espace vectoriel qui a oublié son origine. On a vu que tout
espace vectoriel peut naturellement être vu comme un espace affine. Réciproquement, si E
est un espace affine d’espace directeur E, tout choix d’un point O ∈ E induit une bijection
E → E

M →
−−→
OM

On peut via cette bijection munir E d’une structure d’espace vectoriel (le «vectorialisé en
O»), dans lequel le zéro est O, mais ce choix n’est pas canonique. Dans les preuves, on
commence souvent par choisir une origine O pour remplacer tous les points M par les
vecteurs

−−→
OM .
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On appelle sous-espace affine de E l’orbite d’un sous-espace vectoriel de E, c’est à dire
un sous-ensemble de la forme

F = {M +−→u : −→u ∈ F}

où M ∈ E et F un sous-espace vectoriel de E. On a alors

F = {
−−→
AB : A,B ∈ F}

et même pour tout choix de O ∈ F

F = {
−−→
OM : M ∈ F}.

En particulier, le sous-espace vectoriel F est unique, on l’appelle la direction de F . On
dit que deux sous-espaces affines sont parallèles (symbole �) s’ils ont même direction (en
particulier, cette définition impose qu’ils ont même dimension : une droite ne peut pas être
parallèle à un plan). Dans le cas d’un espace vectoriel vu comme espace affine, on retrouve
la définition précédente. On dira aussi qu’un sous-espace affine E1 (de direction E1) est
faiblement parallèle à un sous-espace affine E2 (de direction E2) si E1 ⊂ E2.

Exercice. Soient A, B, C, D quatre points d’un espace affine. Vérifier que l’on a
−−→
AB =

−−→
DC

si et seulement si
−−→
AD =

−−→
BC. Dans ce cas, on dit que ABCD est un parallélogramme.

Exercice. Dans un espace affine, montrer que deux hyperplans affines disjoints sont paral-
lèles.

Exercice. Soient E1 = A1 + E1 et E2 = A2 + E2 deux sous-espaces affines. Montrer qu’ils
ont un point en commun si et seulement si

−−−→
A1A2 ∈ E1 + E2. Montrer qu’ils sont égaux si

et seulement si E1 = E2 et
−−−→
A1A2 ∈ E1.

Exercice. Soit E un plan affine sur le corps {0, 1}. Quel est le cardinal de E ? Combien
contient-il de droites affines ? Faire un dessin. Quelles droites sont parallèles ?

1.3 Barycentres

Proposition. Soit E un espace affine. Soient A1, . . . , Am des points de E et λ1, . . . , λm

dans K tels que s = λ1 + · · ·+ λm ̸= 0. Il existe un unique point B de E tel que

m∑
i=1

λi
−−→
BAi =

−→
0 . (1.1)

Ce point B est appelé barycentre du système pondéré ((A1, λ1), . . . , (Am, λm)) et noté

B =

(
A1 . . . Am

λ1 . . . λm

)
ou parfois bar((A1, λ1), . . . , (Am, λm)).

Exercice. Montrer que si la fonction de E dans E donnée par B 7→
∑m

i=1 λi
−−→
BAi est bijective

si s ̸= 0 et constante si s = 0.

Par exemple, étant donnés deux points A et B de E , on appelle milieu de A,B le
barycentre de (A, 1), (B, 1). C’est le point M défini par la relation

−−→
MA +

−−→
MB =

−→
0 , où

encore
−−→
MA = −

−−→
MB.
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Démonstration. Fixons un point O ∈ E . Pour tout B ∈ E , on a

m∑
i=1

λi
−−→
BAi =

m∑
i=1

λi(
−−→
BO +

−−→
OAi) = s

−−→
BO +

m∑
i=1

λi
−−→
OAi.

La condition (1.1) est donc satisfaite si et seulement si

−−→
OB =

1

s

m∑
i=1

λi
−−→
OAi,

ce qui est le cas pour un unique B ∈ E .

Remarquons que si A1, . . . , Am appartiennent à un sous-espace affine de E , c’est aussi
le cas de leur barycentre.

Par exemple, étant donné deux points A et B de E , on appelle milieu du segment AB

le barycentre de (A, 1), (B, 1). C’est le point M défini par la relation
−−→
MA+

−−→
MB =

−→
0 .

Quand tous les poids sont égaux 1, on parle d’isobarycentre. Il faut faire attention quand
on travaille avec des corps de caractéristique non nulle : par exemple, en caractéristique 2,
un segment n’a pas de milieu...

On peut vérifier les propriétés suivantes des barycentres.
— Pour tout α ̸= 0 (

A1 A2 . . . An

λ1 λ2 . . . λn

)
=

(
A1 A2 . . . An

αλ1 αλ2 . . . αλn

)
On peut ainsi se ramener au cas λ1 + · · ·+ λn = 1.

— Pour toute permutation σ ∈ Sn(
A1 A2 . . . An

λ1 λ2 . . . λn

)
=

(
Aσ(1) Aσ(2) . . . Aσ(n)

λσ(1) λσ(2) . . . λσ(n)

)
— On peut retirer les points de poids nuls(

A1 . . . An−1 An

λ1 . . . λn−1 0

)
=

(
A1 . . . An−1

λ1 . . . λn−1

)
— On peut regrouper les points identiques(

A1 . . . An B B
λ1 . . . λn µ ν

)
=

(
A1 . . . An B
λ1 . . . λn µ+ ν

)
— On a la propriété d’associativité : si m < n et si λ1+· · ·+λm ̸= 0 et λ1+· · ·+λn ̸= 0,

alors (
A1 . . . An

λ1 . . . λn

)
=

(
H Am+1 . . . An

λ1 + · · ·+ λm λm+1 . . . λn

)
où H =

(
A1 . . . Am

λ1 . . . λm

)
.

Dans le cas d’un sous-espace affine d’un espace vectoriel, la notion de barycentre peut
s’écrire à l’aide de la structure vectorielle : si λ1 + · · ·+ λn = 1, alors(

x1 . . . xn
λ1 . . . λn

)
=

n∑
i=1

λixi
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1.4 Indépendance et engendrement affines

Les notions de familles libres et génératrices sont fondamentales en algèbre linéaire.
Nous allons développer l’analogue affine de ces notions.

Proposition. Soit E un espace affine et (Fi) une famille de sous-espaces affines telle que⋂
Fi ̸= ∅. Alors

⋂
Fi est un sous-espace affine de E.

La preuve montrera aussi que l’intersection des directions est la direction de l’intersec-
tion.

Démonstration. Soit O ∈
⋂
Fi. Soit E la direction de E . Pour tout i, on peut trouver un

sous-espace vectoriel Ei ⊂ E tel que Ei = O + Ei. On a donc⋂
Ei =

⋂
(O + Ei) = O +

⋂
Ei

qui est bien un sous-espace affine de E .

On peut donc définir le sous-espace affine aff(A) engendré par une partie non vide A ⊂
E comme l’intersection de la famille de tous les sous-espaces affines de E qui contiennent
A (cette famille est non vide car elle contient E ; l’intersection est non vide car A ≠ ∅).

Proposition. Si A est une partie non vide de E, l’ensemble aff(A) est l’ensemble de tous
les barycentres d’éléments de A.

Démonstration. Notons B l’ensemble des barycentres d’éléments de A. On vectorialise :
soit O ∈ A. Un sous-espace affine contenant O est de la forme O + F où F est un sous-
espace vectoriel de E. Puisque A ⊂ O+ F si et seulement si

−→
OA ∈ f pour tout A ∈ A, on

en déduit donc que

aff(A) = O +Vect{
−→
OA : A ∈ A}

= {O +
n∑

i=1

λi
−−→
OAi : n ∈ N, (λi) ∈ K, Ai ∈ A}

Un élément M de aff(A) s’écrit M = O +
∑

λi
−−→
OAi. On a donc

−−→
OM =

∑
λi
−−→
OAi =

(
∑

λi)
−−→
OM +

∑
λi
−−−→
MAi. Ainsi, (1−

∑
λi)

−−→
MO +

∑
λi
−−−→
MAi =

−→
0 , donc

M =

(
O A1 . . . An

1−
∑

λi λ1 . . . λn

)
∈ B. (1.2)

On a montré que aff(A) ⊂ B et l’inclusion réciproque découle du fait qu’un sous-espace
affine est stable par barycentre.

Fin cours # 1 du 16 janvier
Soient A1, . . . , Ap des points de E . On dit que les points A1, . . . , Ap sont affinement

indépendants si les vecteurs
−−−→
A1A2,

−−−→
A1A3, . . . ,

−−−→
A1Ap sont linéairement indépendants ; quand

ce n’est pas le cas, on dit que les points A1, . . . , Ap sont affinement liés.

Proposition. Soient O,A1, . . . , Ap des points de E. Les points A1, . . . , Ap sont affinement
liés si et seulement si il existe des scalaires λ1, . . . , λp non tous nuls tels que λ1+· · ·+λp = 0

et λ1
−−→
OA1 + · · ·+ λp

−−→
OAp =

−→
0 .

Démonstration. Il suffit de remarquer, en écrivant
−−−→
A1Ai =

−−→
OAi −

−−→
OA1, que la relation

λ2
−−−→
A1A2+· · ·+λp

−−−→
A1A2 =

−→
0 équivaut à −(λ2+· · ·+λp)

−−→
OA1+λ2

−−→
OA2+· · ·+λp

−−→
OAp =

−→
0 .
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Cette proposition montre que la définition d’indépendance affine ne dépend pas de
l’ordre des points. Deux points sont affinement indépendants si et seulement si ils sont
distincts (on note (AB) la droite engendrée par deux points A ̸= B) ; trois points sont affi-
nement indépendants si et seulement si ils sont non alignés ; quatre points sont affinement
indépendants si et seulement si ils sont non coplanaires, etc.

On dit qu’une famille de points (A1, . . . , Ap) est une base affine de E si c’est une famille
affinement indépendante et affinement génératrice (au sens où E = aff(A1, . . . , Ap)). Cela
équivaut à dire que les vecteurs

−−−→
A1A2,

−−−→
A1A3 . . . ,

−−−→
A1Ap forment une base de l’espace vectoriel

E. Si (A1, . . . , Ap) est une base affine de E , alors nécessairement dim E = p− 1. Tout point
M ∈ E s’écrit comme barycentre

M =

(
A1 . . . Ap

λ1 . . . λp

)
et cette écriture est unique si on impose λ1 + · · ·+λp = 1. On dit que (λ1, . . . , λp) sont les
coordonnées barycentriques de M dans la base affine (A1, . . . , Ap).

Il existe une autre manière de paramétrer les points d’un espace affine. On appelle
repère affine de E la donnée d’un point O ∈ E et d’une base (−→e1 , . . . ,−→en) de E. On obtient
alors une bijection de Kn dans E donnée par

(α1, . . . , αn) 7→ O + α1
−→e1 + · · ·+ αn

−→en

Exercice. (K = R). Soient ABC 3 points non alignés du plan affine. Les trois droites (AB),
(AC) et (BC) délimitent 7 régions du plan. Connaissant les coordonnées barycentriques
d’un point dans la base affine (A,B,C), comment déterminer à quelle région il appartient ?

Exercice. Soient A,B,C trois points non alignés du plan affine. Définir les médianes du
triangle ABC et montrer qu’elles s’intersectent en un unique point.

Exercice. Soient A,B,C,D quatre points non coplanaires d’un espace affine de dimension 3.
On appelle bimédiane du tétraèdre ABCD les droites passant par les milieux de deux arêtes
disjointes du tétraèdre. Montrer que les trois bimédianes s’intersectent en un unique point.

Exercice difficile. Soit un ensemble fini de points du plan affine R2 ayant la propriété
suivante : toute droite qui contient deux des points en contient au moins trois. Montrer
que tous les points sont alignés. Donner un exemple de corps pour lequel l’énoncé analogue
est faux.

1.5 Convexité

Dans cette section, on suppose K = R. On va utiliser de manière cruciale les notions
d’ordre et de positivité. Si A et B sont deux points d’un espace affine réel. Ils définissent
un segment

[AB] =

{(
A B
s t

)
: s, t ⩾ 0, s+ t > 0

}
=

{(
A B
λ 1− λ

)
: λ ∈ [0, 1]

}
.

On dit qu’une partie C ⊂ E est convexe si on a [AB] ⊂ C pour tous A et B dans C.
Il est élémentaire de voir que l’intersection d’une famille quelconque de parties convexes

est convexe. On peut donc définir l’enveloppe convexe d’une partie A d’un espace affine
réel, notée conv(A), comme l’intersection de toutes les parties convexes contenant A. On
a la caractérisation équivalente suivante de l’enveloppe convexe comme l’ensemble des
barycentres à poids positifs d’éléments de A (on parle parfois de combinaisons convexes).
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Proposition. Si A est une partie d’un espace affine réel, alors

conv(A) =

{(
A1 . . . Am

λ1 . . . λm

)
: m ∈ N∗, Ai ∈ A, λi ⩾ 0, λ1 + · · ·+ λm = 1

}
.

Démonstration. Soit B le membre de droite dans l’équation précédente. Une partie convexe
est stable par barycentres à poids positif (cela se démontre par récurrence sur le nombre
de points en utilisant la propriété d’associativité des barycentres). On en déduit que toute
partie convexe contenant A contient B, d’où l’inclusion conv(A) ⊃ B.

Par ailleurs, il découle aussi de la propriété d’associativité du barycentre que B est
convexe, et donc que conv(A) ⊂ B.

A priori, la description précédente nécessite de considérer des combinaisons convexes
de longueur arbitrairement grande. Le résultat suivant permet de préciser ce point.

Théorème (Carathéodory). Soit A une partie d’un espace affine de dimension n. Alors

conv(A) =

{(
A1 . . . An+1

λ1 . . . λn+1

)
: Ai ∈ A, λi ⩾ 0, λ1 + · · ·+ λn+1 = 1

}
.

Démonstration. Soit A ∈ conv(A). Soit p ∈ N minimal tel que A s’écrive

A =

(
A1 . . . Ap

λ1 . . . λp

)
avec Ai ∈ A, λi ⩾ 0 et

∑
λi = 1. En fixant une origine O ∈ A, on a donc

−→
OA =

p∑
i=1

λi
−−→
OAi

Supposons p > n+ 1. Alors les points A1, . . . , Ap sont affinement liés, et donc il existe des
scalaires non tous nuls (µi) vérifiant µ1 + · · ·+ µp = 0 et µ1

−−→
OA1 + · · ·+ µp

−−→
OAp =

−→
0 . On

a donc, pour tout t ∈ R,

A =

(
A1 . . . Ap

λ1 + tµ1 . . . λp + tµp

)
Soit t > 0 minimal tel que l’un des nombres λi + tµi soit nul (un tel t existe bien : les
hypothèses sur (µi) impliquent qu’au moins l’un d’entre eux est strictement négatif). Pour
ce choix de t, les scalaires λi + tµi sont ⩾ 0 et l’un d’entre eux est nul, ce qui permet
d’écrire A comme barycentre de longueur < p, contredisant la minimalité de p.

Exercice. Soit A une partie compacte de l’espace affine Rn. Montrer que conv(A) est
compact.

Exercice. (Théorème de Radon) Dans un espace affine réel de dimension n, on considère
une partie A de cardinal n + 2. Montrer qu’il existe une partition A = B ∪ C telle que
conv(B) ∩ conv(C) ̸= ∅.
Exercice difficile. (Théorème de Helly) Soit (Ci)1⩽i⩽n une famille de parties convexes d’un
espace affine réel de dimension d, avec n ⩾ d + 1. On suppose que toute sous-famille de
cardinal d+1 a une intersection non vide. Montrer que

⋂
1⩽i⩽nCi est non vide. Indication :

Montrer le résultat par récurrence sur n en appliquant le théorème de Radon.
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1.6 Applications affines

Soient E et F deux espaces affines de directions respectives E et F . On dit qu’une
application f : E → F est affine si il existe une application linéaire ϕ : E → F telle que,
pour tous points M , N de E on ait

ϕ(
−−→
MN) =

−−−−−−−→
f(M)f(N).

De manière équivalente, pour tous M ∈ E et −→u ∈ E, on a

f(M +−→u ) = f(M) + ϕ(−→u ).

Si f est affine, l’application linéaire ϕ vérifiant cette condition est unique et appelée
application linéaire associée à f . Elle est parfois notée

−→
f .

Il est parfois utile, quand il n’y a pas d’ambiguïté, de noter M ′ l’image d’un point M
par un application affine.

Exemple. Si −→u ∈ E, la translation de vecteur −→u est l’application affine M 7→ M ′ définie
M ′ = M + −→u ou encore

−−−→
MM ′ = −→u . Les translations sont les applications affines sont la

partie linéaire est l’identité.

Exemple. Soit O un point de E et λ ∈ K. On appelle homothétie de centre O et de rapport
λ l’application affine M 7→ M ′ définie par la relation

−−−→
OM ′ = λ

−−→
OM . Quand λ = −1, on

parle plutôt de symétrie centrale.

Soit f : E → F une application affine et
−→
f l’application linéaire associée. Pour tout

sous-espace affine E1 ⊂ E de direction E1, l’image f(E1) est un sous-espace affine de F de
direction

−→
f (E1). On peut caractériser les applications affines comme celles préservant les

barycentres.

Théorème. Soient f : E → F une application entre espaces affines. Les propriétés sui-
vantes sont équivalentes :

1. L’application f est affine.

2. Pour A1, . . . , An dans E et λ1, . . . , λn dans K tels que λ1 + · · ·+ λn ̸= 0

si M =

(
A1 . . . An

λ1 . . . λn

)
alors f(M) =

(
f(A1) . . . f(An)
λ1 . . . λn

)
.

Fin cours # 2 du 23 janvier

Démonstration. On note M ′ l’image par f d’un point M . Supposons f affine. Si on suppose
que

n∑
i=1

λi
−−−→
MAi =

−→
0

alors par linéarité de l’application linéaire associée à f , on a

n∑
i=1

λi

−−−→
M ′A′

i =
−→
0

d’où 1 =⇒ 2.
Pour la réciproque, soit M 7→ M ′ une application qui préserve les barycentres. Il faut

montrer que l’application
−−→
MN 7→

−−−→
M ′N ′ est bien définie et linéaire. Fixons un repère
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affine (O,−→e1 , . . . ,−→en) de E . Posons Ai = O + −→ei . Un point quelconque M ∈ E s’écrit
M = O + λ1

−→e1 + · · ·+ λn
−→en. On a donc

−−→
OM =

n∑
i=1

λi
−−→
OAi

en on déduit (cette équation pouvant se réécrire comme un barycentre, cf (1.2)) que

−−−→
O′M ′ =

n∑
i=1

λi

−−→
O′A′

i.

Soit N = O + µ1
−→e1 + · · ·+ µn

−→en un autre point. On a donc

−−→
MN =

−−→
ON −

−−→
OM =

n∑
i=1

(µi − λi)
−→ei

et
−−−→
M ′N ′ =

−−−→
O′N ′ −

−−−→
O′M ′ =

n∑
i=1

(µi − λi)
−−−→
AiA

′
i.

Il s’ensuit que l’application
−−→
MN 7→

−−−→
M ′N ′ est bien définie et linéaire (c’est l’unique appli-

cation linéaire envoyant −→ei sur
−−−→
AiA

′
i), d’où le résultat.

La proposition suivante est très facile.

Proposition. Soient E1 et E2 deux espaces affines. On note E2 la direction de E2.
1. Soient (O,−→e1 , . . . ,−→en) un repère affine de E1, P un point de E2 et et

−→
f1 , . . . ,

−→
fn des

vecteurs de E2. Il existe une unique application affine de E1 dans E2 qui envoie O

sur P et telle que l’application linéaire associée envoie −→ei sur
−→
fi .

2. Soient A1, . . . , Ap une base affine de E1 et B1 . . . , Bp des points de E2. Il existe une
unique application affine de E1 dans E2 qui envoie Ai sur Bi.

Exercice. Montrer qu’une application affine possède un unique point fixe si et seulement
si 1 n’est pas valeur propre de l’application linéaire associée.

Une application affine préserve l’alignement ; la réciproquement est partiellement vraie
et connue sous le nom de théorème fondamental de la géométrie affine : une bijection
d’un espace affine réel de dimension ⩾ 2 qui préserve l’alignement est affine. Pour se
convaincre de la nécessité des hypothèses, on remarquera que toute fonction de R dans R
préserve l’alignement, et que toute fonction entre espace affines sur le corps {0, 1} préserve
l’alignement.

Problème. (Théorème «fondamental» de la géométrie affine) Soit E le plan affine sur réel
et f : E → E une bijection qui préserve l’alignement (c’est-à dire que si A, B, C sont trois
points alignés, leurs images f(A), f(B), f(C) sont alignées). On veut montrer que f est
affine.

1. Montrer que l’image d’une droite est une droite ; que les images de deux droites
parallèles sont deux droites parallèles ; que l’image d’un parallélogramme est un
parallélogramme.
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2. Soit M un point et −→u ̸= −→
0 un vecteur. On définit −→v par la relation f(M +−→u ) =

f(M) + −→v . Montrer que l’on peut définir une fonction λ : R → R par la formule
f(M + t−→u ) = f(M) + λ(t)−→v . Montrer que pour tous réels s, t on a λ(s + t) =
λ(s) + λ(t) et λ(st) = λ(s)λ(t) (autrement dit, λ : R → R est un automorphisme
de corps). En déduire que λ = idR, puis que f est affine.

3. Donner un exemple de bijection du plan affine complexe C2 qui préserve l’alignement
mais qui n’est pas affine.

1.7 Le groupe affine

Rappelons que si E est un espace vectoriel, on désigne par GL(E) le groupe des appli-
cations linéaires bijectives de E dans E. Si E est un espace affine de direction E, on note
GA(E) l’ensemble des applications affines bijectives de E dans E .

Proposition. La composition de deux applications affines est une application affine, et on
a
−−−−→
f2 ◦ f1 =

−→
f2◦

−→
f1. L’ensemble GA(E) est un groupe pour la loi de composition. L’application

f 7→
−→
f est un morphisme de groupes de GA(E) dans GL(E).

Démonstration. Soient f1 et f2 de E dans E deux applications affines de parties linéaires
respectives

−→
f1 et

−→
f2 . Alors pour A, B dans E
−−−−−−−−−−−−−−→
f2(f1(A))f2(f1(B)) =

−→
f2(

−−−−−−−−→
f1(A)f1(B)) =

−→
f2(

−→
f1(

−−→
AB))

donc f2 ◦ f1 est affine, et l’application linéaire associée est
−→
f2 ◦

−→
f1 .

Soit f une application affine. Fixons O ∈ E . Alors f est l’application M 7→ f(O) +
−→
f (

−−→
OM) et donc f est bijective si et seulement si

−→
f est bijective ; dans ce cas l’application

réciproque, donnée par N 7→ O + (
−→
f )−1(

−−−−→
f(O)N) est affine.

On dit qu’une transformation affine f ∈ GA(E) est une dilatation (on dit parfois : une
homothétie-translation) si son application linéaire associée est λId pour λ ∈ K∗ (on dit que
λ est le rapport de f). L’image d’un sous-espace affine par une dilatation est un sous-espace
affine parallèle.

Proposition. 1. L’ensemble des dilations forme un sous-groupe de GA(E).
2. Les dilatations de rapport 1 sont les translations.
3. Les dilatations de rapport λ ̸= 1 sont les homothéties de rapport λ ; leur seul point

fixe est leur centre.

Démonstration. Le seul point qui n’est pas évident est le dernier. Soit f une dilatation de
rapport λ ̸= 1. Fixons O ∈ E . Un point M est fixé par f si et seulement si

M = f(M) = f(O) + λ
−−→
OM ⇐⇒

−−−−−→
f(O)M = λ

−−→
OM ⇐⇒

−−−−→
Of(O) = (1− λ)

−−→
OM

ce qui est le cas si et seulement si M = O+ 1
1−λ

−−−−→
Of(O). Dans ce cas f est l’homothétie de

centre M et de rapport λ, notée hM,λ.

Exercice. Déterminer la table du multiplication du groupe des dilatations en calculant
τx ◦ τy, τx ◦ hM,λ, hM,λ ◦ τx, hM,λ ◦ hN,µ.
Exercice. Déterminer le centre du groupe GA(E).
Exercice. Montrer que l’application de E × GL(E) dans GA(E) donnée par (x, ϕ) 7→ τx ◦ ϕ
est une bijection. Est-ce que les groupes E × GL(E) et GA(E) sont isomorphes ?
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1.8 Les théorèmes classiques de géométrie affine

Si A, B, C sont trois points alignés de E tels que A ̸= C, il existe un unique λ ∈ K tel
que

−−→
AB = λ

−→
AC. On définit alors

AB

AC
= λ.

Plus généralement, si A,B,C,D sont des points tels que A ̸= C et
−−→
BD = λ

−→
AC, on pose

BD
AC

= λ.

Théorème (Thalès). Dans un espace affine, soit ABB′ des points affinement indépen-
dants, et C,C ′ distincts des précédents tels que A,B,C et A,B′, C ′ sont alignés. Alors

AB

AC
=

AB′

AC ′ ⇐⇒ (BB′) � (CC ′)

et si c’est le cas on a AB
AC

= BB
CC′

Démonstration. Il existe λ, µ dans K \ {0, 1} tels que
−−→
AB = λ

−→
AC et

−−→
AB′ = µ

−−→
AC ′. Alors

−−→
BB′ =

−−→
BA +

−−→
AB′ = λ

−→
CA + µ

−−→
AC ′ = (λ − µ)

−→
CA + µ

−−→
CC ′. Puisque

−−→
BA et

−−→
BB′ sont

linéairement indépendants, on a (CC ′)� (BB′) si et seulement si λ = µ. Si c’est le cas, on
a aussi

−−→
BB′ =

−−→
BA+

−−→
AB′ = λ

−→
CA+ λAC ′ = λ

−−→
CC ′.

Proposition. Dans un espace affine, soient D et D′ deux droites parallèles distinctes, B ̸=
C deux points distincts de D et C ′ ̸= C ′ deux points distincts de D′. Il existe une (unique)
dilatation f telle que f(B) = B′ et f(C) = C ′. C’est une translation si (BB′)∩ (CC ′) = ∅
et sinon une homothétie de centre O, où (BB′) ∩ (CC ′) = {O}.

Démonstration. P = aff(D∪D′) = aff(B,C,B′) est un plan ; dans ce plan les deux droites
distinctes (BB′) et (CC ′) sont soit disjointes, soit d’intersection réduite à un point.

Si (BB′) ∩ (CC ′) = ∅, alors (BB′) � (CC ′). Il existe donc des scalaires λ et µ ∈ K∗

tels que
−−→
CC ′ = λ

−−→
BB′ et

−−→
B′C ′ = µ

−−→
BC. On a

−−→
BC ′ =

−−→
BB′ + µ

−−→
BC =

−−→
BC + λ

−−→
BB′. Puisque

−−→
BC et

−−→
BB′ sont libres, on en déduit que λ = µ = 1. Si on pose −→v =

−−→
BB′ =

−−→
CC ′, alors la

translation τ−→v convient.
Si (BB′)∩(CC ′) = {O}, alors O ̸= B et O ̸= B′, donc il existe un scalaire λ ∈ K\{0, 1}

tel que
−−→
OB′ = λ

−−→
OB. Puisque D � D′, le théorème de Thalès implique que

−−→
OC ′ = λ

−−→
OC,

donc l’homothétie de centre O et de rapport λ convient.
L’unicité est laissée en exercice.

Fin cours # 3 du 6 février

Théorème (Pappus, version affine). Soient D et D′ deux droites distinctes d’un espace
affine. Soient A, B, C trois points distincts de D et A′, B′, C ′, trois points distincts de
D′. On suppose qu’aucun de ces points n’est commun à D et D′. Si (AB′) � (A′B) et
(BC ′) � (B′C) alors (AC ′) � (A′C).

Démonstration. On utilise la proposition précédente. Soit f la dilatation qui vérifie f(A) =
B et f(B′) = A′, et soit g la dilatation qui vérifie g(B) = C et g(C ′) = B′. Ce sont soit deux
translations, soit deux homothéties de même centre. Dans les deux cas, elles commutent.
Si on pose h = g ◦ f = f ◦ g, alors h(A) = C et h(C ′) = A′. Comme h est une dilatation,
on a donc (AC ′) � (A′C).

11



Théorème (Desargues, version affine). Soient A,B,C,A′, B′, C ′ six points distincts d’un
espace affine tels que A,B,C et A′, B′, C ′ soient affinement indépendants. On suppose que
(AB) � (A′B′), (BC) � (B′C ′) et (AC) � (A′C ′). Alors les trois droites (AA′), (BB′) et
(CC ′) sont soit concourantes, soit parallèles.

Démonstration. Soit f la dilatation qui vérifie f(A) = A′ et f(B) = B′. Alors (AC) �
(A′f(C)) et (BC) � (B′f(C)) puisque l’image d’une droite par une dilation est une droite
parallèle. On a donc (A′C ′) = (A′f(C)) et (B′C ′) = (B′f(C)). Puisque A′, B′, C ′ sont
affinement indépendants, on a (A′B′) ∩ (BC ′) = {C ′} et donc f(C) = C ′. Si f est une
translation, les trois droites sont parallèles ; si f est une homothétie de centre M , les trois
droites s’intersectent en M .

Théorème (Ménélaüs). Soient A, B, C trois points affinement indépendants. Soit A′ ∈
(BC), B′ ∈ (AC) et C ′ ∈ (AB) trois points distincts de A, B, C. Les points A′, B′, C ′

sont alignés si et seulement si A′C
A′B

B′A
B′C

C′B
C′A

= 1.

Démonstration. Soit h1 l’homothétie de centre A′ vérifiant h1(B) = C, soit h2 l’homothétie
de centre B′ vérifiant h2(C) = A et soit h3 l’homothétie de centre C ′ vérifiant h3(A) = B.
Si on note λi le rapport de hi, alors

λ1 =
A′C

A′B
, λ2 =

B′A

B′C
, λ3 =

C ′B

C ′A

et ces rapports sont distincts de 1 puisque les points A,B,C sont distincts. La dilatation
h = h3 ◦ h2 ◦ h1 a B comme point fixe et est donc une homothétie de rapport λ = λ1λ2λ3.

L’application h2 ◦ h1 préserve la droite (A′B′) puisqu’elle passe par le centre des deux
homothéties. Ainsi h préserve (A′B′) si et seulement si h3 préserve (A′B′), ce qui revient
à dire (puisque λ3 ̸= 1) que les points A′, B′, C ′ sont alignés.

Comme B ̸∈ (A′B′), l’homothétie h de centre B préserve (A′B′) si et seulement si son
rapport est 1, d’où le résultat.

On énonce sans preuve un dernier théorème.

Théorème (Céva). Soient A, B, C trois points affinement indépendants. Soit A′ ∈ (BC),
B′ ∈ (AC) et C ′ ∈ (AB) trois points distincts de A, B, C. Les droites (AA′), (BB′) et
(CC ′) sont concourantes ou parallèles si et seulement si A′C

A′B
B′A
B′C

C′B
C′A

= −1.
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Chapitre 2

Géométrie projective

2.1 Premier contact

Commençons par donner une introduction informelle où on cherche à construire la
géométrie projective afin de «compléter» la géométrie affine. Un plan affine E vérifie les
deux propriétés suivantes

(A) Par 2 points (distincts) passe 1 droite (unique).

(B) 2 droites (distinctes) s’intersectent en 0 ou 1 point.

Il y a une asymétrie disgracieuse entre ces deux axiomes, on aimerait pouvoir remplacer
«0 ou 1» par «1» dans (B).

Soit E la direction de E . On note P(E) l’ensemble des droites vectorielles de E et on
pose

P = E ∪P(E)

où l’union est disjointe. Autrement dit, on a rajouté un «point à l’infini» dans chaque
direction. On appelle point un élément de P et on appelle droite une partie de P de la
forme D∪{D} où D est une droite affine et D est sa direction. On obtient ainsi une nouvelle
notion de droite pour laquelle l’axiome (B) est vérifié.

Cependant, l’axiome (A) est en défaut car par deux points (distincts) à l’infini ne passe
aucune droite. La solution est de décréter que P(E) est également une droite, dite droite
de l’infini. Avec cette convention-là, les axiomes (A) et (B) sont satisfaits.

2.2 L’espace projectif associé à un espace vectoriel

Soit E un K-espace vectoriel. On appelle l’espace projectif associé à E et on note P(E)
l’ensemble des droites vectorielles de E.

Si x et y sont des vecteurs non nuls de E, alors on a vect(x) = vect(y) si et seulement
si x et y sont proportionnels. Si on munit E \ {0} de la relation d’équivalence

x ∼ y ⇐⇒ vect(x) = vect(y) ⇐⇒ ∃λ ∈ K \ {0} : x = λy,

alors P(E) s’identifie à l’ensemble des classes d’équivalences pour cette relation.
Si F est un sous-espace vectoriel de E, alors P(F ) est un sous-ensemble de P(E) car

toute droite vectorielle de F est une droite vectorielle de E. On dit qu’une partie A ⊂
P (E) est un sous-espace projectif (s.e.p.) s’il existe un sous-espace vectoriel F ⊂ E tel que
A = P(F ).
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Si F est un sous-espace vectoriel de dimension n ⩾ 1, on définit la dimension de P(F )
comme étant égale à n − 1. Pour tout x ∈ P(E), l’ensemble {x} est sous-espace projectif
de dimension 0 ; on dira que x est un point de l’espace projectif P(E).

On appelle droite projective un (sous-)espace projectif de dimension 1 et plan projectif
un (sous-)espace projectif de dimension 2. Commençons par vérifier que cette construction
respecte bien les propriétés (A) et (B).

Proposition. Étant donnés deux points distincts d’un espace projectif, il existe une unique
droite projective contient ces deux points.

Démonstration. Il suffit de traduire l’énoncé en termes d’espaces vectoriels : si D1 et D2

sont deux droites vectorielles distinctes d’un espace vectoriel E, alors il existe un unique
plan vectoriel qui contient D1 et D2 : c’est le plan vect(D1 ∪D2).

Proposition. Deux droites projectives distinctes d’un plan projectif s’intersectent en un
unique point.

Démonstration. Soit P(E) un plan projectif (c’est-à-dire que E est un espace vectoriel
de dimension 3) et D1 ̸= D2 deux droites projectives distinctes de P(E). Il existe des
sous-espaces vectoriels Fi ⊂ E, de dimension 2, tels que D1 = P(F1) et D2 = P(F2). Leur
intersection D1 ∩D2 coïncide avec P(F1 ∩ F2). Comme F1 ̸= F2, on a F1 + F2 = E et la
formule de Grassmann implique que

dim(F1 ∩ F2) = dim(F1) + dim(F2)− dim(F1 + F2) = 2 + 2− 3 = 1

donc P(F1 ∩ F2) est un singleton.

Fin cours # 4 du 27 février
On note Pn(K) l’espace projectif P(Kn+1), de sorte que la dimension de l’espace

projectif Pn(K) vaut n. Si (x1, . . . , xn+1) ∈ Kn+1 \ {0}, on note

(x1 : · · · : xn+1) = Vect(x1, . . . , xn+1) ∈ Pn(K)

Si p = (x1 : · · · : xn+1), alors on a p = (y1 : · · · : yn+1) si et seulement et si il existe λ ∈ K∗

tel que xi = λyi pour tout i.
Si (a1, . . . , an+1) ∈ Kn+1\{0}, l’ensemble des points (x1 : . . . : xn+1) vérifiant l’équation

a1x1 + · · ·+ an+1xn+1 = 0

est un hyperplan projectif de Pn(K), et tout hyperplan projectif s’obtient ainsi.

Proposition. Si K = Fq est le corps fini à q éléments, alors Pn(Fq) a pour cardinal
qn+1−1
q−1 = qn + qn−1 + · · ·+ 1.

Démonstration. Les points de Pn(Fq) s’identifient à des classes d’équivalence pour la re-
lation sur Fn+1

q donnée par x ∼ y s’il existe λ ∈ F∗
q tel que x = λy. Comme F∗

q contient
q − 1 éléments, ces classes d’équivalences ont cardinal q − 1, d’où le résultat.

Le plan projectif sur F2 contient 7 éléments (dessin au tableau). On peut vérifier que les
axiomes (A) et (B) sont vérifiés. Sauriez-vous tracer de manière similaire le plan projectif
sur F3 ?

Exercice. Montrer qu’un plan projectif sur un corps fini contient autant de points que de
droites.
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2.3 Homographies, groupe projectif

Si P(E) est l’espace projectif associé à un espace vectoriel E, on note πE : E \ {0} →
P(E) la surjection canonique. Étant donné A ⊂ P(E), on note proj(A) le sous-espace
projectif engendré par A qui est aussi proj(A) = πE(vect(π

−1
E (A)).

Soit f : E → F une application linéaire injective entre espaces vectoriels. Sa restriction
à E \ {0} est à valeurs dans F \ {0}. De plus, si x, y sont deux éléments de E \ {0} tels
que x ∼ y, alors f(x) ∼ f(y). L’application f induit donc par passage au quotient une
application P(f) : P(E) → P(F ) définie par P(F )(πE(x)) = πF (f(x)). On dit que P(f)
est l’application projective associée à l’application linéaire f . On a P(f ◦g) = P(f)◦P(g).

On appelle homographie une application projective associée à une bijection. On note
PGL(E) le groupe des homographies de P(E) dans lui-même, c’est le groupe projectif.

Proposition. L’application f 7→ P(f) est un morphisme de groupe de GL(E) dans PGL(E).
Son noyau est le sous-groupe distingué {λid : λ ∈ K∗}◁GL(E).

Démonstration. Un élément du noyau est une application linéaire f ∈ GL(E) ayant la
propriété que f(x) et x sont proportionnels pour tout x ∈ E. On a vu en TD (feuille 1,
exercice 12) que cela implique que f est un multiple de l’identité.

En particulier, le groupe projectif de Pn(K) est isomorphe au groupe PGLn+1(K),
quotient de GLn+1(K) par K∗ identifié au sous-groupe des matrices scalaires inversibles.

Considérons maintenant le cas de la droite projective P1(K). Un élément de la droite
projective P1(K) est de la forme (x1 : x2). Par définition, on appelle abscisse projective
l’élément x1/x2 ∈ K si x2 ̸= 0, et ∞ si x2 = 0. L’abscisse projective fournit une bijection
de P1(K) sur K ∪ {∞}.

Une homographie h de P1(K) est induite par une matrice

A =

(
a b
c d

)
∈ GL2(K)

et vérifie
h((z : 1)) = (az + b : cz + d) =

[
az + b

cz + d
: 1

]
Son action sur les abscisses projectives est donc donnée par la formule

z 7→ az + b

cz + d
, ∞ 7→ a

c
, −d

c
7→ ∞

2.4 Repères projectifs, coordonnées homogènes

On peut définir le sous-espace projectif engendré par une partie A ⊂ P(E) comme
l’intersection de la famille de sous-espaces projectifs contenant A. On dit que d+ 1 points
d’un espace projectif sont projectivement indépendants si le sous-espace engendré par ces
points est de dimension d.

Si v1, . . . , vn ∈ E, les points πE(v1), . . . , πE(vn) sont projectivement indépendants si et
seulement si les vecteurs v1, . . . , vn sont linéairement indépendants.

Une homographie transforme des points projectivement indépendants en des points
projectivement indépendants.

Théorème. Soient p1, . . . , pn+2 points d’un espace projectif P(E) de dimension n. Les
propriétés suivantes sont équivalentes.
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1. Toute sous-famille de n + 1 points parmi p1, . . . , pn+2 est projectivement indépen-
dantes (il y a n+ 2 telles sous-familles).

2. Il existe une base (e1, . . . , en+1) de E telle que πE(e1) = p1, . . . , πE(en+1) = pn+1

et πE(e1 + · · ·+ en+1) = pn+2.

On dit alors que (p1, . . . , pn+2) est un repère projectif de P(E). De plus, si (f1, . . . , fn) est
une autre base de E vérifiant la condition 2, alors il existe λ ∈ K∗ tel que fi = λei.

Dans une droite projective, un repère projectif est formé de trois points, deux à deux
distincts. Dans un plan projectif, un repère projectif est formé de quatre points, trois à
trois non alignés.

Démonstration. Pour voir que 2. implique 1, il suffit d’observer que pour tout i, les vecteurs
e1, ..., ei−1, ei+1, . . . , en, e1 + · · ·+ en forment une base de E.

Supposons 1. Pour 1 ⩽ i ⩽ n, choisissons e′i tel que pi = πE(e
′
i). Puisque (p1, . . . , pn+1)

sont projectivement indépendants, la famille (e′1, . . . , e
′
n+1) est une base de E. Soit v ∈ E

tel que πE(v) = en+2. On peut décomposer v comme v = λ1e
′
1 + · · · + λne

′
n. Pour tout i,

les vecteurs e′1, . . . , e′i−1, v, e
′
i+1, . . . , e

′
n+1 sont linéairement indépendants par hypothèse, et

donc λi ̸= 0. On peut donc poser ei = λ−1
i e′i.

Si (f1, . . . , fn+1) est une autre base vérifiant la condition 2, alors il existe µi ∈ K∗ tels
que fi = µiei. Puisque πE(f1 + · · · + fn) = πE(e1 + · · · + en), il existe λ ∈ K∗ tel que∑

fi = λ
∑

ei. On a donc
∑

µiei =
∑

λei et donc µi = λ pour tout i.

Fin cours #5 du 13 mars

Théorème. Soient P(E), P(F ) des espaces projectifs de dimension n. Soient (p1, . . . , pn+2)
un repère projectif de P(E) et (q1, . . . , qn+2) un repère projectif de P(F ). Il existe une
unique homographie h : P(E) → P(F ) vérifiant h(pi) = qi pour tout 1 ⩽ i ⩽ n+ 2.

Démonstration. Choisissons des bases (e1, . . . , en+1) de E et (f1, . . . , fn+1) de F comme
dans le théorème précédent. Si u : E → F est l’application linéaire donnée par u(ei) = fi,
alors l’homographie h = P(u) convient.

Soit P(v) est une autre homographie qui convient. On a πF (v(ei)) = qi et πF (v(e1 +
· · ·+ en+1) = qn+2. Par le théorème précédent, il existe λ ∈ K∗ tel que v(ei) = λfi. On a
donc v = λu et P(v) = h.

Dans un plan projectif, un repère est formé de quatre points. Le théorème précédent
peut être appliqué pour faire du redressement d’image. C’est ce que fait votre smartphone
quand vous scannez un QR code de biais : il détecte les sommets de l’image (qui peut être
un quadrilatère arbitraire) et applique l’homographie qui les envoie sur les sommets d’un
carré.

Soit R = (p1, . . . , pn+2) un repère projectif d’un espace projectif P(E) de dimension n.
Il existe une unique homographie h : P(E) → Pn(K) telle que

h(p1) = (1 : 0 : · · · : 0)

h(p2) = (0 : 1 : . . . : 0)

...

h(pn+1) = (0 : 0 : . . . : 1)

h(pn+2) = (1 : 1 : . . . : 1)

16



Soit p ∈ P(E) tel que h(p) = (x1 : . . . : xn+1). On dit que (x1 : . . . : xn+1) est un système
de coordonnées homogènes de p dans le repère R.

Le repère canonique de Pn(K) est formé des points

(1 : 0 : · · · : 0), (0 : 1 : · · · : 0), . . . , (0 : 0 : . . . : 1), (1 : 1 : . . . : 1)

Exprimé en termes d’abscisses projectives, le repère canonique de P1(K) est (∞, 0, 1).

2.5 Liaison affine-projectif

Commençons par traiter la complétion projective de l’espace affine Kn. Notons H∞
l’hyperplan projectif d’équation xn+1 = 0 dans Pn(K). L’application ι : Kn → Pn(K)
donnée par

ι(x1, . . . , xn) = (x1 : . . . : xn : 1)

est une bijection de Kn sur Pn(K) \H∞. La bijection réciproque envoie (x1 : . . . : xn+1)
(avec xn+1 ̸= 0) sur (x1/xn+1, . . . , xn/xn+1). On ainsi voir Pn(K) comme la réunion de
(l’image par ι de) Kn et de l’hyperplan H∞, ce qui généralise l’identification de P1(K) à
K ∪ {∞}. On dit que Pn(K) est le complété projectif de l’espace affine Kn. On identifie
Kn à son image ι(Kn) = Pn(K) \H∞.

Soit A un sous-espace affine de Kn. De la même manière, on appelle complété projectif
de A le sous-espace projectif Â = P(vect(A × {1}) de Pn(K). On peut vérifier que Â =
ι(A) ∪ (Â ∩H∞).

Soit G le sous-groupe de PGLn(K) formé des homographies h : Pn(K) → Pn(K)
vérifiant h(H∞) = H∞.

Théorème. L’application h 7→ h|Kn est un isomorphisme de groupe de G sur GA(Kn).

Démonstration. Soit M ∈ GLn+1(K) identifiée à une application linéaire Kn+1 → Kn+1.
L’homographie associée h = P(M) est dans G si et seulement si la dernière ligne de M est
de la forme (0, . . . , 0, λ) avec λ ̸= 0. Quitte à remplacer M par λ−1M (qui représente la
même homographie, on peut suppose λ = 1.

Le morphisme canonique GLn+1(K) → PGLn+1(K) induit un isomorphisme entre le
sous-groupe des matrices de la forme(

A b
0 1

)
, A ∈ GLn(K), b ∈ Kn

et le sous-groupe G. Pour conclure, on remarque que(
A b
0 1

)
·
(
x
1

)
=

(
Ax+ b

1

)
et que le groupe affine de Kn est le groupe des transformations x 7→ Ax + b avec A ∈
GLn(K) et b ∈ Kn.

Réciproquement, étant donné un espace projectif P(E) et un hyperplan projectif H =
P(F ) de cet espace, on peut munir P(E) \ H d’une structure d’espace affine. On choisit
une forme linéaire non nulle ϕ : E → K telle que F = kerϕ. On considère le sous-espace
affine de E donné par A = {x : ϕ(x) = 1}. L’application π : E \ {0} → P(E) induit une
bijection de A sur P(E)\H ; par «transport de structure», cette bijection munit P(E)\H
d’une structure d’espace affine. Cette structure est donnée par l’action

F × (P(E) \H) → P(E) \H

qui à (x,M) associe π(x+ y) où y est l’unique élément de A tel que π(y) = M .
Exercice. Montrer que cette structure d’espace affine ne dépend pas du choix de ϕ.
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2.6 Dualité

Pour simplifier, on se place dans le cadre d’un plan projectif P(E) (donc E est un espace
vectoriel de dimension 3). On note E∗ le dual de E. Si F est un sous-espace vectoriel de
E, alors

F⊥ = {ϕ ∈ E∗ : ϕ|F = 0}

est un sous-espace de E∗ qui vérifie dim(F ) + dim(F⊥) = 3. L’application F 7→ F⊥ est
une bijection (1) entre les droites vectorielles de E et les plans vectoriels de E∗, et aussi
(2) entre les plans vectoriels de E et les droites vectorielles de E∗.

Au niveau des espaces projectifs, cette application envoie les points de P(E) sur les
droites de P(E∗), et réciproquement. A l’aide de la remarque que F1 ⊂ F2 si et seulement
si F⊥

1 ⊃ F⊥
2 , on remarque que

1. Soit P un point de P(E) et d une droite de P(E∗). On note p = P⊥ ∈ P(E∗) la
droite duale de P et D = d⊥ ∈ P(E∗) le point dual de d. Alors p ∈ D ⇐⇒ d ∈ P .

2. Soient A,B,C trois point de P(E) et a, b, c les droites duales dans P(E∗). Les points
A, B, C sont alignés si et seulement si les droites a, b, C sont concourantes.

Comme en géométrie affine, on notera (AB) la droite projective passant par deux points
A ̸= B d’un plan projectif.

Rappelons l’énoncé du théorème de Pappus affine :

Théorème (Théorème de Pappus affine). Soient D et D′ deux droites distinctes d’un
espace affine. Soient A, B, C trois points distincts de D et A′, B′, C ′, trois points distincts
de D′. On suppose qu’aucun de ces points n’est commun à D et D′. Si (AB′) � (A′B) et
(BC ′) � (B′C) alors (AC ′) � (A′C).

On va en déduire une variante projective.

Théorème (Théorème de Pappus projectif). Dans un plan projectif P, soient A,B,C
et A′, B′, C ′ deux triplets de points alignés, deux à deux distincts, non tous alignés. Soit
A′′ = (BC ′) ∩ (B′C), B′′ = (AC ′) ∩ (A′C) et C ′′ = (AB′) ∩ (A′B). Alors les points A′′,
B′′ et C ′′ sont alignés.

L’écriture «A′′ = (BC ′) ∩ (B′C)» est abusive, il faudrait plus exactement écrire «
{A′′} = (BC ′) ∩ (B′C)».

Démonstration. Soit d la droite (A′′C ′′). On «envoie d à l’infini», c’est-à-dire qu’on munit
P \d de sa structure d’espace affine. Dans cet espace affine, on a (BC ′)� (B′C) et (AB′)�
(A′B). Par le théorème de Pappus affine, on en déduit que (AC ′)� (A′C), c’est-à-dire que
B′′ ∈ ∆, d’où le résultat.

On peut alors dualiser l’énoncé.

Théorème (Théorème de Pappus projectif dual). Dans un plan projectif, soient a, b, c et
a′, b′, c′ deux triplets de droites concourantes, deux à deux distinctes, non toutes concou-
rantes. On note a′′ la droite passant par b ∩ c′ et b′ ∩ c ; on note b′′ la droite passant par
a ∩ c′ et a′ ∩ c et on note c′′ la droite passant par a ∩ b′ et a′ ∩ b. Alors a′′, b′′ et c′′ sont
concourantes.

On peut en déduire des corollaires purement affines. Voici ce qu’on obtient en envoyant
les deux points d’intersection des triplets à l’infini : dans un plan affine, soit d1, d2, d3 et
d′1, d

′
2, d

′
3 deux triplets de droites parallèles, non toutes parallèles. On suppose les droites
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deux à deux distinctes. On note Aij = di ∩ d′j . Alors les droites (A12A21), (A13A31) et
(A23A32) sont concourantes.

Fin cours # 6 du 27 mars
Rappelons également le théorème de Desargues affine

Théorème (Théorème de Desargues affine). Soient A,B,C,A′, B′, C ′ six points distincts
d’un espace affine tels que A,B,C et A′, B′, C ′ soient affinement indépendants. Alors

(i) (AB) � (A′B′), (BC) � (B′C ′) et (AC) � (A′C ′)

implique

(ii) les trois droites (AA′), (BB′) et (CC ′) sont soit concourantes, soit parallèles.

et déduisons-en sa version projective

Théorème (Théorème de Desargues projectif). Soient A,B,C,A′, B′, C ′ six points dis-
tincts d’un plan projectif tels que les droites a = (BC), b = (AC), c = (AB) et a′ = (B′C ′),
b′ = (A′C ′), c′ = (A′B′) soient distinctes. On considère les points P = a ∩ a′, Q = b ∩ b′

et R = c ∩ c′ et les droites p = (AA′), q = (BB′) et r = (RR′). Il y équivalence entre

1. les droites p, q et r sont concourantes,

2. les points P , Q et R sont alignés.

Démonstration. Montrons que (2) implique (1) en envoyant la droite (PQ) = (PR) à l’in-
fini. Les six points sont dans le plan affine E = P(E)\(PQ), et on a (AB)�(A′B′), (BC)�
(B′C ′), (AC) � (A′C ′). Le théorème de Desargues affine implique que les droites p, q et r
sont concourantes ou parallèles dans E , donc concourantes dans P2(R).

Enfin, il suffit de remarquer que l’énoncé dual de l’implication (2) =⇒ (1) est exacte-
ment l’implication (1) =⇒ (2) ! La dualité échange A et a, B et b, etc.. , «points alignés»
et «droites concourantes», «a = (BC)» et «A = b ∩ c».

On obtient alors un renforcement de l’énoncé affine : on a l’équivalence (i) ⇐⇒ (ii)
dans l’énoncé affine !

2.7 Birapport

On a vu que les transformations affines préservent les rapports : si A,B,C sont trois
points alignés d’images A′, B′, C ′ par une transformation affine, alors ... De la même ma-
nière, nous allons voir que les transformations projectives préservent les birapports de 4
points.

On identifie P1(K) à K ∪ {∞} via l’abscisse projective.
Soit D une droite projective et x, y, z, w quatre points distincts de D. Il existe une

unique homographie ϕ : D → P1(K) telle que ϕ(x) = ∞, ϕ(y) = 0 et ϕ(z) = 1. On appelle
birapport du quadruplet (x, y, z, w) et on note [x, y, z, w] l’élément ϕ(w) de K ∪ {∞}. En
réalité, le birapport n’est jamais égal à 0, 1 ou ∞.

Proposition. Si x, y, z, w sont quatre points distincts de la droite projective P1(K), leur
birapport est donné par

[x, y, z, w] =

w − y

w − x
z − y

z − x

C’est un élément de K \ {0, 1}.
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Démonstration. Il suffit de remarquer que l’homographie

α 7→

α− y

α− x
z − y

z − x

est l’unique ϕ de la définition précédente.

Les birapports sont conservés par les homographies.

Proposition. Soient D et D′ des droites projectives et f : D → D′ une bijection. Alors il
y a équivalence entre

1. f est une homographie,

2. f préserve le birapport, c’est-à-dire que si x, y, z, w sont des points distincts de D,
alors

[f(x), f(y), f(z), f(w)] = [x, y, z, w].

Démonstration. Supposons que f est une homographie. Il suffit de remarquer que si ϕ :
D′ → P1(K) est l’homographie qui envoie (f(x), f(y), f(z)) sur (∞, 0, 1), alors ϕ◦f : D →
P1(K) est l’homographie que envoie (x, y, z) sur (∞, 0, 1).

Réciproquement, supposons que f préserve le birapport. Il existe une homographie
g : D → D′ qui envoie (x, y, z) sur (f(x), f(y), f(z)). Montrons que f = g : pour tout w
dans D, on a

[f(x), f(y), f(z), f(w)] = [x, y, z, w] = [g(x), g(y), g(z), g(w)]

et l’égalité f(w) = g(w) découle du fait que la fonction α 7→ [x, y, z, α] est une bijection
de D \ {x, y, z} dans K \ {0, 1}.
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Chapitre 3

Géométrie affine euclidienne

3.1 Espaces affines euclidiens

Dans ce chapitre, on suppose K = R. On rappelle qu’un espace euclidien est un espace
vectoriel muni d’un produit scalaire (x, y) 7→ ⟨x, y⟩. On pose alors ∥x∥ =

√
⟨x, x⟩. On

appelle espace affine euclidien un espace affine E dont la direction E est un espace euclidien.
On peut alors munir E d’une distance en posant pour A,B dans E

d(A,B) = AB = ∥
−−→
AB∥

Dans tout ce chapitre, on fixe un espace affine euclidien E de direction E. On peut alors
donner une caractérisation métrique de certains concepts de géométrie affine.

Proposition. Soient A et B deux points de E. Alors
1. le segment [AB] est l’ensemble des points M ∈ E tels que AB = AM +BM .
2. un point I ∈ E est le milieu de [AB] si et seulement si AI = BI = 1

2AB.

Démonstration. C’est le cas d’égalité dans l’inégalité triangulaire pour la norme eucli-
dienne. Soit M ∈ E . On écrit

−−→
AM = λ

−−→
AB + −→u pour λ ∈ E et −→u ⊥

−−→
AB. On a alors−−→

BM =
−−→
BA+

−−→
AM = (λ− 1)

−−→
AB +−→u . Par le théorème de Pythagore, il vient

AM2 = λ2AB2 + ∥−→u ∥2

BM2 = (1− λ)2AB2 + ∥−→u ∥2

On a donc AM ⩾ |λ|AB et BM ⩾ |1− λ|AB (avec à chaque fois égalité si et seulement si
−→u = 0) et donc AM +BM ⩾ (|λ|+ |1− λ|)AB. Il y a égalité si et seulement si −→u = 0 et
λ ∈ [0, 1], donc si et seulement si M ∈ [AB].

On appelle sphère de centre A ∈ E et de rayon r ⩾ 0 l’ensemble des points M ∈ E tels
que AM = r. Dans un plan affine euclidien, on parlera plutôt de cercle.

Théorème (Théorème de l’angle droit). Soient A,B deux points de E. L’ensemble

{M ∈ E :
−−→
MA ⊥

−−→
MB}

est la sphère de centre I milieu de [AB] et de rayon IA = IB = IM
2 .

Démonstration. Pour tout M dans E , on a
−−→
MA ⊥

−−→
MB ⇐⇒ ⟨

−−→
MI +

−→
IA,

−−→
MI +

−→
IB⟩ = 0

Comme
−→
IA = −

−→
IB, cette condition devient MI2 = IA2, d’où le résultat.
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Soient F et G deux sous-espace affines de E , de directions respectives F et G. On dit
que F et G sont orthogonaux si on a u ⊥ v pour tout u ∈ F et v ∈ G.

Vérifiez que vous savez définir le vocabulaire de géométrie élémentaire : triangle rec-
tangle, isocèle, équilatéral, rectangle, losange, carré.

Proposition. Soient F et G deux sous-espaces affines orthogonaux. Alors F ∩ G est soit
vide, soit un singleton.

Démonstration. Soient A et B dans F ∩ G. Alors
−−→
AB ∈ F ∩ G, donc

−−→
AB =

−→
0 , d’où le

résultat.

Proposition. Soient A ̸= B deux points de E. L’ensemble des M ∈ E tels que AM = BM
est un hyperplan affine appelé hyperplan médiateur de [AB]. C’est l’hyperplan de direction
−−→
AB⊥ passant par le milieu de [AB]

Démonstration. Soit I le milieu de [AB] ; on a I ̸= A. Soit M ∈ E . Écrivons
−−→
IM =

λ
−−→
AB + −→u pour λ ∈ R et −→u ⊥

−−→
AB. On a alors

−−→
AM =

−→
AI +

−−→
IM = (λ + 1

2)
−−→
AB + −→u et

−−→
BM =

−→
BI +

−−→
IM = (λ− 1

2)
−−→
AB +−→u , et on a AM = BM ssi λ = 0.

Fin cours # 7 du 3 avril

3.2 Orientation

Soit E un espace vectoriel réel et B1, B2 deux bases de E. On dit que B1 est de même
sens que B2 si la matrice de passage MB1,B2 a déterminant > 0, et de sens contraire sinon.
La relation «être de même sens que» est une relation d’équivalence. On appelle orientation
de E une classe d’équivalence pour cette relation, il y a donc deux orientations possibles.
On dit que E est un espace vectoriel orienté si on a choisi une des deux orientations. Dans
un espace orienté, on dit qu’une base est directe si elle est dans la classe d’équivalence
choisie.

Attention : un sous-espace d’un espace vectoriel orienté n’est pas orienté.

3.3 Isométries

Une application d’un espace métrique (X, d) dans lui-même est une isométrie si c’est
une bijection qui préserve la distance. L’ensemble Isom(X) des isométries forme toujours
un groupe pour la composition (c’est un sous-groupe de l’ensemble des permutations de
X)

Proposition. Toute isométrie d’un espace affine euclidien E est affine. le groupe Isom(E)
est donc un sous-groupe de GA(E)

Démonstration. NB L’argument donné en cours était incomplet La preuve utilise une ca-
ractérisation métrique du barycentre.

Lemme. Soient A, B deux points de E et p, q des réels vérifiant p+q = 1. Un point G ∈ E

est le barycentre
(
A B
p q

)
si et seulement si on a l’égalité

p ·OA2 + q ·OB2 = OG2 + p ·GA2 + q ·GB2

pour tout O ∈ E.
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Démonstration. Pour tous points O et G de E , on a OA2 = OG2 +GA2 + 2⟨
−−→
OG,

−→
GA⟩ et

OB2 = OG2 +GB2 + 2⟨
−−→
OG,

−−→
GB⟩, donc

p ·OA2 + q ·OB2 = OG2 + p ·GA2 + q ·GB2 + 2⟨
−−→
OG, p

−→
GA+ q

−−→
GB⟩

La condition du lemme est donc vérifiée si et seulement si on a
−−→
OG ⊥ p

−→
GA + q

−−→
GB pour

tout O ∈ E , donc si et seulement si p
−→
GA + q

−−→
GB =

−→
0 , ce qui revient à dire que G est le

barycentre recherché.

Considérons une isométrie de E notée ϕ : M 7→ M ′. Considérons un barycentre G =(
A B
p q

)
. Par le lemme, on a donc p ·OA2 + q ·OB2 = OG2 + p ·GA2 + q ·GB2 pour tout

O ∈ E , et donc p ·O′A′2+q ·O′B′2 = O′G′2+p ·G′A′2+q ·G′B′2. Comme O′ parcourt E (ϕ

est surjective), le lemme implique que G′ =

(
A′ B′

p q

)
. Par associativité des barycentres,

l’application ϕ préserve les barycentres et est donc affine.

On note O(E) le groupe des transformations orthogonales de E, c’est-à-dire des endo-
morphismes u de E vérifiant ∥u(x)∥ = ∥x∥ pour tout x ∈ E, ou encore tu · u = IdE .

Si F est un sous-espace vectoriel de E, on définit la symétrie sF : E → E comme
étant l’application linéaire qui vaut IdF sur F et −IdG sur G = F⊥. C’est une isométrie
vectorielle.

Si F est un sous-espace affine de E , on définit la symétrie par rapport à F , notée σF ,
de la manière suivante : on fixe O ∈ F et on pose M ′ = σF (M) avec

−−−→
OM ′ = sF (

−−→
OM).

Soit F ⊂ E un sous-espace vectoriel et F⊥ son supplémentaire orthogonal. On note
−→p F la projection orthogonal sur F ; c’est la projection de noyau F⊥ et d’image F .

Dans le cas de symétrie (vectorielle ou affine) par rapport à un hyperplan (vectoriel ou
affine), on parlera plutôt de réflexion.

Théorème. Dans un espace vectoriel euclidien de dimension n, toute isométrie s’écrit
comme composée de p réflexions pour p ⩽ n.

Dans un espace affine euclidien de dimension n, toute isométrie affine s’écrit comme
composée de p réflexions pour p ⩽ n+ 1.

Démonstration. On suppose connu le cas vectoriel (cf cours de L2, par récurrence sur la
dimension).

Soit f : E → E est une isométrie affine. S’il existe un point fixe O, alors on vectorialise
en O pour montrer que f est la composition de ⩽ n réflexions par rapport à des hyperplans
passant par O.

Sinon, soit A ∈ E et A′ = f(A) ̸= A son image. Soit H l’hyperplan médiateur de [AA′].
Alors σH(A

′) = A et donc A est un point fixe de σH ◦ f . Ainsi σH ◦ f est produit de ⩽ n
réflexions, donc f = σH ◦ σH ◦ f est produit de ⩽ n+ 1 réflexions.

On note O(n) le groupe des isométries de l’espace vectoriel euclidien Rn. Il s’identifie
à l’ensemble des matrices A vérifiant tA ·A = Id. Le déterminant d’une matrice A ∈ O(n)
vaut ±1. On note SO(n) le sous-groupe formé des matrices de déterminant 1.

Les éléments de SO(2) sont les rotations

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
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Remarquons que R(θ1)R(θ2) = R(θ1 + θ2). L’application θ 7→ R(θ) est un morphisme de
groupe de R sur SO(2). Elle induit donc un isomorphisme entre R/2πZ et SO(2). Les
éléments de O(2) \ SO(2) sont les réflexions.

Si E est un plan euclidien et si f ∈ SO(E), alors

g ◦ f ◦ g−1 =

{
f si g ∈ SO(E)

f−1 si g ∈ O(E) \ SO(E)
(3.1)

La première formule découle du fait que SO(E) est commutatif ; la seconde formule découle
du fait que g2 = (gf)2 = IdE (tout élément de O(E) \ SO(E) est d’ordre 2).

On en déduit que dans un plan euclidien orienté, les éléments de SO(E) ont la même
matrice dans toutes les bases orthonormales directes. Un choix d’orientation détermine une
isomorphisme entre R/2πZ et SO(E)

3.4 Angles

Soient u et v deux vecteurs non nuls d’un espace euclidien E. Alors |⟨u, v⟩| ⩽ ∥u∥∥v∥
(Cauchy–Schwartz) et il existe donc un unique θ ∈ [0, π] tel que ⟨u, v⟩ = cos(θ)∥u∥∥v∥. On
l’appelle angle géométrique entre les vecteurs −→u et −→v .

Il est un peu plus délicat de définir l’angle non orienté entre deux vecteurs : il n’est
possible de le faire qu’en dimension deux, dans un plan orienté.

Lemme. Soient u et v deux vecteurs d’un plan euclidien tels que ∥u∥ = ∥u′∥ = 1. Il existe
un unique R ∈ SO(E) tel que R(u) = u′.

Démonstration. On considère une base orthonormée (u, v). Dans cette base, u′ s’écrit au+
bv pour a, b réels tels que a2 + b2 = 1. La seule rotation qui convient est celle de matrice(
a −b
b a

)
dans la base (u, v).

Soit E un plan euclidien orienté. Soit E un plan euclidien orienté ; on a vu qu’on peut
identifier SO(E) à R/2πZ. On note donc aussi R(θ) l’élément de SO(E) dont la matrice
est R(θ) dans toute base orthonormée directe.

Soient u, v deux vecteurs non nuls. On appelle angle orienté entre les vecteurs u et v,
et on note û, v, l’unique élément θ ∈ R/2πZ tel que v

∥v∥ = R(θ)
(

u
∥u∥

)
.

Proposition. Soient u, v, w des vecteurs non nuls d’un plan orienté. Alors

1. û, u = 0

2. û,−u = π (on dit que c’est un angle plat)

3. û, v = − v̂, u

4. û, v + v̂, w = û, w

5. Si f ∈ SO(E), alors ̂f(u), f(v) = û, v.

6. Si f ∈ O(E) \ SO(E), alors ̂f(u), f(v) = v̂, u.

Toutes ces formules sont des égalités dans R/2πZ.

Démonstration. Les premiers point découlent du fait que R(0) = Id, R(π) = −Id et
R(θ)−1 = R(−θ). La règle de Chasles découle de l’associativité de la composition, le
quatrième point du fait que les rotations commutent. Les deux derniers points découlent
des formules (3.1).
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Quand on identifie R2 (avec son orientation canonique : la base (e1, e2) est directe)
à C, l’angle orienté entre deux vecteurs non nuls u et v est un argument du complexe v/u.

Dans la fin du chapitre, on se place dans un plan euclidien orienté. Mais la plupart des
énoncés sont en réalité vrais pour les deux orientations possibles !

Proposition. Si A, B, C sont trois points distincts d’un plan affine euclidien orienté,
alors

−̂−→
AB,

−→
AC +

−̂−→
BC,

−−→
BA+

−̂→
CA,

−−→
CB = π

Démonstration. On an
−̂→
CA,

−−→
CB =

−̂→
AC,

−−→
BC. Par la relation de Chasles, la somme vaut

−̂−→
AB,

−−→
BA = π.

Théorème (Théorème de l’angle inscrit). Si A,B,C sont trois points distincts d’un cercle
de centre O, alors

−̂→
OA,

−−→
OB = 2 ·

−̂→
CA,

−−→
CB

Démonstration. Comme la réflexion par rapport à la médiatrice de [AC] a O comme point
fixe, et comme elle inverse les angles, on a

−̂→
CA,

−−→
CO = −

−̂→
AC,

−→
AO =

−̂→
AO,

−→
AC.

On a donc
π =

−̂−→
OC,

−→
OA+

−̂→
CA,

−−→
CO +

−̂→
AO,

−→
AC =

−̂−→
OC,

−→
OA+ 2

−̂→
CA,

−−→
CO

En échangeant le rôle de A et B, on a

π =
−̂−→
OC,

−−→
OB + 2 ·

−̂−→
CB,

−−→
CO

et donc en retranchant ces égalités

0 =
−̂→
OA,

−−→
OB + 2 ·

−̂−→
CB,

−→
CA

d’où le résultat.

Cet énoncé a aussi une variante avec un vecteur tangent, dont la preuve est laissée en
exercice.

Théorème. Soient A et B deux points distincts d’un cercle de centre 0, et −→v un vecteur
directeur de la tangente au cercle en B. Alors

−̂→
OA,

−−→
OB = 2 ·

−̂−→
AB,−→v

Si A, B, C sont trois points non alignés, ils déterminent un unique cercle (le cercle
circonscrit au triangle ABC, qui est l’intersection des médiatrices).

Corollaire (Cocyclicité). Soient A, B et C trois points non alignés. Un point D est sur
le cercle qu’ils déterminent si et seulement si

2 ·
−̂→
CA,

−−→
CB = 2 · ̂−−→

DA,
−−→
DB
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Démonstration. (non donnée en cours) Soit O le centre du cercle circonscrit à ABC et
supposons que D est sur ce cercle. Alors en appliquant deux fois le théorème de l’angle
inscrit.

−̂→
OA,

−−→
OB = 2 ·

−̂→
CA,

−−→
CB = 2 · ̂−−→

DA,
−−→
DB

Réciproquement, supposons l’égalité d’angles vérifiée. Soit O le centre du cercle circonscrit
C à ABC et O′ le centre du cercle circonscrit C ′ à ABD. Soient −→v et

−→
v′ des vecteurs

directeurs des droites tangentes à ces deux cercles en B. Par les deux théorèmes précédents,
on a

2 ·
−̂−→
AB,−→v =

−̂→
OA,

−−→
OB = 2 ·

−̂→
CA,

−−→
CB

2 ·
−̂−→
AB,

−→
v′ =

̂−−→
O′A,

−−→
O′B = 2 · ̂−−→

DA,
−−→
DB

On en déduit que 2 ·
−̂−→
AB,−→v = 2 ·

−̂−→
AB,−→v ′ et donc −→v = ±−→v ′ et les tangentes aux deux

cercles sont confondue. Il existe un unique cercle passant par A, B et de tangente donnée
en B (exercice). On a donc C = C ′.

Fin du cours
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