Final exam - solutions

Warm-up

We first check that $|M-\mathbf{E} X| \leqslant C_{0}$ for some constant C_{0}, since

$$
|\mathbf{E} X-M| \leqslant \mathbf{E}|X-M|=\int_{0}^{\infty} \mathbf{P}(|X-M| \geqslant t) \mathrm{d} t \leqslant \int_{0}^{\infty} \exp \left(-t^{2} / 2\right) \mathrm{d} t=C_{0}
$$

We then write

$$
\mathbf{P}(X \geqslant \mathbf{E}[X]+t) \leqslant \mathbf{P}\left(X \geqslant M+t-C_{0}\right) \leqslant \frac{1}{2} \exp \left(-\left(t-C_{0}\right)^{2} / 2\right)
$$

If $t \geqslant 2 C_{0}$, we have $t-C_{0} \geqslant t / 2$ and $\mathbf{P}(X \geqslant \mathbf{E}[X]+t) \leqslant \frac{1}{2} \exp \left(-t^{2} / 8\right)$. Since probabilities are bounded by 1 anyway, the bound $\mathbf{P}(X \geqslant \mathbf{E}[X]+t) \leqslant \exp \left(C_{0}^{2} / 2\right) \cdot \exp \left(-t^{2} / 8\right)$ holds for every $t \geqslant 0$.

Convex hull of a Gaussian cloud

Let $K=\operatorname{conv}\left(G_{i}\right)$. The function $x \mapsto|x|$ is obviously 1-Lipschitz, and $\mathbf{E}\left|G_{i}\right|=\kappa_{n} \leqslant \sqrt{n}$. By the warm-up, $\mathbf{P}\left(\left|G_{i}\right| \geqslant \sqrt{n}+t\right) \leqslant \exp \left(-t^{2} / 2\right)$ for any $t \geqslant 0$. Consequently, by the union bound,

$$
\mathbf{P}\left(K \notin(\sqrt{n}+t) B_{2}^{n}\right)=\mathbf{P}\left(\exists i,\left|g_{i}\right|>\sqrt{n}+t\right) \leqslant N \exp \left(-t^{2} / 2\right) .
$$

Assume $N \geqslant e^{n}$ and choose $t=2 \sqrt{\log N}$ to obtain that with probability $\geqslant 1-\frac{1}{N}$, one has

$$
K \subset(\sqrt{n}+2 \sqrt{\log N}) B_{2}^{n} \subset 3 \sqrt{\log N} B_{2}^{n}
$$

Now for the converse inclusion: for every $x \in S^{n-1}$, the random variables $\left\langle G_{i}, x\right\rangle$ are i.i.d. $N(0,1)$. By a result from the course, we have therefore $\mathbf{E} \max _{1 \leqslant i \leqslant N}\left\langle G_{i}, x\right\rangle \geqslant c \sqrt{\log N}$, and again by the warm-up

$$
\mathbf{P}(w(K, x) \leqslant \sqrt{\log N}-t)=\mathbf{P}\left(\max _{1 \leqslant i \leqslant N}\left\langle G_{i}, x\right\rangle \leqslant c \sqrt{\log N}-t\right) \leqslant \exp \left(-t^{2} / 2\right)=N^{-c^{2} / 8}
$$

for the choice $t=\frac{c}{2} \sqrt{\log N}$.
Finally, choose $\varepsilon=c / 12$ and let \mathcal{N} a ε-net in S^{n-1} with $\operatorname{card} \mathcal{N} \leqslant(36 / c)^{n}$. If we choose $N \geqslant C^{n}$ for a large enough C, we get $N^{-c^{2} / 8}(36 / c)^{n} \ll 1$. Thereforeby the union bound, with large probability

$$
\inf _{x \in \mathcal{N}} w(K, x) \geqslant \frac{c}{2} \sqrt{\log N} .
$$

If $K \subset 3 \sqrt{\log N} B_{2}^{n}$ (another event of large probability), then the function $w(K, \cdot)$ is $3 \sqrt{\log N \text {-Lipschitz on }}$ S^{n-1} and therefore $\inf _{x \in S^{n-1}} w(K, x) \geqslant \frac{c}{2} \sqrt{\log N}-\varepsilon 3 \sqrt{\log N}=\frac{c}{4} \sqrt{\log N}$. This inequality is equivalent to the inclusion $\frac{c}{4} \sqrt{\log N} \subset B_{2}^{n}$.

Covering in the discrete cube

1. For $\varepsilon \in[0,1]$, let $V(\varepsilon)$ be the number of elements in a ball of radius ε in $\left(Q_{n}, d\right)$. This value does not depend on the center and equals $\sum_{0 \leqslant k \leqslant \varepsilon n}\binom{n}{k}$. By the inequality given in the exercise, we have therefore

$$
\frac{1}{n+1} 2^{n H(\lfloor\varepsilon n\rfloor / n)} \leqslant V(\varepsilon) \leqslant 2^{n H(\lfloor\varepsilon n\rfloor / n)} .
$$

In particular, $\lim \frac{1}{n} \log _{2} V(\varepsilon)=H(\varepsilon)$. Take a ε-separated set P with maximal cardinality. The balls centered at P with radius $\varepsilon / 2$ are disjoint, and therefore $V(\varepsilon / 2) \operatorname{card} P \leqslant 2^{n}$. This gives the lower bound. By maximality, the balls cented at P with radius ε cover Q_{n}, and therefore $V(\varepsilon) \operatorname{card} P \geqslant 2^{n}$. This gives the upper bound.
2. Let $\left(x_{i}\right)_{1 \leqslant i \leqslant N}$ be i.i.d. points uniformly chosen in Q_{n}, and $A=\bigcup B\left(x_{i}, \varepsilon\right)$. For every $x \in Q_{n}$, we have

$$
\mathbf{P}(x \notin A)=\left(1-\frac{V(\varepsilon)}{2^{n}}\right)^{N} \leqslant \exp \left(-N V(\varepsilon) / 2^{n}\right)
$$

and therefore

$$
\mathbf{E} \operatorname{card}\left(Q_{n} \backslash A\right) \leqslant 2^{n} \exp \left(-N V(\varepsilon) / 2^{n}\right)
$$

If $N>n \log (2) 2^{n} / V(\varepsilon)$, this expectation is <1 and therefore $\mathbf{P}\left(Q_{n}=A\right)>0$. It follows that $N\left(Q_{n}, \varepsilon\right) \leqslant \frac{2^{n} n \log 2}{V(\varepsilon)}+1$. Together with the lower bound $N\left(Q_{n}, \varepsilon\right) \geqslant 2^{n} / V(\varepsilon)$, we get the desired limit as $n \rightarrow \infty$.

Diameter of random sections

1. For every $O \in \mathrm{O}(n), M O^{-1}$ has the same distribution as M (by rotational invariance of the Gaussian measure). Since $\operatorname{ker}\left(M O^{-1}\right)=O \operatorname{ker} M$, the distribution of $\operatorname{ker} M$ is invariant under the action of $\mathrm{O}(n)$, therefore it must be $\mu_{n, n-m}$.
2. We use Gordon's lemma in the form "min max" for the processes $X_{(x, y)}=\langle M x, y\rangle$ and $Y_{(x, y)}=$ $\langle G, x\rangle+\left\langle G^{\prime}, y\right\rangle$, indexed by $(x, y) \in L \times S^{m-1}$, where $G^{\prime} \sim N\left(0, \mathrm{Id}_{m}\right)$ is independent from G. The hypotheses are satisfies as was explained in the main course, and we get

$$
\mathbf{E} \min _{y \in L}|M y|=\mathbf{E} \min _{y \in L} \max _{x \in S^{m-1}} X_{(x, y)} \geqslant \mathbf{E} \min _{y \in L} \max _{x \in S^{m-1}} Y_{(x, y)}=\kappa_{m}-w_{G}(L) .
$$

For the second part, realize E as ker M and note that, since L is closed, $E \cap L \neq \emptyset$ if and onlf if $\min _{y \in L}|M y|>0$. Since $\phi: M \mapsto \min _{y \in L}|M y|$ is a 1-Lipschitz function with respect to the Hilbert-Schmidt distance, we get using the warm up

$$
\mathbf{P}(E \cap L \neq \emptyset)=\mathbf{P}(\phi(M) \leqslant 0) \leqslant \exp \left(-[\mathbf{E} \phi(M)]^{2} / 2\right) \leqslant \exp \left(-\left(\kappa_{m}-w_{G}(L)\right)^{2} / 2\right)
$$

3. We apply the previous question with $L=S^{n-1} \cap t K$ for some $t=1 /(2 w(K))$. We have $w_{G}(L) \leqslant$ $w_{G}(t K)=t \kappa_{n} w(K) \leqslant \kappa_{n} / 2$. Since $\kappa_{n} \sim \sqrt{n}$ for n large, we have $\kappa_{n / 2}>\kappa_{n} / 2$, and by the previous question, we have $E \cap L=\emptyset$ with high probability, which implies $K \cap E \subset 2 w(K) B_{2}^{n}$.

Problem

1. For $p=1$ or $p=2$, write using Tonelli theorem

$$
\begin{aligned}
\int_{K}\left(1-\|x\|_{K}^{p}\right)^{m / p} \operatorname{dvol}(x) & =\int_{K} \int_{\|x\|_{K}^{p}}^{1} \frac{m}{p}(1-t)^{\frac{m}{p}-1} \mathrm{~d} t \mathrm{dvol}(x) \\
& =\operatorname{vol}(K) \frac{m}{p} \int_{0}^{1} t^{n / p}(1-t)^{\frac{m}{p}-1} \mathrm{~d} t \\
& =\operatorname{vol}(K) \frac{m}{p} \frac{(n / p)!(m / p-1)!}{(n / p+m / p)!}
\end{aligned}
$$

2. (a) Let $\lambda=\|x\|_{P_{E} C}$, so $x=\lambda y$ for $y \in P_{E} C$, and there exists $z \in E^{\perp}$ such that $w=y+z \in$ C. Since C is convex, it contains the convex hull of $\{w\}$ and $C \cap E^{\perp}$, and in particular $\lambda w+(1-\lambda) C \cap E^{\perp}=x+\lambda z+(1-\lambda) C \cap E^{\perp}$, a translate as needed.
(b) Computing $\operatorname{vol}_{n}(C)$ using Tonelli theorem gives

$$
\operatorname{vol}_{n}(C)=\int_{P_{E} C} \operatorname{vol}_{n-k}\left(C \cap\left(x+E^{\perp}\right)\right) \mathrm{d} \operatorname{vol}_{\mathrm{k}} \geqslant \operatorname{vol}_{n-k}\left(C \cap E^{\perp}\right) \int_{P_{E} C}\left(1-\|x\|_{P_{E} C}\right)^{n-k}
$$

By 1), $\operatorname{vol}_{n}(C) \geqslant \operatorname{vol}_{n-k}\left(C \cap E^{\perp}\right) \operatorname{vol}_{k}\left(P_{E} C\right) \frac{(n-k)!k!}{n!}$.
3. (a) Let $y \in \mathbf{R}^{n}$. We compute

$$
\sup _{x \in K_{1}+2 K_{2}}\langle x, y\rangle=\sup _{t_{1}^{2}+t_{2}^{2} \leqslant 1} \sup _{x_{1} \in K_{1}} \sup _{x_{2} \in K_{2}} t_{1}\left\langle x_{1}, y\right\rangle+t_{2}\left\langle x_{2}, y\right\rangle=\sup _{t_{1}^{2}+t_{2}^{2} \leqslant 1} t_{1}\|y\|_{K_{1}^{\circ}}+t_{2}\|y\|_{K_{2}^{\circ}}
$$

which equals $\sqrt{\|y\|_{K_{1}^{\circ}}^{2}+\|y\|_{K_{2}^{\circ}}^{2}}$, giving the announced formula.
(b) Computing $\operatorname{vol}_{2 n}(C)$ using Tonelli theorem gives

$$
\operatorname{vol}_{2 n}(C)=\int_{K}\left(1-\|x\|_{K}^{2}\right)^{n / 2} \operatorname{vol}_{n}\left(K^{\circ}\right)=(K) \frac{(n / 2)!(n / 2)!}{n!}
$$

using question 1. The map P_{E} has the form $P_{E}(x, y)=\left(\frac{x+y}{2}, \frac{x+y}{2}\right)$ and therefore $P_{E} C=$ $\left\{\frac{1}{2}(z, z): z \in K+{ }_{2} K^{\circ}\right\}$. Since the map $z \mapsto(z, z)$ has jacobian $(\sqrt{2})^{n}$ we get $\operatorname{vol}_{n}\left(P_{E} C\right)=$ $2^{-n / 2} \operatorname{vol}_{n}\left(K+{ }_{2} K^{\circ}\right)$. Finally, note that $E^{\perp}=\left\{(z,-z): z \in \mathbf{R}^{n}\right\}$, so that $C \cap E^{\perp}$ is the set $\{(z,-z)\}$ with $\|z\|_{K}^{2}+\|z\|_{K^{\circ}}^{2} \leqslant 1$, hence the result.
(c) We have

$$
s(K)=\frac{n!}{(n / 2)!(n / 2)!} \operatorname{vol}_{2 n}(C) \geqslant \frac{n!}{(n / 2)!(n / 2)!} \frac{n!n!}{(2 n!)} \operatorname{vol}_{n}\left(P_{E} C\right) \operatorname{vol}_{n}\left(C \cap E^{\perp}\right)
$$

The hinted inequality $\binom{2 n}{n} \leqslant 2^{n}\binom{n}{n / 2}$ gives the result. Note that for even n the inequality follows from the fact that $\binom{2 n}{n} \leqslant\binom{ n}{n / 2}^{2} \leqslant 2^{n}\binom{n}{n / 2}$
4. (a) Since $s(T K)=s(K)$ for every $T \in \mathrm{GL}(n, \mathbf{R})$, it is enough to show the existence of $T \in \operatorname{GL}(n, \mathbf{R})$ such that $(T(\mathcal{E}))^{\circ}=T\left(\mathcal{F}^{\circ}\right)$. There is a positive matrix A such that $\mathcal{F}=A(\mathcal{E})$. We check that $T=A^{-1 / 2}$ works, since $(T(\mathcal{E}))^{\circ}=A^{1 / 2} \mathcal{E}^{\circ}=A^{1 / 2} A^{-1} \mathcal{F}^{\circ}=T\left(\mathcal{F}^{\circ}\right)$
(b) It is easily checked that $\frac{1}{\sqrt{2}} \mathcal{E}=\mathcal{E} \cap_{2} \mathcal{E} \subset K \cap_{2} K^{\circ}$. On the other hand, if $x \in K \cap_{2} K^{\circ}$, then $|x|^{2} \leqslant\|x\|_{K}\|x\|_{K^{\circ}} \leqslant \frac{\|x\|_{K}^{2}+\|x\|_{K^{\circ}}^{2}}{2} \leqslant \frac{1}{2}$ so $K \cap_{2} K^{\circ} \subset \frac{1}{\sqrt{2}} B_{2}^{n}$.
(c) We prove by induction on N the theorem under the assumption that $2^{2^{N}} \leqslant r \leqslant 2^{2^{N+1}}$. For the base case $N=0$ (so $2 \leqslant r \leqslant 4$), we can use the bound $s(K) \geqslant r^{-n} s\left(B_{2}^{n}\right)$ (which follows from $\operatorname{vol}_{n}(K) \geqslant \operatorname{vol}_{n}(\mathcal{E})=r^{-n} \operatorname{vol}_{n}(\mathcal{F})$ and $\left.\operatorname{vol}_{n}\left(K^{\circ}\right) \geqslant \operatorname{vol}_{n}\left(\mathcal{F}^{\circ}\right)\right)$ since $2 \log _{2} r \geqslant r$ for $r \in[2,4]$. For the inductive step, apply the induction hypothesis together with (3c) since $\mathcal{E}_{0} \subset K \cap_{2} K^{\circ} \subset$ \mathcal{F}_{0}, where the ellipsoids $\mathcal{F}_{0}=\frac{1}{\sqrt{2}} B_{2}^{n}$ and $\mathcal{E}_{0}=\frac{1}{\sqrt{2}} \mathcal{E}$ satisfy $\operatorname{vol}_{n}\left(\mathcal{F}_{0}\right) / \operatorname{vol}_{n}\left(\mathcal{E}_{0}\right)=(\sqrt{r})^{n}$. Note that $2^{2^{N-1}} \leqslant \sqrt{r} \leqslant 2^{2^{N}}$. By induction, we get

$$
s(K) \geqslant 2^{-n} s\left(K \cap_{2} K^{\circ}\right) \geqslant 2^{-n}\left(2 \log _{2} \sqrt{r}\right)^{-n}=\left(2 \log _{2} r\right)^{-n}
$$

