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Final exam – solutions

Warm-up
We first check that |M −EX| 6 C0 for some constant C0, since

|EX −M | 6 E|X −M | =
∫ ∞
0

P(|X −M | > t) dt 6
∫ ∞
0

exp(−t2/2) dt = C0.

We then write
P(X > E[X] + t) 6 P(X >M + t− C0) 6

1

2
exp(−(t− C0)

2/2)

If t > 2C0, we have t−C0 > t/2 and P(X > E [X] + t) 6 1
2 exp(−t

2/8). Since probabilities are bounded
by 1 anyway, the bound P(X > E [X] + t) 6 exp(C2

0/2) · exp(−t2/8) holds for every t > 0.

Convex hull of a Gaussian cloud
Let K = conv(Gi). The function x 7→ |x| is obviously 1-Lipschitz, and E|Gi| = κn 6

√
n. By the

warm-up, P(|Gi| >
√
n+ t) 6 exp(−t2/2) for any t > 0. Consequently, by the union bound,

P(K 6∈ (
√
n+ t)Bn

2 ) = P(∃i, |gi| >
√
n+ t) 6 N exp(−t2/2).

Assume N > en and choose t = 2
√
logN to obtain that with probability > 1− 1

N , one has

K ⊂ (
√
n+ 2

√
logN)Bn

2 ⊂ 3
√

logNBn
2 .

Now for the converse inclusion: for every x ∈ Sn−1, the random variables 〈Gi, x〉 are i.i.d. N(0, 1).
By a result from the course, we have therefore Emax16i6N 〈Gi, x〉 > c

√
logN , and again by the warm-up

P
(
w(K,x) 6

√
logN − t

)
= P

(
max

16i6N
〈Gi, x〉 6 c

√
logN − t

)
6 exp(−t2/2) = N−c

2/8

for the choice t = c
2

√
logN .

Finally, choose ε = c/12 and let N a ε-net in Sn−1 with cardN 6 (36/c)n. If we choose N > Cn for
a large enough C, we get N−c

2/8(36/c)n � 1. Thereforeby the union bound, with large probability

inf
x∈N

w(K,x) >
c

2

√
logN.

If K ⊂ 3
√
logNBn

2 (another event of large probability), then the function w(K, ·) is 3
√
logN -Lipschitz on

Sn−1 and therefore infx∈Sn−1 w(K,x) > c
2

√
logN − ε3

√
logN = c

4

√
logN . This inequality is equivalent

to the inclusion c
4

√
logN ⊂ Bn

2 .

Covering in the discrete cube

1. For ε ∈ [0, 1], let V (ε) be the number of elements in a ball of radius ε in (Qn, d). This value does
not depend on the center and equals

∑
06k6εn

(
n
k

)
. By the inequality given in the exercise, we have

therefore
1

n+ 1
2nH(bεnc/n) 6 V (ε) 6 2nH(bεnc/n).

In particular, lim 1
n log2 V (ε) = H(ε). Take a ε-separated set P with maximal cardinality. The

balls centered at P with radius ε/2 are disjoint, and therefore V (ε/2) cardP 6 2n. This gives
the lower bound. By maximality, the balls cented at P with radius ε cover Qn, and therefore
V (ε) cardP > 2n. This gives the upper bound.
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2. Let (xi)16i6N be i.i.d. points uniformly chosen in Qn, and A =
⋃
B(xi, ε). For every x ∈ Qn, we

have

P(x 6∈ A) =
(
1− V (ε)

2n

)N

6 exp(−NV (ε)/2n)

and therefore
E card(Qn \A) 6 2n exp(−NV (ε)/2n).

If N > n log(2)2n/V (ε), this expectation is < 1 and therefore P(Qn = A) > 0. It follows that
N(Qn, ε) 6

2nn log 2
V (ε) + 1. Together with the lower bound N(Qn, ε) > 2n/V (ε), we get the desired

limit as n→∞.

Diameter of random sections

1. For every O ∈ O(n),MO−1 has the same distribution asM (by rotational invariance of the Gaussian
measure). Since ker(MO−1) = O kerM , the distribution of kerM is invariant under the action of
O(n), therefore it must be µn,n−m.

2. We use Gordon’s lemma in the form “minmax” for the processes X(x,y) = 〈Mx, y〉 and Y(x,y) =
〈G, x〉+ 〈G′, y〉, indexed by (x, y) ∈ L× Sm−1, where G′ ∼ N(0, Idm) is independent from G. The
hypotheses are satisfies as was explained in the main course, and we get

Emin
y∈L
|My| = Emin

y∈L
max

x∈Sm−1
X(x,y) > Emin

y∈L
max

x∈Sm−1
Y(x,y) = κm − wG(L).

For the second part, realize E as kerM and note that, since L is closed, E ∩ L 6= ∅ if and onlf
if miny∈L |My| > 0. Since φ : M 7→ miny∈L |My| is a 1-Lipschitz function with respect to the
Hilbert–Schmidt distance, we get using the warm up

P(E ∩ L 6= ∅) = P(φ(M) 6 0) 6 exp(−[Eφ(M)]2/2) 6 exp(−(κm − wG(L))
2/2).

3. We apply the previous question with L = Sn−1 ∩ tK for some t = 1/(2w(K)). We have wG(L) 6
wG(tK) = tκnw(K) 6 κn/2. Since κn ∼

√
n for n large, we have κn/2 > κn/2, and by the previous

question, we have E ∩ L = ∅ with high probability, which implies K ∩ E ⊂ 2w(K)Bn
2 .

Problem

1. For p = 1 or p = 2, write using Tonelli theorem∫
K

(1− ‖x‖pK)m/p dvol(x) =

∫
K

∫ 1

‖x‖pK

m

p
(1− t)

m
p −1 dtdvol(x)

= vol(K)
m

p

∫ 1

0

tn/p(1− t)
m
p −1 dt

= vol(K)
m

p

(n/p)!(m/p− 1)!

(n/p+m/p)!
.

2. (a) Let λ = ‖x‖PEC , so x = λy for y ∈ PEC, and there exists z ∈ E⊥ such that w = y + z ∈
C. Since C is convex, it contains the convex hull of {w} and C ∩ E⊥, and in particular
λw + (1− λ)C ∩ E⊥ = x+ λz + (1− λ)C ∩ E⊥, a translate as needed.

(b) Computing voln(C) using Tonelli theorem gives

voln(C) =

∫
PEC

voln−k(C ∩ (x+ E⊥)) d volk > voln−k(C ∩ E⊥)
∫
PEC

(1− ‖x‖PEC)
n−k.

By 1), voln(C) > voln−k(C ∩ E⊥) volk(PEC)
(n−k)!k!

n! .
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3. (a) Let y ∈ Rn. We compute

sup
x∈K1+2K2

〈x, y〉 = sup
t21+t2261

sup
x1∈K1

sup
x2∈K2

t1〈x1, y〉+ t2〈x2, y〉 = sup
t21+t2261

t1‖y‖K◦
1
+ t2‖y‖K◦

2

which equals
√
‖y‖2K◦

1
+ ‖y‖2K◦

2
, giving the announced formula.

(b) Computing vol2n(C) using Tonelli theorem gives

vol2n(C) =

∫
K

(1− ‖x‖2K)n/2 voln(K
◦) = (K)

(n/2)!(n/2)!

n!

using question 1. The map PE has the form PE(x, y) =
(
x+y
2 , x+y

2

)
and therefore PEC =

{ 12 (z, z) : z ∈ K +2 K
◦}. Since the map z 7→ (z, z) has jacobian (

√
2)n we get voln(PEC) =

2−n/2 voln(K +2 K
◦). Finally, note that E⊥ = {(z,−z) : z ∈ Rn}, so that C ∩ E⊥ is the set

{(z,−z)} with ‖z‖2K + ‖z‖2K◦ 6 1, hence the result.

(c) We have

s(K) =
n!

(n/2)!(n/2)!
vol2n(C) >

n!

(n/2)!(n/2)!

n!n!

(2n!)
voln(PEC) voln(C ∩ E⊥).

The hinted inequality
(
2n
n

)
6 2n

(
n

n/2

)
gives the result. Note that for even n the inequality

follows from the fact that
(
2n
n

)
6
(

n
n/2

)2
6 2n

(
n

n/2

)
4. (a) Since s(TK) = s(K) for every T ∈ GL(n,R), it is enough to show the existence of T ∈ GL(n,R)

such that (T (E))◦ = T (F◦). There is a positive matrix A such that F = A(E). We check that
T = A−1/2 works, since (T (E))◦ = A1/2E◦ = A1/2A−1F◦ = T (F◦)

(b) It is easily checked that 1√
2
E = E ∩2 E ⊂ K ∩2 K◦. On the other hand, if x ∈ K ∩2 K◦, then

|x|2 6 ‖x‖K‖x‖K◦ 6 ‖x‖2K+‖x‖2K◦
2 6 1

2 so K ∩2 K◦ ⊂ 1√
2
Bn

2 .

(c) We prove by induction on N the theorem under the assumption that 22
N

6 r 6 22
N+1

. For the
base case N = 0 (so 2 6 r 6 4), we can use the bound s(K) > r−ns(Bn

2 ) (which follows from
voln(K) > voln(E) = r−n voln(F) and voln(K

◦) > voln(F◦)) since 2 log2 r > r for r ∈ [2, 4].
For the inductive step, apply the induction hypothesis together with (3c) since E0 ⊂ K∩2K◦ ⊂
F0, where the ellipsoids F0 = 1√

2
Bn

2 and E0 = 1√
2
E satisfy voln(F0)/ voln(E0) = (

√
r)n. Note

that 22
N−1

6
√
r 6 22

N

. By induction, we get

s(K) > 2−ns(K ∩2 K◦) > 2−n(2 log2
√
r)−n = (2 log2 r)

−n.
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