Université Claude Bernard Mathématiques
M2 Phenomena of High Dimension

Final exam

Warm-up: Gaussian concentration around mean or median
Let G ~ N(0,Id,,). Recall the following result from the course: if X = f(G) is a random variable
with median M, with f: (R",|-|) = R a 1-Lipschitz function, then for every ¢t > 0,

1
P(X>M+1t) < iexp(—t2/2).
Deduce the following inequality for some absolute constants C, ¢
P(X > E[X] +t) < Cexp(—ct?).

In this exam (this is relevant in Exercices 1 and 3) you are allowed to use the values C =1 and ¢ = 1/2.

Exercise 1 Convex hull of a Gaussian cloud
Let G1,...,Gpn be iid. N(0,1d,) random vectors in R™. Show the existence of constants C, ¢ > 0
such that the following holds: if N > C™, then with high probability

c+/log(N)BY C conv{Gy,...,Gn} C Cy/log(N)B%.

Hint. For the first inclusion, show that sup;(G;, x) > c\/log N for every x € S"~! by a union bound
argument over a €-net.

Exercise 2 Covering and packing in the discrete cube
In this exercise you can use the following estimate: for integers 0 < k < n we have

k
1 n
n+1 = j

where H(t) = —tlogyt — (1 — t)log,(1 — t) is the binary entropy function.
Let @, = {0,1}". For z, y € Qp, define d(x,y) = %Card{i x; # yi}. For e € (0,1), denote by
N(Qn,e) and P(Qn,¢) the covering and packing numbers for the metric space (@, d).

1. For 0 < € < 1/2, show that
1 — H(e) < limsupn ' logy P(Qn,e) < 1 — H(g/2)

n—oo
2. For 0 < € < 1/2, show by a random covering argument that

lim n~'logy N(Qn,e) =1 — H(e).
n—oo

Exercise 3 Diameter of random sections

1. Let 1 < m < n and M be a m x n random matrix with i.i.d. N(0,1) entries. Show that ker M is
distributed according to the measure (i, 5,—y, on the Grassmann manifold Gy, ;,— .

2. Let L € S™ ! a closed subset, and define wg(L) := Esup, .. (G, z) for G ~ N(0,1d,,). Prove using
Gordon’s lemma that
. S _ .
Egneler1|Mx| > km —wg(L)
If K, = we (L), deduce that for a random (n—m)-dimensional subspace E with distibution g, n—m,
P(ENL#0) < exp(—(km — wg(L))?/2).
3. Deduce the following theorem: if K C R™ is a symmetric convex body and E C G,, 1, is a random

k-dimensional subspace with distribution p,  for k = [n/2], then with high probability,
KNE cC2w(K)BY.



Exercise 4 A “cheap” form of the reverse Santalé inequality up to logn factor

You can use freely the formula

1 1 m!
/ tn(l _ t)m dt = &
0 (n+m+1)!

for m, n > 0. If m and n are not integers, it still holds true with the convention n! = T'(n + 1) = n['(n).
We denote by vol,, the Lebesgue measure in any n-dimensional Euclidean (sub)space. For K a convex
body in R™, we denote s(K) = vol, (K) vol,, (K°).

1. Let K C R™ be a symmetric convex body. Show the formulas, for m € N
m! n!

(m+n)!

222 dvol, () = (/2D
[ =Tl vl (o) = {2 ol (),

2. (a) Let C C R¥ be a centrally symmetric convex body, £ C R a k-dimensional linear subspace,
and Pg the orthogonal projection onto E (so that E+ = ker Pg). Show that for every x € PrC,
the set C N (z + E*) contains a translate of (1 — ||z||p,c)(C N EL).

(b) Deduce the estimate

[ =l dvola(e) = vol, (K),
K

El (n—k)

|
vol, (C) > “voly (PgC) vol,,_(C' N EL).

3. Given symmetric convex bodies K1, K> in R", define K7 49 K5 and K Ny Ko by the formulas

Ki+9 Ky = {tll'l +itoxo : x; € Ki7 t% +t% < 1}7

I llrnores = 3/ I %, + 1 %, -

(a) Show that (K +2 K»2)° = K37 N2 K5.
(b) Fix a convex body K C R", and define C C R?>" ~ R" @ R" by

C={(sz,ty) :x €K, yc K°, s* +1>* <1}
Consider the subspace E = {(z,z) : « € R"}. Show that

vola, (C) = MS(K),

n!
vol, (PgC) = 27"/ vol,, (K +4 K°),
vol, (C'N E+) = 22 vol, (K Ny K°).
(c) Using (2b), conclude that s(K) > 27 "s(K Ny K°)
You can use the inequality (25) <2n (n%)

4. The goal of this question is to prove the following.

Theorem. If K is a convex body and &£, F are ellispoids such that £ C K C F and \\,/?)11,1((?)) ="

with r € [2,+00), then s(K) > (2log, )~ "s(BY).

(a) Show that we can reduce to the case when £° = F.

(b) Assuming £° = F, show that %S CKnNyK°C %Bg.

(c) Using (3c), prove the theorem by induction on r.



