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Final exam

Warm-up: Gaussian concentration around mean or median
Let G ∼ N(0, Idn). Recall the following result from the course: if X = f(G) is a random variable

with median M , with f : (Rn, | · |)→ R a 1-Lipschitz function, then for every t > 0,

P(X >M + t) 6
1

2
exp(−t2/2).

Deduce the following inequality for some absolute constants C, c

P(X > E[X] + t) 6 C exp(−ct2).

In this exam (this is relevant in Exercices 1 and 3) you are allowed to use the values C = 1 and c = 1/2.

Exercise 1 Convex hull of a Gaussian cloud
Let G1, . . . , GN be i.i.d. N(0, Idn) random vectors in Rn. Show the existence of constants C, c > 0

such that the following holds: if N > Cn, then with high probability

c
√

log(N)Bn
2 ⊂ conv{G1, . . . , GN} ⊂ C

√
log(N)Bn

2 .

Hint. For the first inclusion, show that supi〈Gi, x〉 > c
√

logN for every x ∈ Sn−1 by a union bound
argument over a ε-net.

Exercise 2 Covering and packing in the discrete cube
In this exercise you can use the following estimate: for integers 0 6 k 6 n we have

1

n+ 1
2nH(k/n) 6

k∑
j=0

(
n

j

)
6 2nH(k/n)

where H(t) = −t log2 t− (1− t) log2(1− t) is the binary entropy function.
Let Qn = {0, 1}n. For x, y ∈ Qn, define d(x, y) = 1

n card{i xi 6= yi}. For ε ∈ (0, 1), denote by
N(Qn, ε) and P (Qn, ε) the covering and packing numbers for the metric space (Qn, d).

1. For 0 < ε < 1/2, show that

1−H(ε) 6 lim sup
n→∞

n−1 log2 P (Qn, ε) 6 1−H(ε/2)

2. For 0 < ε < 1/2, show by a random covering argument that

lim
n→∞

n−1 log2N(Qn, ε) = 1−H(ε).

Exercise 3 Diameter of random sections

1. Let 1 6 m < n and M be a m × n random matrix with i.i.d. N(0, 1) entries. Show that kerM is
distributed according to the measure µn,n−m on the Grassmann manifold Gn,n−m.

2. Let L ⊂ Sn−1 a closed subset, and define wG(L) := E supx∈L〈G, x〉 for G ∼ N(0, Idn). Prove using
Gordon’s lemma that

Emin
x∈L
|Mx| > κm − wG(L).

If κm > wG(L), deduce that for a random (n−m)-dimensional subspace E with distibution µn,n−m,

P(E ∩ L 6= ∅) 6 exp(−(κm − wG(L))2/2).

3. Deduce the following theorem: if K ⊂ Rn is a symmetric convex body and E ⊂ Gn,k is a random
k-dimensional subspace with distribution µn,k for k = bn/2c, then with high probability,

K ∩ E ⊂ 2w(K)Bn
2 .
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Exercise 4 A “cheap” form of the reverse Santaló inequality up to log n factor

You can use freely the formula ∫ 1

0

tn(1− t)m dt =
n! m!

(n+m+ 1)!

for m, n > 0. If m and n are not integers, it still holds true with the convention n! = Γ(n+ 1) = nΓ(n).
We denote by voln the Lebesgue measure in any n-dimensional Euclidean (sub)space. For K a convex
body in Rn, we denote s(K) = voln(K) voln(K◦).

1. Let K ⊂ Rn be a symmetric convex body. Show the formulas, for m ∈ N∫
K

(1− ‖x‖K)m dvoln(x) =
m! n!

(m+ n)!
voln(K),

∫
K

(1− ‖x‖2K)m/2 dvoln(x) =
(m/2)!(n/2)!

(m/2 + n/2)!
voln(K).

2. (a) Let C ⊂ RN be a centrally symmetric convex body, E ⊂ RN a k-dimensional linear subspace,
and PE the orthogonal projection onto E (so that E⊥ = kerPE). Show that for every x ∈ PEC,
the set C ∩ (x+ E⊥) contains a translate of (1− ‖x‖PEC)(C ∩ E⊥).

(b) Deduce the estimate

voln(C) >
k! (n− k)!

n!
volk(PEC) voln−k(C ∩ E⊥).

3. Given symmetric convex bodies K1, K2 in Rn, define K1 +2 K2 and K2 ∩2 K2 by the formulas

K1 +2 K2 = {t1x1 + t2x2 : xi ∈ Ki, t
2
1 + t22 6 1},

‖ · ‖K1∩2K2
=
√
‖ · ‖2K1

+ ‖ · ‖2K2
.

(a) Show that (K1 +2 K2)◦ = K◦1 ∩2 K◦2 .
(b) Fix a convex body K ⊂ Rn, and define C ⊂ R2n ' Rn ⊕Rn by

C = {(sx, ty) : x ∈ K, y ∈ K◦, s2 + t2 6 1}.

Consider the subspace E = {(x, x) : x ∈ Rn}. Show that

vol2n(C) =
(n/2)!(n/2)!

n!
s(K),

voln(PEC) = 2−n/2 voln(K +2 K
◦),

voln(C ∩ E⊥) = 2n/2 voln(K ∩2 K◦).

(c) Using (2b), conclude that s(K) > 2−ns(K ∩2 K◦)
You can use the inequality

(
2n
n

)
6 2n

(
n

n/2

)
.

4. The goal of this question is to prove the following.

Theorem. If K is a convex body and E , F are ellispoids such that E ⊂ K ⊂ F and voln(F)
voln(E) = rn

with r ∈ [2,+∞), then s(K) > (2 log2 r)
−ns(Bn

2 ).

(a) Show that we can reduce to the case when E◦ = F .
(b) Assuming E◦ = F , show that 1√

2
E ⊂ K ∩2 K◦ ⊂ 1√

2
Bn

2 .

(c) Using (3c), prove the theorem by induction on r.
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