Final exam

Warm-up: Gaussian concentration around mean or median

Let $G \sim N\left(0, \operatorname{Id}_{n}\right)$. Recall the following result from the course: if $X=f(G)$ is a random variable with median M, with $f:\left(\mathbf{R}^{n},|\cdot|\right) \rightarrow \mathbf{R}$ a 1-Lipschitz function, then for every $t \geqslant 0$,

$$
\mathbf{P}(X \geqslant M+t) \leqslant \frac{1}{2} \exp \left(-t^{2} / 2\right)
$$

Deduce the following inequality for some absolute constants C, c

$$
\mathbf{P}(X \geqslant \mathbf{E}[X]+t) \leqslant C \exp \left(-c t^{2}\right)
$$

In this exam (this is relevant in Exercices 1 and 3) you are allowed to use the values $C=1$ and $c=1 / 2$.

Exercise 1 Convex hull of a Gaussian cloud

Let G_{1}, \ldots, G_{N} be i.i.d. $N\left(0, \operatorname{Id}_{n}\right)$ random vectors in \mathbf{R}^{n}. Show the existence of constants $C, c>0$ such that the following holds: if $N \geqslant C^{n}$, then with high probability

$$
c \sqrt{\log (N)} B_{2}^{n} \subset \operatorname{conv}\left\{G_{1}, \ldots, G_{N}\right\} \subset C \sqrt{\log (N)} B_{2}^{n}
$$

Hint. For the first inclusion, show that $\sup _{i}\left\langle G_{i}, x\right\rangle \geqslant c \sqrt{\log N}$ for every $x \in S^{n-1}$ by a union bound argument over a ε-net.

Exercise 2 Covering and packing in the discrete cube

In this exercise you can use the following estimate: for integers $0 \leqslant k \leqslant n$ we have

$$
\frac{1}{n+1} 2^{n H(k / n)} \leqslant \sum_{j=0}^{k}\binom{n}{j} \leqslant 2^{n H(k / n)}
$$

where $H(t)=-t \log _{2} t-(1-t) \log _{2}(1-t)$ is the binary entropy function.
Let $Q_{n}=\{0,1\}^{n}$. For $x, y \in Q_{n}$, define $d(x, y)=\frac{1}{n} \operatorname{card}\left\{i x_{i} \neq y_{i}\right\}$. For $\varepsilon \in(0,1)$, denote by $N\left(Q_{n}, \varepsilon\right)$ and $P\left(Q_{n}, \varepsilon\right)$ the covering and packing numbers for the metric space $\left(Q_{n}, d\right)$.

1. For $0<\varepsilon<1 / 2$, show that

$$
1-H(\varepsilon) \leqslant \limsup _{n \rightarrow \infty} n^{-1} \log _{2} P\left(Q_{n}, \varepsilon\right) \leqslant 1-H(\varepsilon / 2)
$$

2. For $0<\varepsilon<1 / 2$, show by a random covering argument that

$$
\lim _{n \rightarrow \infty} n^{-1} \log _{2} N\left(Q_{n}, \varepsilon\right)=1-H(\varepsilon)
$$

Exercise 3 Diameter of random sections

1. Let $1 \leqslant m<n$ and M be a $m \times n$ random matrix with i.i.d. $N(0,1)$ entries. Show that ker M is distributed according to the measure $\mu_{n, n-m}$ on the Grassmann manifold $\mathrm{G}_{n, n-m}$.
2. Let $L \subset S^{n-1}$ a closed subset, and define $w_{G}(L):=\mathbf{E} \sup _{x \in L}\langle G, x\rangle$ for $G \sim N\left(0, \operatorname{Id}_{n}\right)$. Prove using Gordon's lemma that

$$
\mathbf{E} \min _{x \in L}|M x| \geqslant \kappa_{m}-w_{G}(L) .
$$

If $\kappa_{m} \geqslant w_{G}(L)$, deduce that for a random $(n-m)$-dimensional subspace E with distibution $\mu_{n, n-m}$,

$$
\mathbf{P}(E \cap L \neq \emptyset) \leqslant \exp \left(-\left(\kappa_{m}-w_{G}(L)\right)^{2} / 2\right) .
$$

3. Deduce the following theorem: if $K \subset \mathbf{R}^{n}$ is a symmetric convex body and $E \subset G_{n, k}$ is a random k-dimensional subspace with distribution $\mu_{n, k}$ for $k=\lfloor n / 2\rfloor$, then with high probability,

$$
K \cap E \subset 2 w(K) B_{2}^{n}
$$

Exercise 4 A "cheap" form of the reverse Santaló inequality up to $\log n$ factor

You can use freely the formula

$$
\int_{0}^{1} t^{n}(1-t)^{m} \mathrm{~d} t=\frac{n!m!}{(n+m+1)!}
$$

for $m, n \geqslant 0$. If m and n are not integers, it still holds true with the convention $n!=\Gamma(n+1)=n \Gamma(n)$. We denote by vol_{n} the Lebesgue measure in any n-dimensional Euclidean (sub)space. For K a convex body in \mathbf{R}^{n}, we denote $s(K)=\operatorname{vol}_{n}(K) \operatorname{vol}_{n}\left(K^{\circ}\right)$.

1. Let $K \subset \mathbf{R}^{n}$ be a symmetric convex body. Show the formulas, for $m \in \mathbf{N}$

$$
\begin{aligned}
\int_{K}\left(1-\|x\|_{K}\right)^{m} \operatorname{dvol}_{\mathrm{n}}(x) & =\frac{m!n!}{(m+n)!} \operatorname{vol}_{n}(K), \\
\int_{K}\left(1-\|x\|_{K}^{2}\right)^{m / 2} \operatorname{dvol}_{\mathrm{n}}(x) & =\frac{(m / 2)!(n / 2)!}{(m / 2+n / 2)!} \operatorname{vol}_{n}(K) .
\end{aligned}
$$

2. (a) Let $C \subset \mathbf{R}^{N}$ be a centrally symmetric convex body, $E \subset \mathbf{R}^{N}$ a k-dimensional linear subspace, and P_{E} the orthogonal projection onto E (so that $E^{\perp}=\operatorname{ker} P_{E}$). Show that for every $x \in P_{E} C$, the set $C \cap\left(x+E^{\perp}\right)$ contains a translate of $\left(1-\|x\|_{P_{E} C}\right)\left(C \cap E^{\perp}\right)$.
(b) Deduce the estimate

$$
\operatorname{vol}_{n}(C) \geqslant \frac{k!(n-k)!}{n!} \operatorname{vol}_{k}\left(P_{E} C\right) \operatorname{vol}_{n-k}\left(C \cap E^{\perp}\right)
$$

3. Given symmetric convex bodies K_{1}, K_{2} in \mathbf{R}^{n}, define $K_{1}+{ }_{2} K_{2}$ and $K_{2} \cap_{2} K_{2}$ by the formulas

$$
\begin{gathered}
K_{1}+{ }_{2} K_{2}=\left\{t_{1} x_{1}+t_{2} x_{2}: x_{i} \in K_{i}, t_{1}^{2}+t_{2}^{2} \leqslant 1\right\}, \\
\|\cdot\|_{K_{1} \cap_{2} K_{2}}=\sqrt{\|\cdot\|_{K_{1}}^{2}+\|\cdot\|_{K_{2}}^{2}} .
\end{gathered}
$$

(a) Show that $\left(K_{1}+{ }_{2} K_{2}\right)^{\circ}=K_{1}^{\circ} \cap_{2} K_{2}^{\circ}$.
(b) Fix a convex body $K \subset \mathbf{R}^{n}$, and define $C \subset \mathbf{R}^{2 n} \simeq \mathbf{R}^{n} \oplus \mathbf{R}^{n}$ by

$$
C=\left\{(s x, t y): x \in K, y \in K^{\circ}, s^{2}+t^{2} \leqslant 1\right\} .
$$

Consider the subspace $E=\left\{(x, x): x \in \mathbf{R}^{n}\right\}$. Show that

$$
\begin{gathered}
\operatorname{vol}_{2 n}(C)=\frac{(n / 2)!(n / 2)!}{n!} s(K), \\
\operatorname{vol}_{n}\left(P_{E} C\right)=2^{-n / 2} \operatorname{vol}_{n}\left(K+{ }_{2} K^{\circ}\right), \\
\operatorname{vol}_{n}\left(C \cap E^{\perp}\right)=2^{n / 2} \operatorname{vol}_{n}\left(K \cap_{2} K^{\circ}\right) .
\end{gathered}
$$

(c) Using (2b), conclude that $s(K) \geqslant 2^{-n} s\left(K \cap_{2} K^{\circ}\right)$

You can use the inequality $\binom{2 n}{n} \leqslant 2^{n}\binom{n}{n / 2}$.
4. The goal of this question is to prove the following.

Theorem. If K is a convex body and \mathcal{E}, \mathcal{F} are ellispoids such that $\mathcal{E} \subset K \subset \mathcal{F}$ and $\frac{\operatorname{vol}_{n}(\mathcal{F})}{\operatorname{vol}_{n}(\mathcal{E})}=r^{n}$ with $r \in[2,+\infty)$, then $s(K) \geqslant\left(2 \log _{2} r\right)^{-n} s\left(B_{2}^{n}\right)$.
(a) Show that we can reduce to the case when $\mathcal{E}^{\circ}=\mathcal{F}$.
(b) Assuming $\mathcal{E}^{\circ}=\mathcal{F}$, show that $\frac{1}{\sqrt{2}} \mathcal{E} \subset K \cap_{2} K^{\circ} \subset \frac{1}{\sqrt{2}} B_{2}^{n}$.
(c) Using (3c), prove the theorem by induction on r.

