## Problem sheet \# 2

The Banach-Mazur compactum

## Exercise 2.1 Convex bodies at distance 1

Let $K, L$ be two convex bodies in $\mathbf{R}^{n}$ with $d_{B M}(K, L)=1$. Show that there exists $T \in \mathrm{GL}_{n}(\mathbf{R})$ such that $K=T L$.

## Exercise 2.2 Around John's theorem

1. Let $x \in \mathbf{R}^{n}$ with $|x|>\sqrt{n}$. Show that $\operatorname{conv}\left(B_{2}^{n} \cup\{ \pm x\}\right)$ contains an ellipsoid $\mathcal{E}$ with $\operatorname{vol}(\mathcal{E})>$ $\operatorname{vol}\left(B_{2}^{n}\right)$. Deduce another proof of the inclusion $K \subset \sqrt{n} \mathcal{E}_{J}(K)$ for any symmetric convex body $K$.
2. Let $x \in \mathbf{R}^{n}$ with $|x|>n$. Show that $\operatorname{conv}\left(B_{2}^{n} \cup\{x\}\right)$ contains a translate of an ellipsoid $\mathcal{E}$ with $\operatorname{vol}(\mathcal{E})>\operatorname{vol}\left(B_{2}^{n}\right)$. Deduce the following: for any convex body $K$, there exists an affine bijection $T$ such that $B_{2}^{n} \subset T(K) \subset n B_{2}^{n}$. Show that the constant $n$ is sharp (take $K$ to be a simplex).

## Exercise 2.3 Hadamard matrices

A Hadamard matrix is a matrix $A \in \mathrm{M}_{n}(\mathbf{R})$ with entries $\pm 1$ and such that $\frac{1}{\sqrt{n}} A$ is an orthogonal matrix.

1. Show that if a Hadamard matrix of size $n>2$ exists, then $n$ is a multiple of 4. The Hadamard conjecture postulates the existence of a Hadamard matrix of size $4 k$ for every $k$.
2. Show that if the Hadamard conjecture is true, then $d_{B M}\left(B_{1}^{n}, B_{\infty}^{n}\right) \leqslant \sqrt{n}+3$ for every $n$.
3. Show that there exists a Hadamard matrix of size 12 , and then of size $2^{k} 12^{l}$ for every $k, l \in \mathbf{N}$.
4. Show that $d_{B M}\left(B_{1}^{n}, B_{\infty}^{n}\right) \leqslant \sqrt{n}+C$ for every $n$, with $C$ a universal constant.

## Exercise 2.4 Kadets-Snobar theorem

Let $X$ be a normed space, and $Y \subset X$ an $n$-dimensional subspace. Show the existence of a projection $P: X \rightarrow X$ with range $Y$ satisfying $\|P\| \leqslant \sqrt{n}$.

Indication. Apply John's theorem to the unit ball of $Y$, deduce a decomposition of Id : $Y \rightarrow Y$ in terms of contact points and use the Hahn-Banach extension theorem: any linear form $\ell: Y \rightarrow \mathbf{R}$ extends into a linear form $\tilde{\ell}: X \rightarrow \mathbf{R}$ with $\|\tilde{\ell}\| \leqslant\|\ell\|$.

## Exercise 2.5 Auerbach theorem

A cross-polytope is a convex body in $\mathbf{R}^{n}$ of the form $\operatorname{conv}\left\{ \pm x_{i}\right\}$, where $\left(x_{i}\right)$ is a basis of the vector space $\mathbf{R}^{n}$.

1. Show that every symmetric convex body contains a maximal volume cross-polytope. Is it unique?
2. Let $K \subset \mathbf{R}^{n}$ be a symmetric convex body. Show that if $B_{1}^{n}$ is a maximal volume cross-polytope inside $K$, then $K \subset B_{\infty}^{n}$.
3. Let $K \subset \mathbf{R}^{n}$ be a symmetric convex body. Show the existence of $T \in \mathrm{GL}_{n}(\mathbf{R})$ such that $B_{1}^{n} \subset$ $T(K) \subset B_{\infty}^{n}$.

## Exercise 2.6 Sums of ellipsoids

Let $\mathcal{E}, \mathcal{F}$ be two ellipsoids. Show that

$$
\mathcal{E}+\mathcal{F} \text { is an ellispoid } \Longleftrightarrow \exists \lambda>0: \mathcal{E}=\lambda \mathcal{F} .
$$

## Exercise 2.7 Löwner ellipsoid

Let $K \subset \mathbf{R}^{n}$ be a symmetric convex body. Show that there exists a unique ellipsoid (denoted $\mathcal{E}_{L}(K)$ ) of minimal volume containing $K$. Show a characterization of the equality $\mathcal{E}_{L}(K)=B_{2}^{n}$ in the spirit of John's theorem.

## Exercise 2.8 Khintchine inequalities via convex domination

Given $X, Y$ two random variables with finite expectation, one says that $X \leqslant_{c v x} Y$ ( $Y$ dominates $X$ in the convex ordering) if $\mathbf{E} \varphi(X) \leqslant \mathbf{E} \varphi(Y)$ for any convex function $\varphi: \mathbf{R} \rightarrow \mathbf{R}$.

1. Show that is $X_{1}$ is independent from $X_{2}$ and $Y_{1}$ is independent from $Y_{2}$ with $X_{1} \leqslant c v x ~ Y_{1}$ and $X_{2} \leqslant c v x Y_{2}$, then $X_{1}+X_{2} \leqslant c v x Y_{1}+Y_{2}$.
2. Let $\varepsilon$ be a random sign (i.e. a random variable uniformly distributed on $\pm 1$ ) and $G_{\sigma}$ be a $N\left(0, \sigma^{2}\right)$ random variable. Find a value of $\sigma$ (or even the smallest possible value) for which $\varepsilon \leqslant{ }_{c v x} G_{\sigma}$.
3. Show that $\left\|G_{1}\right\|_{L^{p}} \leqslant C \sqrt{p}$ for every $p \geqslant 1$, where $C$ is a universal constant.
4. Deduce the following: if $X=\sum_{i=1}^{n} \varepsilon_{i} a_{i}$, where $\left(\varepsilon_{i}\right)$ are i.i.d. random signs and $\left(a_{i}\right)$ real numbers, then $\|X\|_{L^{p}} \leqslant C^{\prime} \sqrt{p}\|X\|_{L^{2}}$ for every $p \geqslant 2$, where $C^{\prime}$ is a universal constant.
5. Show that for $1 \leqslant p \leqslant 2$, we have $\|X\|_{L^{p}} \geqslant c\|X\|_{L^{2}}$ for a universal constant $c>0$.

## Exercise $2.9 \quad L^{1}$ Khintchine inequality with sharp constant

Consider the probability space $\Omega=\{-1,1\}^{n}$ equipped with uniform measure. Let $\varepsilon_{i}: \Omega \rightarrow\{-1,1\}$ be the $i$ th coordinate, so that the r.v. $\left(\varepsilon_{i}\right)$ are i.i.d.

1. For $A \subset\{1, \ldots, n\}$, denote $w_{A}=\prod_{i \in A} \varepsilon_{i}$ (and $w_{\emptyset}=1$ ). Show that the family $\left(w_{A}\right)$ is an orthonormal basis of $L^{2}(\Omega)$ (called the Walsh-Fourier basis).
2. For $f: \Omega \rightarrow \mathbf{R}$ and $A \subset\{1, \ldots, n\}$, denote $\hat{f}_{A}=\mathbf{E}\left[f w_{A}\right]$. Show that $f=\sum_{A} \hat{f}_{A} w_{A}$.
3. Define an operator $L$ on $L^{2}(\Omega)$ by the formula $L f=\sum_{A} \operatorname{card}(A) \hat{f}_{A} w_{A}$. Show that

$$
L f(x)=\sum_{i=1}^{n} \frac{f(x)-f\left(x^{\oplus i}\right)}{2}
$$

where $x^{\oplus i}$ denotes the vector obtain by flipping the sign of the $i$ th coordinate of $x$.
4. Show that if $f: \Omega \rightarrow \mathbf{R}$ is an even function, then $\operatorname{Var}(f) \leqslant \frac{1}{2} \mathbf{E}[f \cdot L f]$.
5. Fix real numbers $\left(a_{i}\right)$, and consider the function $f: \Omega \rightarrow \mathbf{R}$ defined as $f\left(x_{1}, \ldots, x_{n}\right)=\left|\sum_{i=1}^{n} a_{i} x_{i}\right|$. Show that $L f \leqslant f$ pointwise.
6. Conclude that $\mathbf{E} f \geqslant \frac{1}{\sqrt{2}}\left(\mathbf{E} f^{2}\right)^{\frac{1}{2}}$.
7. Show that the constant $\frac{1}{\sqrt{2}}$ is optimal in the above inequality.

