Exercise 5.1 Polytopes

1. Let $K \subset \mathbf{R}^{n}$ be a convex body. Show that K is the convex hull of a finite set iff it is the intersection of finitely many half-spaces.
2. Let $P \subset \mathbf{R}^{n}$ be polytope with v vertices and f facets, with 0 in the interior of P. Show that P° is a polytope with v facets and f vertices.

Exercise 5.2 Octahedron as a section of the cube

Fix a integer n. Show that there exist N and a n-dimensional subspace $E \subset \mathbf{R}^{N}$ such that $d_{B M}\left(B_{1}^{n}, E \cap B_{\infty}^{N}\right)=1$. What is the minimal such N ?

Exercise 5.3 Zonotopes

A zonotope in \mathbf{R}^{n} is a polytope which can be written as the Minkoswki addition of finitely many segments. For example the cube $[-1,1]^{n}$ is a zonotope since

$$
[-1,1]^{n}=\left[-e_{1}, e_{1}\right]+\cdots+\left[-e_{n}, e_{n}\right] .
$$

1. Show that a convex body is a zonotope iff it is of the form $A\left(B_{\infty}^{N}\right)$ for some integer N and some linear map $A: \mathbf{R}^{N} \rightarrow \mathbf{R}^{n}$.
2. Show that every centrally symmetric polygon (i.e. planar polytope) is a zonotope.
3. Show that the octahedron B_{1}^{3} is not a zonotope.

Exercise 5.4 Mean width = perimeter for planar sets

Show that the perimeter of any planar convex body is equal to 2π times its mean width.
Therefore, the Urysohn inequality in dimension 2 is equivalent to the isoperimetric inequality.

Exercise 5.5 Another proof of Urysohn inequality

Show that the mean width of a convex body does not increase under Steiner symmetrisations. Deduce an alternative proof of Urysohn inequality.

Exercise 5.6 Simplex

Show that there exists a simplex $\Delta_{n} \in \mathbf{R}^{n}$ with the property that $\Delta^{\circ}=-\Delta$
Exercise 5.7 Mean width and volume radius for standard sets
Compute an equivalent as $n \rightarrow \infty$ of both the mean width and the volume radius of the following convex bodies: $B_{2}^{n}, B_{1}^{n}, B_{\infty}^{n}$ and Δ_{n} (from the previous exercise).

Exercise 5.8 Intersection of two cubes

It is possible to have for every n a transformation $O \in \mathrm{O}(n)$ such that $d_{B M}\left(B_{2}^{n}, B_{\infty}^{n} \cap O\left(B_{\infty}^{n}\right)\right) \leqslant C$ for some absolute constant C ?

Exercise 5.9 Vertices and facets of symmetric polytopes

1. For integers m and k, how many vertices and facets has the polytope $B_{1}^{m} \times \cdots \times B_{1}^{m} \subset\left(\mathbf{R}^{m}\right)^{k}$?
2. Fix $0<\theta<1$. Show the existence of a symmetric polytope $P_{n} \subset \mathbf{R}^{n}$ with v_{n} vertices and f_{n} facets, with $\log v_{n} \sim \theta n$ and $\log f_{n} \sim(1-\theta) n$ as n tends to infinity.

Exercise 5.10 A variant on the volume ratio theorem

Let $K \subset \mathbf{R}^{n}$ be a symmetric convex body with $B_{2}^{n} \subset K$, and $A=\operatorname{vrad}(K)$.

1. Show that (μ being the Haar on $\mathrm{O}(n)$),

$$
\int_{\mathrm{O}(n)} \int_{S^{n-1}}\left(\frac{1}{\|U(\theta)\|_{K}\|\theta\|_{K}}\right)^{n} \mathrm{~d} \sigma(\theta) \mathrm{d} \mu(U)=A^{2 n} .
$$

2. Deduce the existence of $U_{0} \in \mathrm{O}(n)$ such that

$$
\int_{S^{n-1}} \frac{1}{N(\theta)^{2 n}} d \sigma(\theta) \leqslant A^{2 n}
$$

where $N(x)=\frac{1}{2}\left(\|x\|_{K}+\left\|U_{0}(x)\right\|_{K}\right)$.
3. Let $x \in S^{n-1}$. Show that if $N(x) \leqslant t$, then $N(y) \leqslant 2 t \quad \forall y \in C(x, t):=\left\{y \in S^{n-1}:|y-x| \leqslant t\right\}$.
4. Show that $N \geqslant 1 /\left(12 A^{2}\right)$ and deduce that

$$
B_{2}^{n} \subset K \cap U_{0}(K) \subset 12 A^{2} \cdot B_{2}^{n}
$$

Exercise 5.11 2-concavity of p-norm

1. (warm-up) Show the following inequality: $\sqrt{(\mathbf{E} X)^{2}+(\mathbf{E} Y)^{2}} \leqslant \mathbf{E} \sqrt{X^{2}+Y^{2}}$.
2. Show that for any random variables X_{1}, \ldots, X_{n} and every $1 \leqslant p \leqslant 2$, we have

$$
\left(\sum\left\|X_{k}\right\|_{L^{p}}^{2}\right)^{1 / 2} \leqslant\left\|\left(\sum X_{k}^{2}\right)^{1 / 2}\right\|_{L^{p}}
$$

