Problem sheet \# 6

Gluskin's theorem: around tools used in the proof

Exercise 6.1 Operator norm unit ball

What are the extreme points of the convex body $K=\left\{A \in \mathrm{M}_{n}(\mathbf{R}):\|A\|_{\mathrm{op}} \leqslant 1\right\}$?
What are the extreme points of $K \cap H$, where $H \subset \mathrm{M}_{n}(\mathbf{R})$ is the subspace of symmetric matrices ?

Exercise 6.2 Trace norm

For $A \in \mathrm{M}_{n}(R)$, consider the following norm (this is the dual norm to the operator norm)

$$
\|A\|_{\mathrm{tr}}=\sup \left\{\operatorname{tr}(A B): B \in \mathrm{M}_{n}(\mathbf{R}),\|B\|_{\mathrm{op}} \leqslant 1\right\}
$$

1. Show that $\|A\|_{\text {tr }}=\operatorname{tr}|A|$, where $|A|=\sqrt{A A^{t}}$.
2. Identify the extreme points of the unit ball for $\|\cdot\|_{\mathrm{tr}}$.

Exercise 6.3 Gaussian rectangular matrices

Let G be $N \times n$ random matrix with independent $N(0,1)$ entries, seen as a linear map from \mathbf{R}^{n} to \mathbf{R}^{N}. Assume $n \leqslant N$. The goal of the exercise is to find a constant C such that, with high probability,

$$
\forall x \in \mathbf{R}^{n}, \quad(\sqrt{N}-C \sqrt{n})|x| \leqslant|G x| \leqslant(\sqrt{N}+C \sqrt{n})|x|
$$

1. Let g and h be two independent random vectors in \mathbf{R}^{N} with distribution $N\left(0, \operatorname{Id}_{N}\right)$. Find constants $C, c>0$ such that for any $t>0$,

$$
\mathbf{P}(\langle g, h\rangle>t \sqrt{N}) \leqslant C\left(\exp (-c N)+\exp \left(-c t^{2}\right)\right)
$$

2. Fix x and $y \in S^{n-1}$ and consider the random variable $X=\langle G x, G y\rangle$. Show that $\mathbf{E}[X]=N\langle x, y\rangle$, and that for all $t>0$,

$$
\mathbf{P}(|X-N\langle x, y\rangle| \geqslant t) \leqslant C\left(\exp (-c N)+\exp \left(-c t^{2}\right)\right)
$$

3. Let $A=G^{t} G-N \operatorname{Id} \in \mathrm{M}_{n}(\mathbf{R})$. Show that if \mathcal{N} is a $\frac{1}{4}$-net in $\left(S^{n-1},|\cdot|\right)$, then

$$
\|A\|_{\mathrm{op}} \leqslant 2 \sup _{x, y \in \mathcal{N}}\langle A x, y\rangle
$$

4. Combine 2., 3. and estimates on cardinality of ε-nets to show that $\|A\|_{\mathrm{op}} \leqslant C^{\prime} \sqrt{n}$ with high probability.
5. Conclude.

Exercise 6.4 Non-symmetric convex bodies

In this exercise we study a variant of the Banach-Mazur compactum, allowing non-symmetric convex bodies and using affine maps instead of linear maps.

If K and L are two convex bodies in \mathbf{R}^{n}, not necessarily symmetric, define (a and b being positive)

$$
\tilde{d}_{B M}(K, L)=\inf \left\{\frac{b}{a}: \quad \exists T \in G L_{n}(\mathbf{R}), x, y \in \mathbf{R}^{n}: a(K-x) \subset T(L-y) \subset b(K-x)\right\}
$$

1. Show that if K and L are symmetric convex bodies, then $d_{B M}(K, L)=\tilde{d}_{B M}(K, L)$.
2. Show that if Δ and Δ^{\prime} are simplices in \mathbf{R}^{n}, then $\tilde{d}_{B M}\left(\Delta, \Delta^{\prime}\right)=1$. In what follows Δ_{n} denotes an arbitrary simplex in \mathbf{R}^{n}.
3. Show that $\tilde{d}_{B M}\left(\Delta_{n}, B_{2}^{n}\right)=n$. Show more generally that if K is a symmetric convex body, then $\tilde{d}_{B M}\left(\Delta_{n}, K\right)=n$ (for the upper bound, consider a maximal volume simplex inside K).
4. Define an affine ellipsoid to be the image of a (symmetric) ellipsoid under a translation. Show the non-symmetric version of John's theorem: if $K \subset \mathbf{R}^{n}$ is a convex body (not assumed to be symmetric) such that B_{2}^{n} is has maximal volume among affine ellipsoids contained in K, then there are contact points $\left(x_{i}\right) \in \partial K \cap S^{n-1}$ and a convex combination $\left(\lambda_{i}\right)$ such that $\sum \lambda_{i} x_{i}=0$ and $\sum \lambda_{i}\left|x_{i}\right\rangle\left\langle x_{i}\right|=\frac{\text { Id }}{n}$.
5. Deduce that $\tilde{d}_{B M}\left(K, B_{2}^{n}\right) \leqslant n$ for every convex body $K \subset \mathbf{R}^{n}$.
6. Show that Dvoretzky's theorem extends to the setting of non-necessarily symmetric convex bodies.

Remark: It follows from 5. that if K, L are convex bodies in \mathbf{R}^{n}, then $\tilde{d}_{B M}(K, L) \leqslant n^{2}$. The order of magnitude of the diameter of the non-symmetric variant of the Banach-Mazur compactum is unknown. The best known estimate is

$$
n \leqslant \sup _{K, L} \tilde{d}_{B M}(K, L) \leqslant C n^{4 / 3}(\log n)^{9}
$$

