Exercise 7.1 Warm-up

What can be said of centered jointly Gaussian variables $\left(X_{1}, \cdots, X_{n}\right)$ for which $\mathbf{E} \max X_{i}=0$?

Exercise 7.2 Lower bounds on norms of Gaussian matrices

Let G be a $n \times n$ random matrix with i.i.d. $N(0,1)$ entries.

1. Show that G has the same distribution as $O A P$, where O, A, P are independent random matrices, with O and P being Haar-distributed on $\mathrm{O}(n)$ and A a bidiagonal matrix with independent entries with distributions $a_{i, i} \sim \chi^{(n+1-i)}$ and $a_{i, i+1} \sim \chi^{(n-i)}$ (the $\chi^{(k)}$ distribution is the distribution of $|G|$ where G is a standard Gaussian vector in \mathbf{R}^{k}).
2. Derive the inequality (κ_{n} being the expectation of a $\chi^{(n)}$ variable)

$$
\mathbf{E}\|G\|_{\mathrm{op}} \geqslant\left\|\left(\begin{array}{ccccc}
\kappa_{n} & \kappa_{n-1} & 0 & \cdots & 0 \\
0 & \kappa_{n-1} & \kappa_{n-2} & & 0 \\
\vdots & & \ddots & \ddots & \vdots \\
\vdots & & & & \kappa_{2} \\
\kappa_{1} \\
0 & \cdots & \cdots & 0 & \kappa_{1}
\end{array}\right)\right\|_{\mathrm{op}}
$$

3. Conclude that $\mathbf{E}\|G\|_{\text {op }}$ is equivalent to $2 \sqrt{n}$ as $n \rightarrow \infty$ (the upper bound appeared in the main course).

Exercise 7.3 Some inequalities for Gaussian measure

1. Let X_{N} be a random vector uniformly distributed in the Euclidean ball $\sqrt{N} B_{2}^{N}$, and $\pi_{N, n}$ be the orthogonal projection from \mathbf{R}^{N} onto its subspace \mathbf{R}^{n}. Show that as $N \rightarrow \infty, \pi_{N, n}\left(X_{N}\right)$ converges in distribution towards a standard Gaussian vector in \mathbf{R}^{n}.
2. Deduce the following inequality for the standard Gaussian mesaure γ_{n} : for any compact sets $K, L \subset$ \mathbf{R}^{n} and $\lambda \in[0,1]$,

$$
\gamma_{n}(\lambda K+(1-\lambda) L) \geqslant \gamma_{n}(K)^{\lambda} \gamma_{n}(L)^{1-\lambda} .
$$

3. Let $K \subset \mathbf{R}^{n}$ be a symmetric convex body. Define $f: \mathbf{R} \rightarrow \mathbf{R}$ by $f(t)=\gamma_{n-1}\left(\left\{y \in \mathbf{R}^{n-1}:(t, y) \in\right.\right.$ $K\}$). Show that $\log f$ is a concave function. Deduce that

$$
\int_{0}^{t} f \mathrm{~d} \gamma_{1} \geqslant 2 \gamma_{1}([0, t]) \int_{0}^{\infty} f \mathrm{~d} \gamma_{1}
$$

4. Show the following: if K a symmetric convex body and $L=\left\{x \in \mathbf{R}^{n}:|\langle x, u\rangle| \leqslant a\right\}$ for some $u \in \mathbf{R}^{n}$ and $a>0$, then $\gamma_{n}(K \cap L) \geqslant \gamma_{n}(K) \gamma_{n}(L)$.

Exercise 7.4 Covering with centers outside

If K, L are symmetric convex bodies in \mathbf{R}^{n}, denote by $N(K, L, \varepsilon)=\inf \{\operatorname{card}(A): A \subset K \subset A+\varepsilon L\}$ and $N^{\prime}(K, L, \varepsilon)=\inf \left\{\operatorname{card}(A): A \subset \mathbf{R}^{n}, K \subset A+\varepsilon L\right\}$. Show that $N(K, L, \varepsilon) \leqslant N^{\prime}(K, L, \varepsilon / 2)$. Can you give an example with $N(K, L, \varepsilon) \neq N^{\prime}(K, L, \varepsilon)$?

Exercise 7.5 Exact duality for ellipsoids

Show that if \mathcal{E} and \mathcal{F} are ellipsoids in \mathbf{R}^{n}, then $N(\mathcal{E}, \mathcal{F}, \varepsilon)=N\left(\mathcal{F}^{\circ}, \mathcal{E}^{\circ}, \varepsilon\right)$ for every ε.

Exercise 7.6 Covering balls by cubes

Deduce from the dual Sudakov inequality that for every $\varepsilon>0$, there is a polynomial P such that $N\left(B_{2}^{n}, B_{\infty}^{n}, \varepsilon\right) \leqslant P(n)$ for every n. Can you give a direct proof of this fact, say for $\varepsilon=1 / 2$?

