Problem sheet # 7 Gaussian processes

Exercise 7.1 Warm-up

What can be said of centered jointly Gaussian variables (X_1, \dots, X_n) for which $\mathbf{E} \max X_i = 0$?

Exercise 7.2 Lower bounds on norms of Gaussian matrices

Let G be a $n \times n$ random matrix with i.i.d. N(0,1) entries.

- 1. Show that G has the same distribution as OAP, where O, A, P are independent random matrices, with O and P being Haar-distributed on O(n) and A a bidiagonal matrix with independent entries with distributions $a_{i,i} \sim \chi^{(n+1-i)}$ and $a_{i,i+1} \sim \chi^{(n-i)}$ (the $\chi^{(k)}$ distribution is the distribution of |G| where G is a standard Gaussian vector in \mathbf{R}^k).
- 2. Derive the inequality (κ_n being the expectation of a $\chi^{(n)}$ variable)

$$\mathbf{E} \|G\|_{\text{op}} \ge \left\| \begin{pmatrix} \kappa_{n} & \kappa_{n-1} & 0 & \cdots & 0 \\ 0 & \kappa_{n-1} & \kappa_{n-2} & & 0 \\ \vdots & & \ddots & \ddots & \vdots \\ \vdots & & & \kappa_{2} & \kappa_{1} \\ 0 & \cdots & \cdots & 0 & \kappa_{1} \end{pmatrix} \right\|_{\text{op}}.$$

3. Conclude that $\mathbf{E}||G||_{\text{op}}$ is equivalent to $2\sqrt{n}$ as $n \to \infty$ (the upper bound appeared in the main course).

Exercise 7.3 Some inequalities for Gaussian measure

- 1. Let X_N be a random vector uniformly distributed in the Euclidean ball $\sqrt{N}B_2^N$, and $\pi_{N,n}$ be the orthogonal projection from \mathbf{R}^N onto its subspace \mathbf{R}^n . Show that as $N \to \infty$, $\pi_{N,n}(X_N)$ converges in distribution towards a standard Gaussian vector in \mathbf{R}^n .
- 2. Deduce the following inequality for the standard Gaussian mesaure γ_n : for any compact sets $K, L \subset \mathbb{R}^n$ and $\lambda \in [0, 1]$,

$$\gamma_n(\lambda K + (1 - \lambda)L) \geqslant \gamma_n(K)^{\lambda} \gamma_n(L)^{1-\lambda}.$$

3. Let $K \subset \mathbf{R}^n$ be a symmetric convex body. Define $f : \mathbf{R} \to \mathbf{R}$ by $f(t) = \gamma_{n-1}(\{y \in \mathbf{R}^{n-1} : (t,y) \in K\})$. Show that $\log f$ is a concave function. Deduce that

$$\int_0^t f \, \mathrm{d}\gamma_1 \geqslant 2\gamma_1([0,t]) \int_0^\infty f \, \mathrm{d}\gamma_1.$$

4. Show the following: if K a symmetric convex body and $L = \{x \in \mathbf{R}^n : |\langle x, u \rangle| \leq a\}$ for some $u \in \mathbf{R}^n$ and a > 0, then $\gamma_n(K \cap L) \geq \gamma_n(K)\gamma_n(L)$.

Exercise 7.4 Covering with centers outside

If K, L are symmetric convex bodies in \mathbf{R}^n , denote by $N(K, L, \varepsilon) = \inf\{\operatorname{card}(A) : A \subset K \subset A + \varepsilon L\}$ and $N'(K, L, \varepsilon) = \inf\{\operatorname{card}(A) : A \subset \mathbf{R}^n, K \subset A + \varepsilon L\}$. Show that $N(K, L, \varepsilon) \leq N'(K, L, \varepsilon/2)$. Can you give an example with $N(K, L, \varepsilon) \neq N'(K, L, \varepsilon)$?

Exercise 7.5 Exact duality for ellipsoids

Show that if \mathcal{E} and \mathcal{F} are ellipsoids in \mathbf{R}^n , then $N(\mathcal{E}, \mathcal{F}, \varepsilon) = N(\mathcal{F}^{\circ}, \mathcal{E}^{\circ}, \varepsilon)$ for every ε .

Exercise 7.6 Covering balls by cubes

Deduce from the dual Sudakov inequality that for every $\varepsilon > 0$, there is a polynomial P such that $N(B_2^n, B_\infty^n, \varepsilon) \leq P(n)$ for every n. Can you give a direct proof of this fact, say for $\varepsilon = 1/2$?