Problem sheet # 8*K*-convexity

Exercise 8.1 A caracterisation of Euclidean balls

Let $K \subset \mathbf{R}^n$ be a convex body such that, for every subspace $E \subset \mathbf{R}^n$, we have $K \cap E = P_E K$ (P_E being the orthogonal projection onto E). Show that K is a Euclidean ball.

Exercise 8.2 A Borel selection theorem

Let $K \subset \mathbf{R}^n$ be a convex body. Show that there is a Borel map $\Theta : \mathbf{R}^n \to K$ with the property that for every $x \in \mathbf{R}^n$, we have $\langle \Theta(x), x \rangle = \max\{\langle z, x \rangle : z \in K\}$. Could a map with this property be non-Borel?

Exercise 8.3 Basic properties of K-convexity constant

Denote by $\mathbf{KC}(K)$ the K-convexity constant associated to a symmetric convex body $K \subset \mathbf{R}^n$.

- 1. Show that $\mathbf{KC}(T(K)) = \mathbf{KC}(K)$ for every $T \in \mathsf{GL}(n, \mathbf{R})$.
- 2. Show that $\mathbf{KC}(K) = \mathbf{KC}(K^{\circ})$.

Exercise 8.4 Reverse Urysohn inequality

Show that if K is a symmetric convex body in ℓ -position, then

$$\operatorname{vrad}(K) \leq w(K) \leq C\operatorname{vrad}(K)\log(n).$$

Exercise 8.5 *K*-convexity for ℓ^p balls

Let $p \ge 2$, $B_p^n \subset \mathbf{R}^n$ be the unit ball for $\|\cdot\|_p$, and G be a standard Gaussian vector in \mathbf{R}^k . Check the following inequalities, where α_p denotes the L^p norm of a N(0,1) random variable: for every $f_1, \ldots, f_n \in L^2(\gamma_k)$,

$$\begin{aligned} |||\tilde{R}_{1}\Theta|||_{B_{p}^{n}}^{2} &= \mathbf{E}\left(\sum_{i=1}^{n}|(R_{1}f_{i})(G)|^{p}\right)^{2/p} \\ &\leqslant \left(\sum_{i=1}^{n}\mathbf{E}\left[|(R_{1}f_{i})(G)|^{p}\right]\right)^{2/p} \\ &\leqslant \alpha_{p}^{2}\left(\sum_{i=1}^{n}\|f_{i}\|_{L^{2}(\gamma_{k})}^{p}\right)^{2/p} \\ &\leqslant \alpha_{p}^{2}\mathbf{E}\left[\left(\sum_{i=1}^{n}|f_{i}(G)|^{p}\right)^{2/p}\right] = \alpha_{p}^{2}|||\Theta|||_{B_{p}^{n}}^{2}. \end{aligned}$$

Conclude that $\mathbf{KC}(B_n^p) \leq C\sqrt{p}$, and that $\mathbf{KC}(B_1^n) = \mathbf{KC}(B_\infty^n) \leq C\sqrt{\log n}$. (Hint: estimate $d_{BM}(B_\infty^n, B_{\log n}^n)$)