
Université Lyon 1 Année 2020-2021
Licence Mathématiques 3e année
Analyse matricielle

TP 1

On aura besoin des modules numpy, matplotlib.pyplot et scipy.stats. Il faudra charger ces
modules, en tapant les commandes

import numpy

import matplotlib.pyplot

import scipy.stats

import scipy.linalg

Exercice 1. (Manipulation de matrices avec Python)

On considère les vecteurs et matrices suivants

` =
(
1 2 3 4 5

)
v =


1
2
3
4
5

 A =


1 2 0 0 0
0 0 2 3 1
0 0 0 2 2
0 0 0 0 1
1 1 1 0 0

 B =


1 2 3 4 5
2 3 4 5 6
3 4 5 6 7
4 5 6 7 8
5 6 7 8 9


1. Vérifier qu’on peut les définir sous Python à l’aide des commandes

l = numpy.array([1,2,3,4,5])

m = numpy.array([[1,2,3,4,5]])

v = numpy.transpose(m)

v = numpy.array([[1],[2],[3],[4],[5]])

A = numpy.array([[1,2,0,0,0],[0,0,2,3,1],[0,0,0,2,2],[0,0,0,0,1],[1,1,1,0,0]])

B = numpy.array([[1,2,3,4,5],[2,3,4,5,6],[3,4,5,6,7],[4,5,6,7,8],[5,6,7,8,9]])

2. Commenter le résultat produit par les instructions suivantes :

l*v, v*l, l/v, A*B, B/A, numpy.transpose(l), numpy.transpose(A),

numpy.dot(A,l), numpy.dot(l,A), numpy.dot(A,v), numpy.dot(v,A),

numpy.dot(A,B), numpy.sin(l), numpy.exp(A), scipy.linalg.expm(A),

numpy.linalg.inv(A) et l + v - 1

(on utilisera la commande print()).

RÉPONSE :

3. Comment déterminer le format (nombres de lignes et de colonnes) de ces tableaux ? Com-
parer les résultats de numpy.size, numpy.shape.

RÉPONSE :

4. Python permet la génération automatique de tableaux particuliers. À titre d’illustration,
analyser et commenter le résultat produit par chacune des instructions suivantes.

r = numpy.linspace(1.3,15.8,10)

s = numpy.arange(1,4,0.3)

t = numpy.ones(5)

u = numpy.zeros(10)

C = numpy.eye(3,3)

D = numpy.ones((3,3))

y = numpy.random.rand(5,2)

2

RÉPONSE :

5. Pour n ≥ 2 on considère la matrice tridiagonale d’ordre n définie par

Gn =


2 −1 0 . . . 0

−1 2 −1
. . .

...

0
. 0

...
. . . −1 2 −1

0 . . . 0 −1 2


(a) Que produit la suite d’instructions ci-dessous ?

n = 5

D = numpy.diag(numpy.ones(n))

S = numpy.diag(numpy.ones(n-1),1)

G = 2*D - S - numpy.transpose(S)

RÉPONSE :

(b) Que produit la suite d’instructions suivante ?

H = A[1,3]

I = A[1:3,3]

J = A[:2,1:]

K = A[2,:]

RÉPONSE :

3

6. En s’inspirant des instructions de la question précédente, extraire la première ligne, la
deuxième colonne et la sous-matrice (aij) 1 ≤ i ≤ 3

1 ≤ j ≤ 5

de la matrice A, ainsi que les termes

diagonaux de la matrice B.

RÉPONSE :

7. On s’intéressera aux méthodes de recherche de valeurs propres lors d’un prochain TP.
Ici, quand on aura besoin de calculer les valeurs propres d’une matrice, ou son rayon
spectral, on utilisera les fonctions préprogrammées de Python. À l’aide de la commande
numpy.linalg.eig, déterminer le rayon spectral de la matrice G5.

RÉPONSE :

Exercice 2. (Définitions de fonctions)

Une fonction se déclare en Python comme suit :

def nom-de-fonction(variable_1,variable_2,...):

instructions...

return(...)

Voici un exemple de fonction permettant de définir la matrice tridiagonale des différences finies
pour la dérivée seconde, pour un nombre de points n :

def DF(n):

D = numpy.diag(numpy.ones(n))

S = numpy.diag(numpy.ones(n-1),1)

return(2*D - S - numpy.transpose(S))

Appeler la fonction pour n = 6 avec la commande A = DF(6). Qu’obtient-on ?

RÉPONSE :

4

Exercice 3. (Résolution de systèmes linéaires et perturbation des données)

On s’intéresse à la solution du problème Ax = b où

A =


1 0.1 0.01 0.001 0.0001
1 1 1 1 1
1 1.5 2.25 3.375 5.0625
1 2 4 8 16
1 3 9 27 81

 et b =


0.01

1
2.25

4
9


1. Le module numpy de python a une fonction de résolution de systèmes linéaires : la com-

mande numpy.linalg.solve(A,b) renvoie le résultat x du système ci-dessus. Quel est le
résultat obtenu ? Aurait-on pu le trouver sans calcul ?

RÉPONSE :

2. Rappeler la définition de cond2(A) et en donner une valeur approchée en utilisant la com-
mande numpy.linalg.cond.

RÉPONSE :

3. À l’aide de la commande
10**-3*numpy.random.rand(numpy.shape(A)[0],numpy.shape(A)[1]), définir une ma-
trice B = A + δA où δA est définie � aléatoirement �. Résoudre By = b et évaluer la
quantité

‖y − x‖2
‖y‖2

‖|A‖|2
‖|δA‖|2

.

en utilisant la commande numpy.linalg.norm. Faire ceci pour différentes perturbations δA.
Avec quoi peut-on majorer cette quantité (résultat de cours et travaux dirigés) ?

RÉPONSE :

5

4. En s’inspirant de la question précédente, calculer la solution z du problème Az = b+ δb où
δb est défini aléatoirement, puis évaluer la quantité

‖z − x‖2
‖x‖2

‖b‖2
‖δb‖2

.

Faire ceci pour différentes perturbations δb. Avec quoi peut-on majorer cette quantité ?

RÉPONSE :

5. Soit D la matrice diagonale obtenue à partir de la diagonale de la matrice A avec la com-
mande D=numpy.diag(numpy.diag(A)). On pose E = D−1A et c = D−1b et on considère le
système linéaire Ex = c. Reprendre les questions 3. et 4. avec δE = D−1δA et δc = D−1δb.
Que peut-on en conclure ?

RÉPONSE :

Exercice 4. (Résolution de systèmes linéaires par méthodes itératives)

Une méthode itérative pour résoudre le système linéaire Ax = b consiste en une décomposition
de la matrice A sous la forme A = M −N puis la définition de la suite{

x0 ∈ Rn

xk+1 = M−1Nxk +M−1b pour tout k ∈ N.

On vérifie sans peine que si la suite est stationnaire (xk+1 = xk pour tout k), xk est la solution
cherchée, car (M − N)xk = b pour tout k. On identifiera en cours diverses conditions sur M et
N sous lesquelles la suite converge (pour tout x0) vers la solution cherchée (quelques indications
apparaissent déjà dans la suite de cet exercice).

6

La méthode de Gauss-Seidel est obtenue en posant M = D−E et N = F où D est la matrice
diagonale dont la diagonale est celle de A, −E correspond à la partie sous-diagonale de A et −F
à sa partie sur-diagonale. On définit donc la suite approximante par{

x0 donné (Gauss-Seidel)

∀k ∈ N, (D − E)xk+1 = Fxk + b

Pour la méthode de Jacobi, l’itération s’écrit{
x0 donné (Jacobi)

∀k ∈ N, Dxk+1 = (E + F)xk + b

1. Utiliser les commandes Python numpy.tril et numpy.triu pour définir D, E, F et vérifier
que D − E − F = A. Attention aux signes.

RÉPONSE :

2. Soit n ∈ N∗, B ∈Mn(R) et c ∈ Rn. Soit la suite récurrente définie par :{
x0 ∈ Rn

xk+1 = Bxk + c pour tout k ∈ N.

La suite (xk)k∈N converge, quel que soit x0, si et seulement si ρ(B) < 1.

En déduire une condition nécessaire et suffisante pour que les méthodes de Jacobi et Gauss-
Seidel convergent. Prédire, à l’aide de Python, le comportement (convergence ou non) de
ces deux méthodes pour la matrice A de l’exercice précédent.

RÉPONSE :

3. Voici une fonction qui calcule niter itérations de la méthode de Gauss-Seidel, et qui renvoie
la solution approchée u et la matrice res contenant la suite des itérés calculés : x0, x1, x2,

7

def gauss_seidel(A,b,x0,niter):

D = numpy.diag(numpy.diag(A))

E = -numpy.tril(A) + D

F = -numpy.triu(A) + D

sol = numpy.linalg.solve(A,b)

u = x0

res = x0

resn = numpy.linalg.norm(u-sol)

for k in range(niter):

u = numpy.linalg.solve((D-E),(numpy.dot(F,u)+b))

res = numpy.vstack((res, u))

resn = numpy.vstack((resn,numpy.linalg.norm(u-sol)))

return(u,res,resn)

Tester cette fonction (choisir x0 et niter). Que contiennent u, res et resn ? Comment
afficher l’erreur entre la solution approchée et la solution exacte ?

RÉPONSE :

4. Vitesse de convergence. On note pour tout k ∈ N, ek = ‖xk − x‖, où x est la solution de
Ax = b, une norme de l’erreur à l’itération k. Lors de l’utilisation d’une méthode itérative,
s’il existe deux constantes positives α et C telles que

lim
k→+∞

ek+1

(ek)α
= C,

on dit que l’ordre de la méthode est α et que sa vitesse de convergence est C.

On s’intéresse à l’ordre et la vitesse de convergence de la méthode de Gauss-Seidel. Pour
cela, on va tracer des fonctions de l’erreur. Écrire la suite d’instructions suivante

x0 = numpy.array([1,5,1,5,1])

n = 50

u,res,resn = gauss_seidel(A,b,x0,n)

matplotlib.pyplot.figure("Étude de la vitesse de convergence de la\

méthode de Gauss-Seidel",figsize=(14,8))

matplotlib.pyplot.plot(numpy.log(resn[:n]),numpy.log(resn[1:]))

matplotlib.pyplot.grid()

matplotlib.pyplot.show()

resn = resn.flatten()

pente,oao,_,_,_ = \

scipy.stats.linregress(numpy.log(resn[:n]),numpy.log(resn[1:]))

print("pente : ",pente)

print("ordonnée à l’origine : ",oao)

8

Exécuter cette suite d’instructions et interpréter la figure tracée.

RÉPONSE :

5. Que calcule la commande linregress ? Où, sur la figure, peut-on retrouver les nombres
calculés ?

RÉPONSE :

6. Pour accélérer la convergence, on a recours à la méthode de relaxation qui consiste à rem-
placer la récurrence de Gauss-Seidel par

∀k ∈ N,
(

1

ω
D − E

)
xk+1 =

(
1− ω
ω

D + F

)
xk + b.

On se restreindra au cas 0 < ω < 2. On peut par ailleurs montrer qu’il s’agit là d’une condi-
tion nécessaire à la convergence de la méthode. On admet que la méthode de relaxation est
de même ordre que la méthode de Gauss-Seidel. On s’intéresse à sa vitesse de convergence.

(a) En s’inspirant de la fonction gauss_seidel(A,b,x0,niter), écrire une fonction
relaxation(A,b,x0,niter,omega) qui effectue niter itérations de la méthode de re-
laxation et qui comme au-dessus renvoie un triplet [u,res,resn], où u est le vecteur
obtenu après niter itérations, res contient tous les itérés xk calculés et resn la suite
des erreurs ‖xk − x‖2 (x solution de référence).

(b) On souhaite comparer la vitesse de convergence pour différentes valeurs du paramètre
ω. Le script suivant permet de tracer les différentes courbes de convergence que l’on
obtient pour

ω = 0.5, 0.8, 1.2, 1.4, 1.6, 1.9

que l’on compare au cas ω = 1 qui correspond à l’algorithme de Gauss-Seidel classique.

9

x0 = numpy.array([1,5,1,5,1])

n=50

u1,res1,resn1 = gauss_seidel(A,b,x0,n)

u05,res05,resn05 = relaxation(A,b,x0,n,0.5)

u08,res08,resn08 = relaxation(A,b,x0,n,0.8)

u12,res12,resn12 = relaxation(A,b,x0,n,1.2)

u14,res14,resn14 = relaxation(A,b,x0,n,1.4)

u16,res16,resn16 = relaxation(A,b,x0,n,1.6)

u19,res19,resn19 = relaxation(A,b,x0,n,1.9)

matplotlib.pyplot.figure("Étude de la vitesse de convergence de la\

méthode de relaxation",figsize=(14,8))

matplotlib.pyplot.plot(numpy.log(resn1),"*", label = "omega = 1")

matplotlib.pyplot.plot(numpy.log(resn05),"b:",label = "omega = 0.5")

matplotlib.pyplot.plot(numpy.log(resn08),"r:",label = "omega = 0.8")

matplotlib.pyplot.plot(numpy.log(resn12),"g:",label = "omega = 1.2")

matplotlib.pyplot.plot(numpy.log(resn14),"y:",label = "omega = 1.4")

matplotlib.pyplot.plot(numpy.log(resn16),"m:",label = "omega = 1.6")

matplotlib.pyplot.plot(numpy.log(resn19),"black",label = "omega = 1.9")

leg = matplotlib.pyplot.legend(loc=’best’, shadow=True, fancybox=True)

matplotlib.pyplot.grid()

matplotlib.pyplot.show()

Quel est, parmi ces paramètres, le choix le plus intéressant ? Calculer (à l’aide de Python)

le rayon spectral de
(
1
ω
D − E

)−1 (1−ω
ω
D + F

)
pour toutes ces valeurs de ω et conclure.

RÉPONSE :

10

