Université Lyon 1 Année 2020-2021
Licence Mathématiques 3° année
Analyse matricielle

TP 1

On aura besoin des modules numpy, matplotlib.pyplot et scipy.stats. Il faudra charger ces
modules, en tapant les commandes

import numpy

import matplotlib.pyplot
import scipy.stats
import scipy.linalg

Exercice 1. (Manipulation de matrices avec Python)

On considere les vecteurs et matrices suivants

1 12000 12345
2 00231 2 3456
(=1 2345 v=|3 A=[0002 2| B=|[34567
4 00001 456 7 8
5 11100 56789

1. Vérifier qu’on peut les définir sous Python a I’aide des commandes

1 = numpy.array([1,2,3,4,5])

= numpy.array([[1,2,3,4,5]])

= numpy .transpose (m)

numpy .array([[1], [2], [3], [4], [5]1)

= numpy.array([[1,2,0,0,0],[0,0,2,3,1], [0,0,0,2,2],(0,0,0,0,1],([1,1,1,0,0]1)
= numpy.array([[1,2,3,4,5],[2,3,4,5,6],(3,4,5,6,7],(4,5,6,7,8],05,6,7,8,9]11)

W e < < B
Il

2. Commenter le résultat produit par les instructions suivantes :

1xv, vx1, 1/v, AxB, B/A, numpy.transpose(l), numpy.transpose(A),
numpy.dot(A,1), numpy.dot(1l,A), numpy.dot(A,v), numpy.dot(v,A),
numpy.dot (A,B), numpy.sin(1l), numpy.exp(A), scipy.linalg.expm(A),
numpy.linalg.inv(A) et 1 + v - 1

(on utilisera la commande print()).

REPONSE :

3. Comment déterminer le format (nombres de lignes et de colonnes) de ces tableaux ? Com-
parer les résultats de numpy.size, numpy.shape.

REPONSE :

4. Python permet la génération automatique de tableaux particuliers. A titre d’illustration,
analyser et commenter le résultat produit par chacune des instructions suivantes.

r = numpy.linspace(1.3,15.8,10)
S = numpy.arange(1,4,0.3)

t = numpy.ones(5)

u = numpy.zeros(10)

C = numpy.eye(3,3)

D = numpy.ones((3,3))

y = numpy.random.rand(5,2)

REPONSE :

5. Pour n > 2 on considere la matrice tridiagonale d’ordre n définie par

2 -1 0 0
-1 2 -1
Gn=1|0 0

-1 2 -1
0 0 -1 2

(a) Que produit la suite d’instructions ci-dessous ?

n=>5
D = numpy.diag(numpy.ones(n))

S = numpy.diag(numpy.ones(n-1),1)
G = 2*D - S - numpy.transpose(S)
REPONSE :

(b) Que produit la suite d’instructions suivante ?

H = A[1,3]
I =A[1:3,3]
J=A[:2,1:]
K = A[2,:]
REPONSE :

6. En s’inspirant des instructions de la question précédente, extraire la premiere ligne, la

deuxieme colonne et la sous-matrice (a;;) 1<i<s de la matrice A, ainsi que les termes
1<5<5
diagonaux de la matrice B.

REPONSE :

7. On s’intéressera aux méthodes de recherche de valeurs propres lors d’un prochain TP.
Ici, quand on aura besoin de calculer les valeurs propres d’une matrice, ou son rayon
spectral, on utilisera les fonctions préprogrammées de Python. A Taide de la commande
numpy.linalg.eig, déterminer le rayon spectral de la matrice Gs.

REPONSE :

Exercice 2. (Définitions de fonctions)

Une fonction se déclare en Python comme suit :

def nom-de-fonction(variable_1,variable_2,...):
instructions...
return(...)

Voici un exemple de fonction permettant de définir la matrice tridiagonale des différences finies
pour la dérivée seconde, pour un nombre de points n :

def DF(n):
D = numpy.diag(numpy.ones(n))
S = numpy.diag(numpy.ones(n-1),1)
return(2*D - S - numpy.transpose(S))

Appeler la fonction pour n = 6 avec la commande A = DF(6). Qu’obtient-on ?

REPONSE :

Exercice 3. (Résolution de systémes linéaires et perturbation des données)

On s’intéresse a la solution du probleme Az = b ou

1 0.1 0.01 0.001 0.0001 0.01
1 1 1 1 1 1
A=|[1 15 225 3.375 5.0625 et b= 225
1 2 4 8 16 4
1 3 9 27 81 9

1. Le module numpy de python a une fonction de résolution de systemes linéaires : la com-
mande numpy.linalg.solve(A,b) renvoie le résultat x du systeme ci-dessus. Quel est le
résultat obtenu ? Aurait-on pu le trouver sans calcul ?

REPONSE :

2. Rappeler la définition de condy(A) et en donner une valeur approchée en utilisant la com-
mande numpy.linalg.cond.

REPONSE :

3. A laide de la commande
10**-3*numpy . random . rand (numpy . shape (A) [0] ,numpy . shape (A) [1]), définir une ma-
trice B = A+ §A ou 0A est définie < aléatoirement ». Résoudre By = b et évaluer la
quantité
ly —xll2 [[[Alll2
Iyl [[16A]l2

en utilisant la commande numpy . linalg.norm. Faire ceci pour différentes perturbations 6 A.
Avec quoi peut-on majorer cette quantité (résultat de cours et travaux dirigés) 7

REPONSE :

4. En s’inspirant de la question précédente, calculer la solution z du probleme Az = b+ b ou
0b est défini aléatoirement, puis évaluer la quantité

12 — @[l [|]l>
lzll2 1160l

Faire ceci pour différentes perturbations db. Avec quoi peut-on majorer cette quantité ?

REPONSE :

5. Soit D la matrice diagonale obtenue a partir de la diagonale de la matrice A avec la com-
mande D=numpy .diag(numpy.diag(A)). On pose E = D 'A et c = D~'b et on considere le
systéme linéaire Ex = c. Reprendre les questions 3. et 4. avec 0E = D71 A et dc = D~16b.
Que peut-on en conclure ?

REPONSE :

Exercice 4. (Résolution de systémes linéaires par méthodes itératives)

Une méthode itérative pour résoudre le systeme linéaire Az = b consiste en une décomposition
de la matrice A sous la forme A = M — N puis la définition de la suite

xo € R
Tpp1 = M Nz + M~'b pour tout k € N.

On vérifie sans peine que si la suite est stationnaire (11 = xp pour tout k), zy est la solution
cherchée, car (M — N)zyp = b pour tout k. On identifiera en cours diverses conditions sur M et
N sous lesquelles la suite converge (pour tout xq) vers la solution cherchée (quelques indications
apparaissent déja dans la suite de cet exercice).

La méthode de Gauss-Seidel est obtenue en posant M = D — E et N = F ou D est la matrice
diagonale dont la diagonale est celle de A, —F correspond a la partie sous-diagonale de A et —F
a sa partie sur-diagonale. On définit donc la suite approximante par

xo donné (Gauss-Seidel)
{ VkeN, (D— E)xgy = Fr+b
Pour la méthode de Jacobi, l'itération s’écrit
zo donné (Jacobi)
{ Vk €N, Dxpyy = (E+ F)zp +0b

1. Utiliser les commandes Python numpy.tril et numpy.triu pour définir D, E., F et vérifier
que D — F — F = A. Attention aux signes.

REPONSE :

2. Soit n € N*, B € M, (R) et ¢ € R™. Soit la suite récurrente définie par :

zo € R™
Try1 = Bxr +c¢ pour tout £ € N.

La suite (zy)ren converge, quel que soit o, si et seulement si p(B) < 1.

En déduire une condition nécessaire et suffisante pour que les méthodes de Jacobi et Gauss-
Seidel convergent. Prédire, a I'aide de Python, le comportement (convergence ou non) de
ces deux méthodes pour la matrice A de I'exercice précédent.

REPONSE :

3. Voici une fonction qui calcule niter itérations de la méthode de Gauss-Seidel, et qui renvoie
la solution approchée u et la matrice res contenant la suite des itérés calculés : zg, z1, xo,

def gauss_seidel(A,b,x0,niter):

D = numpy.diag(numpy.diag(A))

E = -numpy.tril(A) + D

F = -numpy.triu(A) + D

sol = numpy.linalg.solve(A,b)

u = x0

res = x0

resn = numpy.linalg.norm(u-sol)

for k in range(niter):
u = numpy.linalg.solve((D-E), (numpy.dot (F,u)+b))
res = numpy.vstack((res, u))
resn = numpy.vstack((resn,numpy.linalg.norm(u-sol)))

return(u,res,resn)

Tester cette fonction (choisir x0 et niter). Que contiennent u, res et resn? Comment
afficher I’erreur entre la solution approchée et la solution exacte ?

REPONSE :

. Vitesse de convergence. On note pour tout k € N, e, = ||z — 2|, ol est la solution de
Az = b, une norme de lerreur a l'itération k. Lors de 'utilisation d’'une méthode itérative,
s'il existe deux constantes positives a et C' telles que

. €k+1
|
k—4o00 <€k)a

)

on dit que l'ordre de la méthode est o et que sa vitesse de convergence est C.

On s’intéresse a l'ordre et la vitesse de convergence de la méthode de Gauss-Seidel. Pour
cela, on va tracer des fonctions de l'erreur. Ecrire la suite d’instructions suivante

x0 = numpy.array([1,5,1,5,1])
n = 50
u,res,resn = gauss_seidel(A,b,x0,n)

matplotlib.pyplot.figure("Etude de la vitesse de convergence de la\
méthode de Gauss-Seidel",figsize=(14,8))

matplotlib.pyplot.plot (numpy.log(resn[:n]) ,numpy.log(resn[1:]))

matplotlib.pyplot.grid()

matplotlib.pyplot.show()

resn = resn.flatten()

pente,oao,_,_,_ = \

scipy.stats.linregress(numpy.log(resn[:n]) ,numpy.log(resn[1:]))
print("pente : ",pente)
print("ordonnée a 1l’origine : ",0a0)

Exécuter cette suite d’instructions et interpréter la figure tracée.

REPONSE :

5. Que calcule la commande linregress? Ou, sur la figure, peut-on retrouver les nombres
calculés?

REPONSE :

6. Pour accélérer la convergence, on a recours a la méthode de relaxation qui consiste a rem-
placer la récurrence de Gauss-Seidel par

1 1-—

On se restreindra au cas 0 < w < 2. On peut par ailleurs montrer qu’il s’agit la d’une condi-
tion nécessaire a la convergence de la méthode. On admet que la méthode de relaxation est
de méme ordre que la méthode de Gauss-Seidel. On s’intéresse a sa vitesse de convergence.

(a) En s’inspirant de la fonction gauss_seidel(A,b,x0,niter), écrire une fonction
relaxation(A,b,x0,niter,omega) qui effectue niter itérations de la méthode de re-
laxation et qui comme au-dessus renvoie un triplet [u,res,resn], ou u est le vecteur
obtenu apres niter itérations, res contient tous les itérés x; calculés et resn la suite
des erreurs ||z — x||2 (x solution de référence).

(b) On souhaite comparer la vitesse de convergence pour différentes valeurs du parametre
w. Le script suivant permet de tracer les différentes courbes de convergence que 1'on
obtient pour

w=20.5,08,1.2 14,16, 1.9

que 'on compare au cas w = 1 qui correspond a l'algorithme de Gauss-Seidel classique.

x0
n=50

numpy .array([1,5,1,5,1])

ul,resl,resnl = gauss_seidel(A,b,x0,n)
u05,res05,resn05
u08,res08,resn08
ul2,resl12,resnl12
uld,resl4d,resnld
ul6,resl6,resnl6
ul9,res19,resnl9

relaxation(A,b,x0,n,0
relaxation(A,b,x0,n,0
relaxation(A,b,x0,n,1
relaxation(A,b,x0,n,1
relaxation(A,b,x0,n,1
relaxation(A,b,x0,n,1

.5)
.8)
.2)
.4)
.6)
.9)

matplotlib.pyplot.figure("Etude de la vitesse de convergence de la\
méthode de relaxation",figsize=(14,8))

pyplot.

pyplot.

matplotlib.
matplotlib.
matplotlib.
matplotlib.
matplotlib.
matplotlib.
matplotlib.

pyplot

pyplot.
pyplot.
pyplot.

pyplot.
leg = matplotlib.pyplot.legend(loc=’best’, shadow=True, fancybox=True)

matplotlib.pyplot.grid()
matplotlib.pyplot.show()

plot (numpy.
plot (numpy.
.plot (numpy.
plot (numpy.
plot (numpy.
plot (numpy.
plot (numpy.

log(resnl),"*", label = "omega = 1")
log(resn05),"b:",label = "omega = 0.5")
log(resn08),"r:",label = "omega = 0.8")
log(resnl2),"g:",label = "omega = 1.2")
log(resni4),"y:",label = "omega = 1.4")
log(resn16),"m:",label = "omega = 1.6")
log(resn19),"black",label = "omega = 1.9")

Quel est, parmi ces parametres, le choix le plus intéressant ? Calculer (a I’aide de Python)

lelayonspedmalde(%l)—mE)_l(liﬁl)+—Pv pour toutes ces valeurs de w et conclure.

REPONSE :

10

