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Abstract In this paper, we establish a connection between zonoids (a concept from
classical convex geometry) and the distinguishability norms associated to quantum
measurements or POVMs (Positive Operator-Valued Measures), recently introduced
in quantum information theory. This correspondence allows us to state and prove the
POVM version of classical results from the local theory of Banach spaces about the
approximation of zonoids by zonotopes. We show that on Cd , the uniform POVM
(the most symmetric POVM) can be sparsified, i.e. approximated by a discrete POVM
having only O(d2) outcomes. We also show that similar (but weaker) approximation
results actually hold for any POVM on Cd . By considering an appropriate notion of
tensor product for zonoids, we extend our results to the multipartite setting: we show,
roughly speaking, that local POVMs may be sparsified locally. In particular, the local
uniform POVM on Cd1 ⊗ · · · ⊗Cdk can be approximated by a discrete POVM which
is local and has O(d21 × · · · × d2k ) outcomes.
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1 Introduction

A classical result by Lyapounov ([26], Theorem 5.5) asserts that the range of a non-
atomic Rn-valued vector measure is closed and convex. Convex sets in Rn obtained
in this way are called zonoids. Zonoids are equivalently characterized as convex sets
which can be approximated by finite sums of segments.

In this paper we consider a special class of vector measures: Positive Operator-
Valued Measures (POVMs). In the formalism of quantum mechanics, POVMs
represent the most general form of a quantum measurement. Recently, Matthews,
Wehner andWinter [22] introduced the distinguishability norm associated to a POVM.
This norm has an operational interpretation as the bias of the POVM for the state dis-
crimination problem (a basic task in quantum information theory) and is closely related
to the zonoid arising from Lyapounov’s theorem.

A well-studied question in high-dimensional convexity is the approximation of
zonoids by zonotopes. The series of papers [7,11,28,31] culminates in the following
result: any zonoid in Rn can be approximated by the sum of O(n log n) segments.
The aforementioned connection between POVMs and zonoids allows us to state and
prove approximation results for POVMs, which improve on previously known bounds.
Precise statements appear as Theorems 5.3 and 5.4.

Our article is organized as follows. Section 2 introduces POVMs and their asso-
ciated distinguishability norms. Section 3 connects POVMs with zonoids. Section
4 introduces a notion of tensor product for POVMs, and the corresponding notion
for zonoids. Section 5 pushes forward this connection to state the POVM version of
approximation results for zonoids, which are proved in Sects. 7, 8 and 9. Section 6
provides sparsification results for local POVMs on multipartite systems.

The reader may have a look at Table 1, which summarizes analogies between
zonoids and POVMs.

Notation

We denote by H(Cd) the space of Hermitian operators on Cd , and by H+(Cd) the
subset of positive operators. We denote by ‖ · ‖1 the trace class norm, by ‖ · ‖∞ the
operator norm and by ‖ · ‖2 the Hilbert–Schmidt norm. Notation [−Id, Id] stands for
the set of self-adjoint operators A such that −Id � A � Id. In other words [−Id, Id]
is the self-adjoint part of the unit ball for ‖ · ‖∞. We denote by S(Cd) the set of states
on Cd (a state is a positive operator with trace 1).

Let us recall a few standard concepts from classical convex geometry that we will
need throughout our proofs. The support function hK of a convex compact set K ⊂ Rn

is the function defined for x ∈ Rn by hK (x) = sup{〈x, y〉 : y ∈ K }. Moreover,
for a pair K , L of convex compact sets, the inclusion K ⊂ L is equivalent to the
inequality hK � hL . The polar of a convex set K ⊂ Rn is K ◦ = {x ∈ Rn :
〈x, y〉 � 1whenever y ∈ K }. The bipolar theorem (see e.g. [3]) states that (K ◦)◦ is
the closed convex hull of K and {0}. A convex body is a convex compact set with non-
empty interior. Whenever we apply tools from convex geometry in the (real) space
H(Cd) (e.g. polar or support function), we use the Hilbert–Schmidt inner product
(A, B) 
→ Tr AB to define the Euclidean structure.
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Table 1 A “dictionary” between zonoids and POVMs

Zonotope which is the Minkowski
sum of N segments

Discrete POVM with N outcomes

Zonoid = limit of zonotopes General POVM = limit of discrete POVMs

Tensor product of zonoids Local POVM on a multipartite system

Euclidean ball Bn
2 = most symmetric

zonoid in Rn
Uniform POVM Ud = most symmetric POVM
on Cd

“4thmomentmethod” ([25], explicit):
cBn

2 ⊂ Z ⊂ CBn
2 , with Z a zonotope

which is the sum of O(n2) segments

“Approximate 4-design POVM” [1]: explicit
sparsification of Ud with O(d4) outcomes

Measure concentration ([11], non-explicit):
(1 − ε)Bn

2 ⊂ Z ⊂ (1 + ε)Bn
2 , with

Z a zonotope which is the sum of
Oε(n) segments

Theorem 5.3: a randomly chosen
POVM with O(d2) outcomes is a
sparsification of Ud

Derandomization [12,19,21] Unknown

Any zonoid in Rn can be approximated
by a zonotope which is the sum of
O(n log n) segments [31]

Theorem 5.4: any POVM on Cd can
be sparsified into a sub-POVM
with O(d2 log d) outcomes

The letters C, c, c0, . . . denote numerical constants, independent from any other
parameters such as the dimension. The value of these constants may change from
occurrence to occurrence. Similarly c(ε) denotes a constant depending only on the
parameter ε. We also use the following convention: whenever a formula is given for
the dimension of a (sub)space, it is tacitly understood that one should take the integer
part.

2 POVMs and distinguishability norms

In quantum mechanics, the state of a d-dimensional system is described by a positive
operator on Cd with trace 1. The most general form of a measurement that may be
performed on such a quantum system is encompassed by the formalism of Positive
Operator-Valued Measures (POVMs). Given a set � equipped with a σ -algebra F ,
a POVM on Cd is a map M : F → H+(Cd) which is σ -additive and such that
M(�) = Id. In this definition the space (�,F) could potentially be infinite, so that
the POVMs defined on it would be continuous. However, we often restrict ourselves
to the subclass of discrete POVMs, and a main point of this article is to substantiate
this “continuous to discrete” transition.

A discrete POVM is a POVM in which the underlying σ -algebra F is required to
be finite. In that case there is a finite partition � = A1 ∪ · · · ∪ An generating F . The
positive operatorsMi = M(Ai ) are often referred to as the elements of the POVM, and
they satisfy the condition M1 + · · · + Mn = Id. We usually identify a discrete POVM
with the set of its elements bywritingM = (Mi )1�i�n . The index set {1, . . . , n} labels
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the outcomes of the measurement. The integer n is thus the number of outcomes of M
and can be seen as a crude way to measure the complexity of M.

What happens when measuring with a POVM M a quantum system in a state ρ

? In the case of a discrete POVM M = (Mi )1�i�n , we know from Born’s rule that
the outcome i is output with probability Tr(ρMi ). This simple formula can be used
to quantify the efficiency of a POVM to perform the task of state discrimination.
State discrimination can be described as follows: a quantum system is prepared in an
unknown state which is either ρ or σ (both hypotheses being a priori equally likely),
and we have to guess the unknown state. After measuring it with the discrete POVM
M = (Mi )1�i�n , the optimal strategy, based on the maximum likelihood probability,
leads to a probability of wrong guess equal to [16,17]

Perror = 1

2

(
1 − 1

2

n∑
i=1

|Tr(ρMi ) − Tr(σMi )|
)

.

In this context, the quantity 1
2

∑n
i=1 |Tr(ρMi ) − Tr(σMi )| is therefore called the bias

of the POVM M on the state pair (ρ, σ ).
Following [22], we introduce a norm onH(Cd), called the distinguishability norm

associated to M, and defined for � ∈ H(Cd) by

‖�‖M =
n∑

i=1

|Tr(�Mi )| . (1)

It is such that Perror = 1
2

(
1 − 1

2‖ρ − σ‖M
)
, and thus quantifies how powerful the

POVMM is in discriminating one state from another with the smallest probability of
error.

The terminology “norm” is slightly abusive since one may have ‖�‖M = 0 for a
nonzero � ∈ H(Cd). The functional ‖ · ‖M is however always a semi-norm, and it
is easy to check that ‖ · ‖M is a norm if and only if the POVM elements (Mi )1�i�n
span H(Cd) as a vector space. Such POVMs are called informationally complete in
the quantum information literature.

Similarly, the distinguishability norm associated to a general POVMM, defined on
a set � equipped with a σ -algebra F , is described for � ∈ H(Cd) by

‖�‖M = ‖Tr(�M(·))‖TV = sup
A∈F

[
Tr(�M(A)) − Tr(�M(�\A))

]
= sup

M∈M(F)

Tr(�(2M − Id)). (2)

Here ‖μ‖TV denotes the total variation of a measure μ. When M is discrete, formulae
(1) and (2) coincide. Note also that the inequality ‖ · ‖M � ‖ · ‖1 holds for any POVM
M, with equality onH+(Cd).
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Given a POVM M, we denote by BM = {‖ · ‖M � 1} the unit ball for the distin-
guishability norm, and KM = (BM)◦ its polar, i.e.

KM = {A ∈ H(Cd) : Tr(AB) � 1whenever ‖B‖M � 1}.

The set KM is a compact convex set.Moreover KM has nonempty interior if and only if
the POVMM is informationally complete. It follows from the inequality ‖·‖M � ‖·‖1
that KM is always included in the operator interval [−Id, Id].

On the other hand, it follows from (2) that BM = (2M(F) − Id)◦, and the bipolar
theorem implies that

KM = 2 conv(M(F)) − Id. (3)

By Lyapounov’s theorem, the convex hull operation is not needed when M is non-
atomic. For a discrete POVM M = (Mi )1�i�n , Eq. (3) may be rewritten in the form

KM = conv{±M1} + · · · + conv{±Mn}, (4)

where the additionof convex sets should beunderstood as theMinkowski sum: A+B =
{a + b : a ∈ A, b ∈ B}.

We are going to show that POVMs can be sparsified, i.e approximated by discrete
POVMswith few outcomes. The terminology “approximation” here refers to the asso-
ciated distinguishability norms: a POVM M is considered to be “close” to a POVM
M′ when their distinguishability norms satisfy inequalities of the form

(1 − ε)‖ · ‖M′ � ‖ · ‖M � (1 + ε)‖ · ‖M′ .

This notion of approximation has an operational significance: two POVMs are com-
parable when both lead to comparable biases when used for any state discrimination
task. Let us perhaps stress that point: if one has additional information on the states
to be discriminated, it may of course be used to design a POVM specifically efficient
for those (one could for instance be interested in the problem of distinguishing pairs
of low-rank states [1,30]).

In this paper, we study the distinguishability norms from a functional-analytic point
of view. We are mostly interested in the asymptotic regime, when the dimension d of
the underlying Hilbert space is large.

3 POVMs and zonoids

3.1 POVMs as probability measures on states

The original definition of a POVM involves an abstract measure space, and the spec-
ification of this measure space is irrelevant when considering the distinguishability
norms. The following proposition, which is probably well-known, gives a more con-
crete look at POVMs as probability measures on the set S(Cd) of states on Cd .
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Proposition 3.1 LetM be aPOVMonCd . There is a uniqueBorel probabilitymeasure
μ on S(Cd) with barycenter equal to Id/d and such that, for any � ∈ H(Cd),

‖�‖M = d
∫
S(Cd )

|Tr(�ρ)| dμ(ρ). (5)

Conversely, given a Borel probability measure μ with barycenter equal to Id/d, there
is a POVM M such that (5) is satisfied.

Proof Weuse the polar decomposition for vectormeasures, which follows from apply-
ing the Radon–Nikodym theorem to vector measures (see [27], Theorem 6.12): a
vector measure μ defined on a σ -algebra F on � and taking values in a normed space
(Rn, ‖·‖) satisfies dμ = hd|μ| for somemeasurable function h : � → Rn .Moreover,
one has ‖h‖ = 1 |μ|-a.e. Here |μ| denotes the total variation measure of μ.

Let M be a POVM on Cd , defined on a σ -algebra F on �. We equip H(Cd) with
the trace norm, so that we simply have |M| = TrM and |M|(�) = d. The polar
decomposition yields a measurable function h : � → H(Cd) such that ‖h‖1 = 1
|M|-a.e. Moreover, the fact that M(F) ⊂ H+(Cd) implies that h ∈ H+(Cd) |M|-a.e.
Let μ be the push forward of 1

d |M| under the map h. We have

Id = M(�) =
∫

�

h d|M| = d
∫
H(Cd )

ρ dμ(ρ).

And since h ∈ S(Cd) a.e., μ is indeed a Borel probability measure on S(Cd), with
barycenter equal to Id/d. Finally, for any � ∈ H(Cd),

‖�‖M =
∫

�

|Tr(�h)| d|M| = d
∫
S(Cd )

|Tr(�ρ)| dμ(ρ).

We postpone the proof of uniqueness to the next subsection (see after Proposition 3.5).
Conversely, given a Borel probability measureμ on S(Cd)with barycenter at Id/d,

consider the vector measure M : B → H(Cd), where B is the Borel σ -algebra on
S(Cd), defined by

M(A) = d
∫
A

ρ dμ(ρ).

It is easily checked that M is a POVM and that formula (5) is satisfied. ��
Note that in the case of a discrete POVM M = (Mi )1�i�n , the corresponding

probability measure is

μ = 1

d

n∑
i=1

(Tr Mi ) δ Mi
Tr Mi

.
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Corollary 3.2 Given a POVMM onCd , there is a sequence (Mn) of discrete POVMs
such that KMn converges to KM in Hausdorff distance. Moreover, if μ (resp. μn)
denotes the probability measure on S(Cd) associated toM (resp. toMn) as in (5), we
can guarantee that the support of μn is contained into the support of μ.

Proof Let μ be the probability measure associated to M. Given n, let (Qk) be a finite
partition of S(Cd) into sets of diameter at most 1/n with respect to the trace norm.
Let ρk ∈ S(Cd) be the barycenter of the restriction of μ to Qk (only defined when
μ(Qk) > 0). The probability measure

μn =
∑
k

μ(Qk)δρk

has the same barycenter as μ, and the associated POVM Mn satisfies

∣∣hKM(�) − hKMn
(�)

∣∣ � d
‖�‖∞

n
,

and therefore KMn converges to KM.
The condition on the supports can be enforced by changing slightly the definition of

μn . For each k we can write ρk = ∑
λk, jρk, j , where (λk, j ) is a convex combination

and (ρk, j ) belong to the support of μ restricted to Qk . The measure

μ′
n =

∑
k

μ(Qk)
∑
j

λk, jδρk, j

satisfies the same properties as μn , and its support is contained into the support of μ.
��

3.2 POVMs and zonoids

We connect here POVMs with zonoids, which form an important family of convex
bodies (see [6,12,29] for surveys on zonoids to which we refer for all the material
presented here). A zonotope Z ⊂ Rn is a closed convex set which can be written as
the Minkowski sum of finitely many segments, i.e. such that there exist finite sets of
vectors (ui )1�i�N and (vi )1�i�N in Rn such that

Z = conv{u1, v1} + · · · + conv{uN , vN }. (6)

A zonoid is a closed convex set which can be approximated by zonotopes (with respect
to the Hausdorff distance). Every zonoid has a center of symmetry, and therefore can
be translated into a (centrally) symmetric zonoid. Note that for a centrally symmetric
zonotope, we can choose vi = −ui in (6).

Here are equivalent characterizations of zonoids.

Proposition 3.3 Let K ⊂ Rn be a symmetric closed convex set. The following are
equivalent.
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(i) K is a zonoid.
(ii) There is a Borel positive measure ν on the sphere Sn−1 which is even (i.e. such

that ν(A) = ν(−A) for any Borel set A ⊂ Sn−1) and such that, for every x ∈ Rn,

hK (x) =
∫
Sn−1

|〈x, θ〉| dν(θ). (7)

(iii) There is a vector measure μ : (�,F) → Rn such that K = μ(F).

Moreover, when these conditions are satisfied, the measure ν is unique.

Remark 3.4 Having the measure ν supported on the sphere and be even is only a
matter of normalization and a way to enforce uniqueness: if ν is a Borel measure on
Rn for which linear forms are integrable, there is a symmetric zonoid K ⊂ Rn such
that

hK (x) =
∫
Rn

|〈x, y〉| dν(y).

As an immediate consequence, we characterize which subsets of [−Id, Id] arise as
KM for some POVM M.

Proposition 3.5 Let K ⊂ H(Cd)bea symmetric closed convex set. Then the following
are equivalent.

(i) K is a zonoid such that K ⊂ [−Id, Id] and ±Id ∈ K.
(ii) There exists a POVM M on Cd such that K = KM.

Moreover, K is a zonotope only if the POVM M can be chosen to be discrete.

Proof Let K be a zonoid such that ±Id ∈ K ⊂ [−Id, Id]. From Proposition 3.3, there
is a vector measure μ defined on a σ -algebra F on a set �, whose range is K . Let
A ∈ F such that μ(A) = −Id. The vector measure M defined for B ∈ F by

M(B) = 1

2
(μ(B\A) − μ(B ∩ A)) = 1

2
(μ(B�A) + Id)

is a POVM. Indeed, its range, which equals 1
2 (K + Id), lies inside the positive semi-

definite cone, and contains Id. We get from (3) that KM = K .
Conversely, for any POVMM, formula (3) implies that ±Id ∈ K ⊂ [−Id, Id]. The

fact that K is a zonoid follows, using the general fact that the convex hull of the range
of a vector measure is a zonoid (see [6], Theorem 1.6).

In the case of zonotopes and discrete POVMs, these arguments have more elemen-
tary analogues which we do not repeat. ��

We can now argue about the uniqueness part in Proposition 3.1. This is indeed a
consequence of the uniqueness of the measure associated to a zonoid in Proposition
3.3: after rescaling and symmetrization, a measureμ on S(Cd) satisfying (5) naturally
induces a measure ν on the Hilbert–Schmidt sphere satisfying (7) for K = KM.
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Another characterization of zonoids involves the Banach space L1 = L1([0, 1]). A
symmetric convex body K is a zonoid if and only if the normed space (Rn, hK ) embeds
isometrically into L1. Therefore, Proposition 3.5 can be restated as a characterization
of distinguishability norms on H(Cd).

Corollary 3.6 Let ‖ · ‖ be a norm on H(Cd). The following are equivalent

(1) There is POVM M on Cd such that ‖ · ‖ = ‖ · ‖M.
(2) The normed space (H(Cd), ‖·‖) is isometric to a subspace of L1, and the following

inequality is satisfied for any � ∈ H(Cd)

|Tr�| � ‖�‖ � Tr |�|.

4 Local POVMs and tensor products of zonoids

4.1 Tensor products for zonoids

There is a natural notion of tensor product for subspaces of L1 which appeared in the
Banach space literature (see e.g. [10]).

Definition 4.1 Let X,Y be two Banach spaces which can be embedded isometrically
into L1, i.e. such that there exist linear norm-preserving maps i : X → L1(μ) and
j : Y → L1(ν). Then, the 1-tensor product of X and Y is defined as the completion
of the algebraic tensor product X ⊗ Y for the norm∥∥∥∥∥

∑
k

xk ⊗ yk

∥∥∥∥∥
X⊗1Y

=
∫ ∫ ∣∣∣∣∣

∑
k

i(xk)(s) j (yk)(t)

∣∣∣∣∣ dμ(s)dν(t).

It can be checked that the norm above is well-defined and does not depend on the
particular choice of the embeddings i, j (see e.g. [10] or Lemma 2 in [24]).

In the finite-dimensional case, subspaces of L1 are connected to zonoids. Therefore,
Definition 4.1 leads naturally to a notion of tensor product for (symmetric) zonoids.

Definition 4.2 Let K ⊂ Rm and L ⊂ Rn be two symmetric zonoids, and suppose
that νK and νL are Borel measures on Sm−1 and Sn−1 respectively, such that for any
x ∈ Rm and y ∈ Rn ,

hK (x) =
∫
Sm−1

|〈x, θ〉| dνK (θ) and hL(y) =
∫
Sn−1

|〈y, φ〉| dνL (φ).

The zonoid tensor product of K and L is defined as the zonoid K ⊗Z L ⊂ Rn ⊗ Rm

whose support function satisfies

hK⊗Z L(z) =
∫
Sm−1

∫
Sn−1

|〈z, θ ⊗ φ〉| dνK (θ)dνL(φ) (8)

for any z ∈ Rm ⊗ Rn .
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As inDefinition 4.1, this construction does not depend on the choice of themeasures
νK and νL . This can be seen directly: given z ∈ Rm ⊗ Rn and φ ∈ Sn−1, set z̃(φ) =
(Id ⊗ 〈φ|) (z). We have

hK⊗Z L(z) =
∫
Sn−1

hK (̃z(φ)) dνL(φ), (9)

and therefore K ⊗Z L does not depend on νK . The same argument applies for νL .
In the case of zonotopes, the zonoid tensor product takes a simpler form :

(∑
i

conv{±vi }
)

⊗Z

⎛
⎝∑

j

conv{±w j }
⎞
⎠ =

∑
i

∑
j

conv{±vi ⊗ w j }.

Here is a first simple property of the zonoid tensor product.

Lemma 4.3 Given symmetric zonoids K , L and linear maps S, T , we have

S(K ) ⊗Z T (L) = (S ⊗ T )(K ⊗Z L)

Additionally, and crucially for the applications we have in mind, the zonoid tensor
product is compatible with inclusions.

Lemma 4.4 Let K , K ′ be two symmetric zonoids in Rm with K ⊂ K ′, and let L , L ′
be two symmetric zonoids in Rn with L ⊂ L ′. Then

K ⊗Z L ⊂ K ′ ⊗Z L ′.

Proof This is a special case of Lemma 2 in [24]. Here is a proof in the language of
zonoids. We may assume that L = L ′, the general case following then by arguing that
K ⊗Z L ⊂ K ′ ⊗Z L ⊂ K ′ ⊗Z L ′.

In terms of support functions, we are thus reduced to showing that the inequality
hK � hK ′ implies the inequality hK⊗Z L � hK ′⊗Z L , which is an easy consequence of
(9). ��

Suppose that (X, ‖ · ‖X ) and (Y, ‖ · ‖Y ) are Banach spaces with Euclidean norms,
i.e. induced by some inner products 〈·, ·〉X and 〈·, ·〉Y . Their Euclidean tensor product
X ⊗2 Y is defined (after completion) by the norm induced by the inner product on the
algebraic tensor product which satisfies

〈x ⊗ y, x ′ ⊗ y′〉 = 〈x, x ′〉X 〈y, y′〉Y .

It turns out that, for Euclidean norms, the tensor norms ⊗1 and ⊗2 are equivalent.

Proposition 4.5 (see [5,24]) If X and Y are two Banach spaces equipped with Euclid-
ean norms, then √

2

π
‖ · ‖X⊗2Y � ‖ · ‖X⊗1Y � ‖ · ‖X⊗2Y .
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4.2 Local POVMs

In quantum mechanics, when a system is shared by several parties, the underlying
global Hilbert space is the tensor product of the local Hilbert spaces corresponding to
each of the subsystems. A physically relevant class of POVMs on such a multipartite
system is the one of local POVMs, describing the situation where each party is only
able to perform measurements on his own subsystem.

Definition 4.6 For i = 1, 2, let Mi denote a POVM on Cdi , defined on a σ -algebra
Fi on a set �i . The tensor POVMM1 ⊗M2 is the unique map defined on the product
σ -algebra F1 ⊗ F2 on �1 × �2, and such that

(M1 ⊗ M2)(A1 × A2) = M1(A1) ⊗ M2(A2)

for every A1 ∈ F1, A2 ∈ F2. By construction, M1 ⊗ M2 is a POVM on Cd1 ⊗ Cd2 .

In the discrete case, this definition becomes more transparent: if M = (Mi )1�i�m
and N = (N j )1� j�n are discrete POVMs, then M ⊗ N is also discrete, and

M ⊗ N = (Mi ⊗ N j )1�i�m,1� j�n .

POVMs on Cd1 ⊗Cd2 which can be decomposed as tensor product of two POVMs
are called local POVMs. If we identify the POVMsM1 and M2 with measures μ1 and
μ2 as in Proposition 3.1, then the measure corresponding to M1 ⊗M2 is the image of
the product measure μ1 × μ2 under the map (ρ, σ ) 
→ ρ ⊗ σ . It thus follows that

Proposition 4.7 If M and N are two POVMs, then ‖ · ‖M⊗N = ‖ · ‖M ⊗1 ‖ · ‖N and
KM⊗N = KM ⊗Z KN.

These definitions and statements are given here only in the bipartite case for the
sake of clarity, but can be extended to the situation where a system is shared between
any number k of parties.

5 Sparsifying POVMs

5.1 The uniform POVM

It has been proved in [22] that, in several senses, the “most efficient” POVM on Cd

is the “most symmetric” one, i.e. the uniform POVM Ud , which corresponds to the
uniform measure on the set of pure states in the representation (5) from Proposition
3.5.

The corresponding norm is

‖�‖Ud = d E |〈ψ |�|ψ〉|, (10)

where ψ is a random Haar-distributed unit vector.
An important property is that the norm ‖·‖Ud is equivalent to a “modified” Hilbert–

Schmidt norm.
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Proposition 5.1 [15,20] For every � ∈ H(Cd), we have

1√
18

‖�‖2(1) � ‖�‖Ud � ‖�‖2(1), (11)

where the norm ‖ · ‖2(1) is defined as

‖�‖2(1) =
√
Tr(�2) + (Tr�)2. (12)

One can check that ‖�‖2(1) equals the L2 norm of the random variable 〈g|�|g〉,
where g is a standardGaussian vector inCd , while the L1 norm of this random variable
is nothing else than ‖�‖Ud . Therefore Proposition 5.1 can be seen as a reverse Hölder
inequality, and an interesting problem would be to find the optimal constant in that
inequality (the factor

√
18 is presumably far from optimal).

This dimension-free lower bound on the distinguishing power of the uniformPOVM
is of interest in quantum information theory. One could cite as one of its applications
the possibility to establish lower-bounds on the dimensionality reduction of quantum
states [15]. However, from a computational or algorithmic point of view, this statement
involving a continuous POVM is of no practical use. There has been interest therefore
in the question of sparsifyingUd , i.e. of finding a discrete POVM,with as fewoutcomes
as possible, which would be equivalent to Ud in terms of discriminating efficiency.
Examples of such constructions arise from the theory of projective 4-designs.

Given an integer t � 1, an (exact) t-design is a finitely supported probability
measure μ on SCd such that

∫
SCd

|ψ〉〈ψ |⊗t dμ(ψ) =
∫
SCd

|ψ〉〈ψ |⊗t dσ(ψ) =
(
d + t − 1

t

)−1

PSymt (Cd ).

here, σ denotes the Haar probability measure on SCd , and PSymt (Cd ) denotes the
orthogonal projection onto the symmetric subspace Symt (Cd) ⊂ (Cd)⊗t .

Note that a t-design is also a t ′-design for any t ′ � t . Let μ be a 1-design. The
map ψ 
→ |ψ〉〈ψ | pushes forward μ into a measure μ̃ on the set of (pure) states, with
barycenter equal to Id/d. By Proposition 3.5, this measure corresponds to a POVM,
and in the following we identify t-designs with the associated POVMs. For example
the uniform POVM Ud is a t-design for any t .

This notion can be relaxed: define an ε-approximate t-design to be a finitely sup-
ported measure μ on SCd such that

(1 − ε)

∫
SCd

|ψ〉〈ψ |⊗t dσ(ψ) �
∫
SCd

|ψ〉〈ψ |⊗t dμ(ψ)

� (1 + ε)

∫
SCd

|ψ〉〈ψ |⊗t dσ(ψ).
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It has been proved in [1] that a 4-design (exact or approximate) supported on N
points yields a POVM M with N outcomes such that

C−1‖ · ‖Ud � ‖ · ‖M � C‖ · ‖Ud (13)

for some constant C . The proof is based on the fourth moment method, which is used
to control the first absolute moment of a random variable by its second and fourth
moments.

Now, what is the minimal cardinality of a 4-design? The support of any exact or
ε-approximate (provided ε < 1) 4-design must contain at least dim(Sym4(Cd)) =(d+3

4

) = �(d4) points. Conversely, an argument based on Carathéodory’s theorem
shows that there exist exact 4-designs with O(d8) points. Starting from such an exact
4-design, the sparsification procedure from [4] gives a deterministic and efficient
algorithm which outputs an ε-approximate 4-design supported by O(d4/ε2) points.

However, this approach has two drawbacks: the constant C from (13) cannot be
taken close to 1, and the number of outcomes has to be�(d4). We are going to remove
both inconveniences in our Theorem 5.3.

5.2 Euclidean subspaces

How do these ideas translate into the framework of zonoids? The analogue of Ud is
the most symmetric zonoid, namely the Euclidean ball Bn

2 ⊂ Rn . To connect with
literature from functional analysis, it is worth emphasizing that approximating Bn

2 by
a zonotope which is the sum of N segments is equivalent to embedding the space
�n2 = (Rn, ‖ · ‖2) into the space �N1 = (RN , ‖ · ‖1). Indeed, assume that x1, . . . , xN
are points in Rn such that, for some constants c,C ,

cZ ⊂ Bn
2 ⊂ CZ ,

where Z = conv{±x1} + · · · + conv{±xN }. Then the map u : Rn → RN defined by

u(x) =
(
〈x, x1〉, · · · , 〈x, xN 〉

)
satisfies c‖u(x)‖1 � ‖x‖2 � C‖u(x)‖1 for any x ∈ Rn . In this context, the ratio C/c
is often called the distortion of the embedding.

An early result by Rudin [25] shows an explicit embedding of �n2 into �
O(n2)
1 with

distortion
√
3. This is proved by the fourth moment method and can be seen as the

analogue of the constructions based on 4-designs. The following theorem (a variation
on Dvoretzky’s theorem) has been a major improvement on Rudin’s result, showing
that �N1 has almost Euclidean sections of proportional dimension.

Theorem 5.2 ([11]) For every 0 < ε < 1, there exists a subspace E ⊂ RN of
dimension n = c(ε)N such that for any x ∈ E,

(1 − ε)M‖x‖2 � ‖x‖1 � (1 + ε)M‖x‖2, (14)
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where M denotes the average of the 1-norm over the Euclidean unit sphere SN−1.

Theorem5.2wasfirst proved in [11],making a seminal use ofmeasure concentration
in the formofLévy’s lemma.The argument shows that a generic subspace E (i.e. picked
uniformly at random amongst all c(ε)N -dimensional subspaces of RN ) satisfies the
conclusion of the theorem with high probability for c(ε) = O

(
ε2| log ε|−1

)
. This was

later improved in [13] to c(ε) = O
(
ε2

)
.

5.3 Sparsification of the uniform POVM

Translated in the language of zonotopes, Theorem 5.2 states that the sum of O(n)

randomly chosen segments inRn is close to the Euclidean ball Bn
2 . More precisely, for

any 0 < ε < 1, the zonotope Z = conv{±x1}+ · · ·+ conv{±xN }, with N = c(ε)−1n
and x1, . . . , xN randomly chosen points in Rn , is ε-close to the Euclidean ball Bn

2 , in
the sense that (1 − ε)Z ⊂ Bn

2 ⊂ (1 + ε)Z .
By analogy, we expect a POVMconstructed from O(d2) randomly chosen elements

to be close to the uniformPOVM.This randomconstruction can be achieved as follows:
let (|ψi 〉)1�i�n be independent random vectors, uniformly chosen on the unit sphere
of Cd . Set Pi = |ψi 〉〈ψi |, 1 � i � n, and S = P1 + · · · + Pn . When n � d, S is
almost surely invertible, and we may consider the random POVM

M =
(
S−1/2Pi S

−1/2
)
1�i�n

. (15)

Theorem 5.3 Let M be a random POVM on Cd with n outcomes, defined as in (15),
and let 0 < ε < 1. If n � Cε−2| log ε|d2, then with high probability the POVM M
satisfies the inequalities

(1 − ε)‖�‖Ud � ‖�‖M � (1 + ε)‖�‖Ud

for every � ∈ H(Cd).

By “with high probability” we mean that the probability that the conclusion fails
is less than exp(−c(ε)d) for some constant c(ε). Theorem 5.3 is proved in Sect. 7,
the proof being based on a careful use of ε-nets and deviation inequalities. It does
not seem possible to deduce formally Theorem 5.3 from the existing Banach space
literature.

Theorem 5.3 shows that the uniform POVM on Cd can be ε-approximated (in the
sense of closeness of distinguishability norms) by a POVMwith n = O(ε−2| log ε|d2)
outcomes. Note that the dependence of n with respect to d is optimal: since a POVM
on Cd must have at least d2 outcomes to be informationally complete, one cannot
hope for a tighter dimensional dependence. The dependence with respect to ε is less
clear: the factor | log ε| can probably be removed but we do not pursue this direction.

Our construction is random and a natural question is whether deterministic con-
structions yielding comparable properties exist. A lot of effort has been put in
derandomizing Theorem 5.2. We refer to [19] for bibliography and mention two of the
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latest results. Given any 0 < γ < 1, it is shown in [19] how to construct, from cnγ

random bits (i.e. an amount of randomness sub-linear in n) a subspace of �N1 satisfying
(14) with N � (γ ε)−Cγ n. A completely explicit construction appears in [18], with
N � n2C(ε)(log log n)2 = n1+C(ε)o(n). It is not obvious how to adapt these constructions
to obtain sparsifications of the uniform POVM using few or no randomness.

5.4 Sparsification of any POVM

Theorem 5.2 initiated intensive research in the late 80’s [7,28,31] on the theme of
“approximation of zonoids by zonotopes”, trying to extend the result for the Euclidean
ball (themost symmetric zonoid) to an arbitrary zonoid. This culminated inTalagrand’s
proof [31] that for any zonoid Y ⊂ Rn and any 0 < ε < 1, there exists a zonotope
Z ⊂ Rn which is the sum of O(ε−2n log n) segments and such that (1 − ε)Y ⊂ Z ⊂
(1+ ε)Y . A more precise version is stated in Sect. 9. Whether the log n factor can be
removed is still an open problem.

This result easily implies a similar result for POVMs, provided we consider the
larger class of sub-POVMs. A discrete sub-POVM with n outcomes is a finite family
M = (Mi )1�i�n of n positive operators such that S = ∑n

i=1 Mi � Id. As for POVMs,
the norm associated to a sub-POVM M is defined for � ∈ H(Cd) by

‖�‖M =
n∑

i=1

|Tr(�Mi )|.

We prove the following result in Sect. 9.

Theorem 5.4 Given any POVM M on Cd and any 0 < ε < 1, there is a sub-POVM
M′ = (M ′

i )1�i�n, with n � Cε−2d2 log(d) such that, for any � ∈ H(Cd),

(1 − ε)‖�‖M � ‖�‖M′ � ‖�‖M.

Moreover, we can guarantee that the states M ′
i/Tr(M

′
i ) belong to the support of the

measure μ associated to M.

We do not know whether Theorem 5.4 still holds if we want M′ to be a POVM.
Given a sub-POVM (Mi )1�i�n , there are at least two natural ways to modify it into a
POVM. A solution is to add an extra outcome corresponding to the operator Id − S,
and another one is to substitute S−1/2Mi S−1/2 in place of Mi , as we proceeded in
(15). However for a general POVM, the error terms arising from this renormalization
step may exceed the quantity to be approximated.

6 Sparsifying local POVMs

Proposition 6.1 below is an immediate corollary of Lemma 4.4 and Proposition 4.7.
In words, it shows that, on a multipartite system, a local POVM can be sparsified by
tensorizing sparsifications of each of its factors.
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Proposition 6.1 Let 0 < ε < 1. Let M1, . . . ,Mk be POVMs and M′
1, . . . ,M

′
k be

(sub-)POVMs, on Cd1 , . . . ,Cdk respectively, satisfying, for all 1 � i � k, and for all
� ∈ H(Cdi ),

(1 − ε)‖�‖Mi � ‖�‖M′
i
� (1 + ε)‖�‖Mi .

Then, for any � ∈ H(Cd1 ⊗ · · · ⊗ Cdk ),

(1 − ε)k‖�‖M1⊗···⊗Mk � ‖�‖M′
1⊗···⊗M′

k
� (1 + ε)k‖�‖M1⊗···⊗Mk .

Let us give a concrete application of Proposition 6.1. We consider k finite-
dimensional Hilbert spaces Cd1 , . . . ,Cdk and define the local uniform POVM on the
k-partite Hilbert spaceCd1 ⊗· · ·⊗Cdk as the tensor product of the k uniform POVMs
Ud1, . . . ,Udk . We will denote it by LU. The corresponding distinguishability norm
can be described, for any � ∈ H(Cd1 ⊗ · · · ⊗ Cdk ), as

‖�‖LU = d E |〈ψ1 ⊗ · · · ⊗ ψk |�|ψ1 ⊗ · · · ⊗ ψk〉| ,

where d = d1 × · · · × dk is the dimension of the global Hilbert space, and where the
random unit vectorsψ1, . . . , ψk are independent andHaar-distributed inCd1, . . . ,Cdk

respectively.
The following multipartite generalization of Proposition 5.1 shows that the norm

‖ · ‖LU, in analogy to the norm ‖ · ‖U, is equivalent to a “modified” Hilbert–Schmidt
norm.

Proposition 6.2 [20] For every � ∈ H(Cd1 ⊗ · · · ⊗ Cdk ), we have

1

18k/2
‖�‖2(k) � ‖�‖LU � ‖�‖2(k), (16)

where the norm ‖ · ‖2(k) is defined as

‖�‖2(k) =
√ ∑

I⊂{1,...,k}
Tr

[(
Tr I �

)2]
. (17)

Here Tr I denotes the partial trace over all parties I ⊂ {1, . . . , k}.
Proof of Proposition 6.2 Adirect proof appears in [20], butwefind interesting to show
that in can be deduced (with a worst constant) from Proposition 5.1. If we denote by
〈·, ·〉H the inner product inducing a Euclidean norm ‖ · ‖H , we have

〈A1 ⊗ · · · ⊗ Ak, B1 ⊗ · · · ⊗ Bk〉2(k) = 〈A1, B1〉2(1) × · · · × 〈Ak, Bk〉2(1)
which is equivalent to saying that

‖ · ‖2(k) = ‖ · ‖2(1) ⊗2 · · · ⊗2 ‖ · ‖2(1).
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We thus get by Proposition 4.5,

ck−1
0 ‖ · ‖2(k) � ‖ · ‖2(1) ⊗1 · · · ⊗1 ‖ · ‖2(1) � ‖ · ‖2(k)

with c0 = √
2/π . Now, we also know by Proposition 4.7 that onH(Cd1 ⊗· · ·⊗Cdk ),

‖ · ‖LU = ‖ · ‖Ud1
⊗1 · · ·⊗1 ‖ · ‖Udk

, and by Proposition 5.1 that c‖ · ‖2(1) � ‖ · ‖Ud �
‖ · ‖2(1) for some constant c (c = 1/

√
18 works). So by Lemma 4.4,

ck ‖ · ‖2(1) ⊗1 · · · ⊗1 ‖ · ‖2(1) � ‖ · ‖LU � ‖ · ‖2(1) ⊗1 · · · ⊗1 ‖ · ‖2(1),

and therefore

ck−1
0 ck‖ · ‖2(k) � ‖ · ‖LU � ‖ · ‖2(k).

��
Remarkably, local dimensions do not appear in Eq. (16). This striking fact that local

POVMs can have asymptotically non-vanishing distinguishing power can be used to
construct an algorithm that solves the Weak Membership Problem for separability
in quasi-polynomial time (see [8] for a description in the bipartite case). Hence the
importance of being able to sparsify the local uniformPOVMby aPOVMforwhich the
locality property is preserved andwhichhas anumber of outcomes that optimally scales
as the square of the global dimension. We state the corresponding multipartite version
of Theorem 5.3, which is straightforwardly obtained by combining the unipartite
version with Proposition 6.1.

Theorem 6.3 Let0 < ε < 1. For all1 � i � k, letMi be a randomPOVMonCdi with
ni � Cε−2| log ε|d2i outcomes, defined as in (15). Then,with high probability, the local
POVMM1⊗· · ·⊗Mk onCd1 ⊗· · ·⊗Cdk is such that, for any� ∈ H(Cd1 ⊗· · ·⊗Cdk ),

(1 − ε)k‖�‖LU � ‖�‖M1⊗···⊗Mk � (1 + ε)k‖�‖LU.

Let us rephrase the content of Theorem 6.3: the local uniform POVM on Cd1 ⊗
· · · ⊗Cdk can be kε-approximated (in terms of distinguishability norms) by a POVM
which is also local and has a total number of outcomes n = O(Ckε−2k | log ε|kd2),
where d = d1 × · · · × dk . Note that the dimensional dependence of n is optimal. On
the contrary, the dependence of n on ε deteriorates as k grows. The high-dimensional
situation our result applies to is thus really the one of a “small” number of “large”
subsystems (i.e. k fixed and d1, . . . , dk → +∞), and not of a “large” number of
“small” subsystems.

7 Proof of Theorem 5.3

In this section we prove Theorem 5.3. Let n ∈ N and (|ψi 〉)1�i�n be independent
randomunit vectors, uniformly distributed on the unit sphere ofCd . Ourmain technical
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estimates are a couple of probabilistic inequalities. Proposition 7.1 is an immediate
consequence of Theorem 1 in [2]. Proposition 7.2 is a consequence of Bernstein
inequalities. However, its proof requires some careful estimates which we postpone
to Sect. 8.

Proposition 7.1 If (|ψi 〉)1�i�n are independent random vectors, uniformly distrib-
uted on the unit sphere of Cd , then for every 0 < η < 1

P

(
(1 − η)

Id

d
� 1

n

n∑
i=1

|ψi 〉〈ψi | � (1 + η)
Id

d

)
� 1 − Cd exp(−cnη2).

Proposition 7.2 Let � ∈ H(Cd), and (|ψi 〉)1�i�n be independent random vectors,
uniformly distributed on the unit sphere of Cd . For 1 � i � n, consider the random
variables Xi = d|〈ψi |�|ψi 〉| and Yi = Xi − E Xi = Xi − ‖�‖Ud . Then, for any
t > 0,

P

(∣∣∣∣∣1n
n∑

i=1

Yi

∣∣∣∣∣ � t‖�‖Ud

)
� 2 exp(−c′

0nmin(t, t2)).

We now show how to derive Theorem 5.3 from the estimates in Propositions 7.1
and 7.2. For each 1 � i � n, set Pi = |ψi 〉〈ψi |, and introduce the (random) norm
defined for any � ∈ H(Cd) as

|||�||| = d

n

n∑
i=1

|Tr(�Pi )|.

We will now prove that ||| · ||| is, with probability close to 1, a good approximation
to ‖ · ‖Ud . First, using Proposition 7.2, we obtain that for any 0 < ε < 1 and any
� ∈ H(Cd)

P
(
(1 − ε)‖�‖Ud � |||�||| � (1 + ε)‖�‖Ud

)
� 1 − 2 exp(−c′

0nε2). (18)

We next use a net argument. Fix 0 < ε < 1/3 and a ε-net N inside the unit
ball for the norm ‖ · ‖Ud , with respect to the distance induced by ‖ · ‖Ud . A standard
volumetric argument (see [23], Lemma 4.10) shows that we may assume card(N ) �
(1 + 2/ε)d

2 � (3/ε)d
2
. Introduce the quantities

A := sup{|||�||| : ‖�‖Ud � 1},
A′ := sup{|||�||| : � ∈ N }.

Given � such that ‖�‖Ud � 1, there is �0 ∈ N with ‖� − �0‖Ud � ε. By the
triangle inequality, we have |||�||| � A′ + |||�−�0||| � A′ +εA. Taking supremum
over � yields A � A′ + εA i.e. A � A′

1−ε
.
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If we introduce B := inf{|||�||| : ‖�‖Ud = 1} and B ′ := inf{|||�||| : � ∈ N }, a
similar argument shows that B � B ′ −εA, so that in fact B � B ′ − εA′

1−ε
. We therefore

have the implications

1 − ε � B ′ � A′ � 1 + ε �⇒ 1 − ε − ε(1 + ε)

1 − ε
� B � A � 1 + ε

1 − ε

�⇒ 1 − 3ε � B � A � 1 + 3ε. (19)

By the union bound, we get from (18) that P(1 − ε � B ′ � A′ � 1 + ε) �
1 − 2 card(N ) exp(−c′

0nε2). Combined with (19), and using homogeneity of norms,
this yields

P
(
(1− 3ε)‖ · ‖Ud � ||| · ||| � (1+ 3ε)‖ · ‖Ud

)
� 1− 2

(
3

ε

)d2

exp(−c′
0nε2). (20)

This probability estimate is non-trivial, and can be made close to 1, provided n �
d2ε−2| log ε|.

Whenever n � d, the vectors (|ψi 〉)1�i�n generically span Cd , and therefore the
operator S = P1 + · · · + Pn is invertible. We may then define P̃i = S−1/2Pi S−1/2 so
that M = (P̃i )1�i�n is a POVM. The norm associated to M is, for any � ∈ H(Cd),

‖�‖M =
n∑

i=1

|Tr(�P̃i )|.

We now argue that the norms ||| · ||| and ‖ · ‖M are similar enough (modulo normal-
ization), because the modified operators P̃i are close enough to the initial ones Pi .

This is achieved by showing that T := ( d
n S

)−1/2
is close to Id (in operator-norm

distance). We use Proposition 7.1 for η = ε‖�‖Ud /‖�‖1. By Proposition 5.1, we
have η � ε/

√
18d . Proposition 7.1 implies that

P(‖T − Id‖∞ � η) � P(‖T−2 − Id‖∞ � η) � Cd exp(−c′nε2/d). (21)

This upper bound is much smaller than 1 provided n � C1ε
−2d2. Also, note that the

event ‖T − Id‖∞ � η implies that

‖� − T�T ‖M � ‖� − T�T ‖1 � ‖�‖1‖Id − T ‖∞ (1 + ‖T ‖∞)

� 2η‖�‖1 = 2ε‖�‖Ud .

Using the cyclic property of the trace, we check that ‖T�T ‖M = |||�|||. Now,
choose n larger than both C0ε

−2| log ε|d2 and C1ε
−2d2. With high probability, the

events from Eqs. (20) and (21) both hold. We then obtain for every � ∈ H(Cd),

‖�‖M � ‖T�T ‖M + ‖� − T�T ‖M � |||�||| + 2ε‖�‖Ud � (1 + 5ε)‖�‖Ud
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and similarly ‖�‖M � (1 − 5ε)‖�‖Ud . This is precisely the result from Theorem
5.3 with 5ε instead of ε, which of course can be absorbed by renaming the constants
appropriately.

8 Proof of Proposition 7.2

The proof is a direct application of a large deviation inequality for sums of indepen-
dent sub-exponential (or ψ1) random variables. Recall that the ψ1-norm of a random
variable X (which quantifies the exponential decay of the tail) may be defined via the
growth of even moments

‖X‖ψ1 := sup
q∈N

1

2q

(
E |X |2q)1/2q .

This definition ismore practical than the standard definition through theOrlicz function
x 
→ exp(x) − 1, and leads to an equivalent norm (see [9], Corollary 1.1.6). The
large deviation inequality for a sum of independent ψ1 random variables is known as
Bernstein’s inequality.

Theorem 8.1 (Bernstein’s inequality, see [9], Theorem 1.2.5.) Let X1, . . . , Xn be n
independent ψ1 random variables with mean zero. Setting M = max

1�i�n
‖Xi‖ψ1 and

σ 2 = 1
n

∑
1�i�n

‖Xi‖2ψ1
, we have

∀ t > 0, P

(∣∣∣∣∣1n
n∑

i=1

Xi

∣∣∣∣∣ � t

)
� 2 exp

(
−c0nmin

(
t2

σ 2 ,
t

M

))
,

c0 > 0 being a universal constant.

For � ∈ H(Cd), consider the random variables Xi = d|Tr(�Pi )| with Pi =
|ψi 〉〈ψi |, and Yi = Xi − E Xi = d|Tr(�Pi )| − ‖�‖Ud . The random variables Yi are
independent and have mean zero. The key lemma is a bound on their ψ1 norm.

Lemma 8.2 Let � ∈ H(Cd) and consider the random variable X := d|Tr(�P)|,
where P = |ψ〉〈ψ |, with ψ uniformly distributed on the unit sphere of Cd . Then
‖X‖ψ1 � ‖�‖2(1) and ‖X − E X‖ψ1 � 3‖�‖2(1) � 3

√
18‖�‖Ud .

Therefore, we may apply Bernstein’s inequality with M = σ � 3
√
18‖�‖Ud ,

yielding Proposition 7.2.

Proof of Lemma 8.2 For each integer q, we compute

E [Tr(�P)]2q = ETr
(
�⊗2q P⊗2q

)
= Tr

(
�⊗2q

[
E P⊗2q

])
.
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We use the fact (see e.g. [14]) that

E P⊗2q = (2q)!
(d + 2q − 1) × · · · × d

PSym2q (Cd ) = 1

(d + 2q − 1) × · · · × d

∑
π∈S2q

U (π),

where PSym2q (Cd ) denotes the orthogonal projection onto the symmetric subspace

Sym2q(Cd) ⊂ (Cd)⊗2q , and for each permutation π ∈ S2q , U (π) denotes the asso-
ciated permutation unitary on (Cd)⊗2q . This yields

E [Tr(�P)]2q = 1

(d + 2q − 1) × · · · × d

∑
π∈S2q

Tr
(
�⊗2qU (π)

)
.

If �1, . . . , �k denote the lengths of the cycles appearing in the cycle decomposition of
a permutation π ∈ S2q , we have �1 + · · · + �k = 2q and

Tr
(
�⊗2qU (π)

)
=

k∏
i=1

Tr(��i ).

Now, for any integer � � 2, we have |Tr(��)| � [Tr(�2)]�/2 � ‖�‖�
2(1).

The inequality |Tr(��)| � ‖�‖�
2(1) is also (trivially) true for � = 1. Therefore∣∣Tr (�⊗2qU (π)

)∣∣ � ‖�‖2q2(1). It follows that

E [Tr(�P)]2q � (2q)!
d2q

‖�‖2q2(1) �
(
2q‖�‖2(1)

d

)2q

,

so that
(
E X2q

)1/2q � 2q‖�‖2(1), and thus ‖X‖ψ1 � ‖�‖2(1). The last part of the
Lemma follows from the triangle inequality, since ‖E X‖ψ1 = |E X | � 2‖X‖ψ1 , and
from the equivalence (11) between the norms ‖ · ‖Ud and ‖ · ‖2(1). ��

9 Proof of Theorem 5.4

Here is a version of Talagrand’s theorem which is suitable for our purposes.

Theorem 9.1 ([31]) Let Z ⊂ Rn be a symmetric zonotope, with

Z =
∑
i∈I

conv{±ui }

for a finite family of vectors (ui )i∈I . Then for every ε > 0 there exists a subset J ⊂ I
with card J � Cn log n/ε2, and positive numbers (λi )i∈J such that the zonotope

Z ′ =
∑
i∈J

conv{±λi ui }
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satisfies Z ′ ⊂ Z ⊂ (1 + ε)Z ′.

Theorem 5.4 is a very simple consequence of Theorem 9.1. Let M be a POVM
to be sparsified. Using Corollary 3.2, we may assume that M = (Mi )i∈I is discrete.
Applying Theorem 9.1 to the zonotope KM = ∑

i∈I conv{±Mi } (which lives in a d2-
dimensional space), we obtain a zonotope Z ′ = ∑

i∈J conv{±λi Mi } with card J �
Cd2 log d/ε2 such that Z ′ ⊂ KM ⊂ (1+ε)Z ′. It remains to show thatM′ = (λi Mi )i∈J

is a sub-POVM. We know that hZ ′ � hKM. Therefore, given a unit vector x ∈ Cd , the
inequality hZ ′(�) � hKM(�) applied with � = |x〉〈x | shows that

∑
i∈J

λi |〈x |Mi |x〉| � ‖|x〉〈x |‖M � ‖|x〉〈x |‖1 = 1,

and therefore
∑

i∈J λi Mi � Id, as required. Since the inclusions Z ′ ⊂ KM ⊂ (1+ε)Z ′
are equivalent to the inequalities ‖·‖M′ � ‖·‖M � (1+ε)‖·‖M′ , Theorem 5.4 follows.

Acknowledgments We thank Andreas Winter for having first raised the general question of finding
POVMs with few outcomes but good discriminating power. We also thank Marius Junge for suggesting the
possible connection between POVMs and zonoids, and for pointing out to us relevant literature.
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