Almost depolarizing channels with short Kraus decompositions

Guillaume AUBRUN
Université Lyon 1, France

Completely positive maps

$\mathcal{M}\left(\mathbf{C}^{d}\right): d \times d$ complex matrices $-\langle A, B\rangle=\operatorname{Tr} A B^{*}$.

Definition (equivalent to the usual one)

A linear map $\Phi: \mathcal{M}\left(\mathbf{C}^{d}\right) \rightarrow \mathcal{M}\left(\mathbf{C}^{d}\right)$ is completely positive $(C P)$ if there is a random matrix $V:(\Omega, \mathbf{P}) \rightarrow \mathcal{M}\left(\mathbf{C}^{d}\right)$ so that

$$
\Phi(X)=\mathbf{E} V X V^{*} .
$$

- Depends only on the covariance matrix of $V\left(\in \mathcal{M}_{+}\left(\mathcal{M}\left(\mathbf{C}^{d}\right)\right)\right.$.
- Therefore V can be chosen to be finitely supported. Kraus decomposition. Any $\mathrm{CP} \Phi: \mathcal{M}\left(\mathbf{C}^{d}\right) \rightarrow \mathcal{M}\left(\mathbf{C}^{d}\right)$ can be decomposed as a sum of Kraus operators

$$
\Phi(X)=\sum_{i=1}^{N} V_{i} X V_{i}^{*} \quad \text { with } N \leqslant d^{2}
$$

The length N measures the complexity of Φ.

Quantum channels

Definition

A state $\rho \in \mathcal{M}\left(\mathbf{C}^{d}\right)$ is a positive self-adjoint matrix with trace 1 . The state $\frac{\mathrm{Id}}{d}$ (the maximally mixed state) plays a central role.

Definition

A CP map $\Phi: X \rightarrow \mathbf{E} V X V^{*}$ is a quantum channel if it preseves trace

$$
\operatorname{Tr} \Phi(X)=\operatorname{Tr} X
$$

- A quantum channel maps states to states.
- If V is supported in the unitary group $\mathcal{U}(d)$, then Φ is a quantum channel - not all quantum channels are like this.
- A canonical example. Let U be Haar-distributed on $\mathcal{U}(d)$. This leads to the «depolarizing» or «randomizing» channel Ψ.

$$
\Psi(X)=\mathbf{E} U X U^{*}=\operatorname{Tr} X \frac{\mathrm{Id}}{d}
$$

Kraus decompositions of the depolarizing channel

Since the covariance matrix of U (= a multiple of identity) has full rank, any Kraus decomposition of Ψ has length at least d^{2}.

Example : if $\omega=\exp (2 i \pi / d)$, let A, B defined as

$$
A\left(e_{j}\right)=\left[\begin{array}{llll}
\omega & & & 0 \\
& \omega^{2} & & \\
& & \ddots & \\
0 & & & 1
\end{array}\right], \quad B\left(e_{j}\right)=\left[\begin{array}{cccc}
0 & 1 & & 0 \\
& \ddots & \ddots & \\
& & \ddots & 1 \\
1 & & & 0
\end{array}\right]
$$

The set $\mathcal{U}=\left\{A^{k} B^{\prime}\right\}_{1 \leqslant k, 1 \leqslant d}$ is a orthogonal family of unitary matrices.

$$
\Psi(X)=\operatorname{Tr} X \frac{\mathrm{Id}}{d}=\frac{1}{d^{2}} \sum_{k, l=1}^{d} A^{k} B^{\prime} X\left(A^{k} B^{\prime}\right)^{*}
$$

ε-randomizing channels

- Kraus decompositions of $\Psi \longleftrightarrow$ Exact encryption protocols.
- Approximate decomposition of $\Psi \longleftrightarrow$ Approximate encryption protocols.

Definition (Hayden, Leung, Shor and Winter)

A quantum channel $\Phi: \mathbf{C}^{d} \rightarrow \mathbf{C}^{d}$ is ε-randomizing if for any state ρ

$$
\left\|\Phi(\rho)-\frac{\mathrm{Id}}{d}\right\|_{\infty} \leqslant \frac{\varepsilon}{d}
$$

i.e. the spectrum of $\Phi(\rho)$ belongs to $\left[\frac{1-\varepsilon}{d}, \frac{1+\varepsilon}{d}\right]$.

- The depolarizing channel Ψ is 0 -randomizing, but has Kraus decompositions of length d^{2}.
- Problem: find ε-randomizing channels with short Kraus decompositions (low-cost encryption).

Short random Kraus decompositions

Theorem (Hayden, Leung, Shor, Winter - A.)

Let U_{1}, \ldots, U_{N} be i.i.d. Haar-distributed random $d \times d$ unitary matrices. Then for $N \geqslant C d / \varepsilon^{2}$, the quantum channel

$$
\Phi: X \mapsto \frac{1}{N} \sum_{i=1}^{N} U_{i} X U_{i}^{*}
$$

is ε-randomizing with exponentially large probability.

- HLSW had the weaker estimate $N \geqslant C d \log d / \varepsilon^{2}$.
- Idea of the proof : For unit vectors $x, y \in \mathbf{C}^{d}$, the random variable $\langle x, U y\rangle$ is subgaussian. Therefore a net argument coupled with Bernstein inequalities will work.
- Optimal dependence in d. Can we achieve better dependence in ε with another (non-random) construction ?

Derandomization

The Haar measure is hard to generate in real-life situations. We show (answering a question of HLSW) that we can replace «reduce the amount of randomness » and replace it by any measure.

Theorem

Let $U:(\Omega, \mathbf{P}) \rightarrow \mathcal{U}(d)$ be a random unitary matrix so that

$$
E \cup X U^{*}=\Psi(X)=\operatorname{Tr} X \cdot \frac{I d}{d}
$$

Let $\left(U_{i}\right)$ be i.i.d. copies of U. For $N \geqslant C d(\log d)^{6} / \varepsilon^{2}$, the quantum channel

$$
\Phi: X \mapsto \frac{1}{N} \sum_{i=1}^{N} U_{i} X U_{i}^{*}
$$

is ε-randomizing with probability $\geqslant 1 / 2$.

Isotropic measures

Definition

Say that a $\mathcal{U}(d)$-valued random vector U is isotropic if

$$
\begin{aligned}
& \forall X \in \mathcal{M}\left(\mathbf{C}^{d}\right), \quad E U X U^{*}=\operatorname{Tr} X \cdot \frac{\mathrm{Id}}{d}, \\
& \Longleftrightarrow \forall X \in \mathcal{M}\left(\mathbf{C}^{d}\right), \quad \mathbf{E}|\operatorname{Tr} U X|^{2}=\frac{1}{d}\|X\|_{H S}^{2} .
\end{aligned}
$$

(1) Haar measure.
(2) Uniform measure on \mathscr{U} (orthogonal basis of unitary matrices).
(3) On \mathbf{C}^{2} : uniform measure on the 4 Pauli matrices

$$
\sigma_{0}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad \sigma_{x}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad \sigma_{y}=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right], \quad \sigma_{z}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] .
$$

(9) On $\left(\mathbf{C}^{2}\right)^{\otimes k}: k$-wise tensor product of the previous example.

Examples 2-4 are not subgaussian \longrightarrow net arguments cannot work.

Proof (1)

We need to estimate, for $U_{i} \in \mathcal{U}(d)$ i.i.d. isotropic

$$
\begin{aligned}
M & :=E \sup _{\rho \text { state }}\left\|\frac{1}{N} \sum_{i=1}^{N} U_{i} \rho U_{i}^{*}-\frac{\mathrm{Id}}{d}\right\|_{\infty} \\
& =\mathbf{E} \sup _{|x|=1} \| \frac{1}{N} \sum_{i=1}^{N}\left|U_{i} x\right\rangle\left\langle U_{i} x\right|-\frac{I d}{d} \|_{\infty} \\
& \left.=\left.\mathbf{E} \sup _{|x|=|y|=1}\left|\frac{1}{N} \sum_{i=1}^{N}\right|\left\langle U_{i} x, y\right\rangle\right|^{2}-\frac{1}{d} \right\rvert\, \\
& \left.=\mathbf{E} \sup _{|x|=|y|=1}\left|\frac{1}{N} \sum_{i=1}^{N}\right| \operatorname{Tr} U_{i}|x\rangle\langle y| \|^{2}-\frac{1}{d} \right\rvert\, \\
& \left.=\left.\mathbf{E} \sup _{A \in B\left(S_{1}^{d}\right)}\left|\frac{1}{N} \sum_{i=1}^{N}\right| \operatorname{Tr} U_{i} A\right|^{2}-\mathbf{E} \operatorname{Tr}|U A|^{2} \right\rvert\,
\end{aligned}
$$

This is an empirical process in the Schatten space $S_{1}^{d}=\left(\mathcal{M}\left(\mathbf{C}^{d}\right),\|\cdot\|_{1}\right)$.

Proof (2)

We can use results by Rudelson and Guédon, Mendelson, Pajor, Tomczak-Jaegermann about empirical processes in a Banach space with a good modulus of convexity (such as Hilbert space, ℓ_{1}^{d}, S_{1}^{d}). Proof (following [R],[GMPT])

- Symmetrization arguement à la Giné-Zinn

$$
\left.M \leqslant\left. 2 \mathbf{E}_{U} \mathbf{E}_{\varepsilon} \sup _{A \in B\left(S_{1}^{d}\right)} \mathbf{E}\left|\frac{1}{N} \sum_{i=1}^{N} \varepsilon_{i}\right| \operatorname{Tr} U_{i} A\right|^{2} \right\rvert\,
$$

- The theorem follows from the next lemma

Lemma

Let $U_{1}, \ldots, U_{N} \in \mathcal{U}(d)$ be deterministic, $N \geqslant d$. Then,

$$
\left.\mathbf{E}_{\varepsilon} \sup _{A \in B\left(S_{1}^{d}\right)}\left|\sum_{i=1}^{N} \varepsilon_{i}\right| \operatorname{Tr} U_{i} A\right|^{2} \mid \leqslant C \log ^{3} N \sqrt{\sup _{A \in B\left(S_{1}^{d}\right)} \sum_{i=1}^{N}\left|\operatorname{Tr} U_{i} A\right|^{2}} .
$$

Proof of the lemma

Lemma

Let $U_{1}, \ldots, U_{N} \in \mathcal{U}(d)$ be deterministic, $N \geqslant d$. Then,

$$
\left.\mathbf{E}_{\varepsilon} \sup _{A \in B\left(S_{1}^{d}\right)}\left|\sum_{i=1}^{N} \varepsilon_{i}\right| \operatorname{Tr} U_{i} A\right|^{2} \mid \leqslant C \log ^{3} N \sqrt{\sup _{A \in B\left(S_{1}^{d}\right)} \sum_{i=1}^{N}\left|\operatorname{Tr} U_{i} A\right|^{2}} .
$$

Let $\left(g_{i}\right)$ be independent $N(0,1)$

$$
\begin{aligned}
\left.\mathbf{E}_{\varepsilon} \sup _{A \in B\left(S_{1}^{d}\right)}\left|\sum_{i=1}^{N} \varepsilon_{i}\right| \operatorname{Tr} U_{i} A\right|^{2} \mid & \left.\leqslant\left.\sqrt{\frac{\pi}{2}} \mathbf{E}_{g} \sup _{A \in B\left(S_{1}^{d}\right)}\left|\sum_{i=1}^{N} g_{i}\right| \operatorname{Tr} U_{i} A\right|^{2} \right\rvert\, \\
& \leqslant C \int_{0}^{\infty} \sqrt{\log N\left(B\left(S_{1}^{d}\right), \delta, \varepsilon\right)} d \varepsilon
\end{aligned}
$$

Here δ the distance induced by the Gaussian process and $N(K, \delta, \varepsilon)$ the number of balls of radius ε in the metric δ needed to cover K.

Proof of the lemma

The metric δ can be upper-bounded

$$
\begin{aligned}
\delta(A, B)^{2} & =\left.\sum_{i=1}^{N}| | \operatorname{Tr} U_{i} A\right|^{2}-\left.\left|\operatorname{Tr} U_{i} B\right|^{2}\right|^{2} \\
& \leqslant\left(\sum_{i=1}^{N}\left|\operatorname{Tr} U_{i}(A+B)\right|^{2}\right)\left(\sup _{1 \leqslant i \leqslant N}\left|\operatorname{Tr} U_{i}(A-B)\right|^{2}\right)
\end{aligned}
$$

This leads to the bound

$$
\mathbf{E}_{\varepsilon} \cdots \leqslant C\left(\sup _{A \in B\left(S_{1}^{d}\right)} \sum_{i=1}^{N}\left|\operatorname{Tr} U_{i} A\right|^{2}\right)^{1 / 2} \int_{0}^{\infty} \sqrt{\log N\left(B\left(S_{1}^{d}\right),|||\cdot|||, \varepsilon\right)} d \varepsilon
$$

with $\left|\|A\|\left\|=\sup _{1 \leqslant i \leqslant N}\left|\operatorname{Tr} U_{i} A\right| \leqslant\right\| A \|_{1}\right.$.
The unit ball L of $\left|\|\cdot \mid\|\right.$ has N «faces» and contains $B\left(S_{1}^{d}\right)$.

Covering numbers

We need to estimate

$$
I=\int_{0}^{\infty} \sqrt{\log N\left(B\left(S_{1}^{d}\right),|||\cdot| \|, \varepsilon)\right.} d \varepsilon \stackrel{?}{\leqslant} C \log ^{3} N
$$

Assume for the moment the duality property for covering numbers holds (it is still a conjecture)

$$
\log N(K, L, \varepsilon) \leqslant C \log N\left(L^{\circ}, K^{\circ}, c \varepsilon\right)
$$

This leads to

$$
I \leqslant C \int_{0}^{\infty} \sqrt{\log N\left(L^{\circ}, B\left(S_{\infty}^{d}\right), \varepsilon\right)} d \varepsilon
$$

With L° the unit ball for $\|\|\cdot\|\|^{*}$ - a convex body with N «vertices» contained in $B\left(S_{\infty}^{d}\right)$.

End of the proof

Lemma (Maurey's lemma)

If $K \subset L$ and K has N «vertices», then for all $\varepsilon>0$,

$$
\varepsilon \sqrt{\log N(K, L, \varepsilon)} \leqslant C T_{2}(L) \sqrt{\log N}
$$

Here $T_{2}(L)$ is the type 2 constant of the norm associated to L.
(1) In our case $T_{2}\left(S_{\infty}^{d}\right) \leqslant C \sqrt{\log d}$ (Tomczak-Jaegermann).
(2) The duality conjecture holds up to a logarithmic factor. This follows from results by Bourgain, Pajor, Szarek and Tomczak-Jaegermann since S_{1}^{d} has a equivalent norm which has a good modulus of convexity, namely the norm of S_{p}^{d} for $p=1+1 / \log d$ (Tomczak-Jaegermann, Ball-Carlen-Lieb).
(3) Collect all the logarithms.

Conclusion

Theorem

Let $\left(U_{i}\right) \in \mathcal{U}(d)$ be i.i.d. random matrices with isotropic law, and $N \geqslant C d \log ^{6} d / \varepsilon^{2}$. With probability $\geqslant 1 / 2$,

$$
\sup _{\rho \geqslant 0, \operatorname{Tr} \rho=1}\left\|\frac{1}{N} \sum_{i=1}^{N} U_{i} \rho U_{i}^{*}-\frac{\operatorname{Id}}{d}\right\|_{\infty} \leqslant \frac{\varepsilon}{d}
$$

- The power of $\log d$ can certainly be improved, e.g. using Talagrand's majorizing measures instead of Dudley integral (however existing results in the litterature do not give better).
- You get $d \log ^{4} d$ if you prove the duality conjecture.
- However, some power of $\log d$ is needed, for example when U is distributed on a orthogonal set of unitary matrices.
- (Vague) question: is it possible to approximate any quantum channel (and not only Ψ) in a similar way ?

