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Dvoretzky theorem

If K C R"is a convex body, let ||x||x = inf{t > 0s.t. x € tK}.

Theorem (V. Milman)

Let K C R" or be a convex body and X a random vector uniformly
distributed on S"~1. Let M = E||X||x and b = sup || X||x. Then with high
probability, a random k-dimensional subpsace E C R" satisfies

Vx € ENS™Y, (1-e)M < ||x|lk < (L+¢€)M,

with k = |ce?n(M/b)?].

@ Probability is given on the Grassman manifold is the Haar measure.
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Let K C R" or be a convex body and X a random vector uniformly
distributed on S"~1. Let M = E||X||x and b = sup || X||x. Then with high
probability, a random k-dimensional subpsace E C R" satisfies

Vx € ENS™Y, (1-e)M < ||x|lk < (L+¢€)M,

with k = |ce?n(M/b)?].

@ Probability is given on the Grassman manifold is the Haar measure.

@ Also true for unit balls of complex normed spaces.
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Dvoretzky theorem

If K C R"is a convex body, let ||x||x = inf{t > 0s.t. x € tK}.

Theorem (V. Milman)

Let K C R" or be a convex body and X a random vector uniformly
distributed on S"~1. Let M = E||X||x and b = sup || X||x. Then with high
probability, a random k-dimensional subpsace E C R" satisfies

Vx € ENS™Y, (1-e)M < ||x|lk < (L+¢€)M,

with k = |ce?n(M/b)?].

@ Probability is given on the Grassman manifold is the Haar measure.
@ Also true for unit balls of complex normed spaces.

@ Combined with the fact that every convex body has an affine image
for which M/b > \/log n/+/n, this shows that every convex body has
a | ce? log n|-dimensional section which is (1 + £)-Euclidean.
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Dvoretzky theorem : sketch of proof

Theorem (V. Milman)

Let K C R" be a convex body and X a random vector uniformly
distributed on S"~1. Let M(K) := E||X||x and b(K) = sup||X||x. Then
with high probability, a random k-dimensional subpsace E C R" satisfies

Vx € ENS™Y (1—-eM<|x|lk < (1+e)M,
with k = | ce?n(M/b)?].

@ Concentration on measure on the sphere implies that the proportion
of x € S"1 satisfying

(1=aM < Ixllk < (1 +e)M
is 1 — exp(—ck).
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Dvoretzky theorem : sketch of proof

Theorem (V. Milman)

Let K C R" be a convex body and X a random vector uniformly
distributed on S"~1. Let M(K) := E||X||x and b(K) = sup||X||x. Then
with high probability, a random k-dimensional subpsace E C R" satisfies

Vx € ENS™Y (1—-eM<|x|lk < (1+e)M,
with k = | ce?n(M/b)?].

@ Concentration on measure on the sphere implies that the proportion
of x € S"1 satisfying
(1—e)M < xllk < (1 +e)M
is 1 — exp(—ck).
@ A c-net in a k-dimensional sphere containts (1/£)°% points.
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Dvoretzky theorem (continued)

How to compute M(K) ?

@ Let X be uniformly distributed on the sphere, and let G be a
N(0,Id,) random vector.
Then G/|G]|

@ is independent of |G|,
@ has the same distribution as X.

Guillaume AUBRUN (Lyon) Dvoretzky theorem and QIT Marne-La-Vallée, Dec. 2008 4 /27



Dvoretzky theorem (continued)

How to compute M(K) ?

@ Let X be uniformly distributed on the sphere, and let G be a
N(0,Id,) random vector.
Then G/|G]|
@ is independent of |G|,
@ has the same distribution as X.
@ Therefore,
EllGlx _ E|Gllk

M(K) = EX]lx = gt ==

with v, := E|G]| ; one checks that v/n—1 <, < /n.
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Dvoretzky theorem in /7

Let ||x]]1 = >_ |xi| and B{ be the unit ball of /7 = (R",| - ||1)-
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Dvoretzky theorem in /7

Let ||x]]1 = >_ |xi| and B{ be the unit ball of /7 = (R",| - ||1)-
@ b(B[) = v/n because || - [[1 < v/nl - [|2.
n nE|N 071 cn
@ m(By) = MO @+ c\/n
So the Dvoretzky dimension of /7 is k = ce?n(M/b)? ~ cs2n.
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Is there an explicit Dvoretzky subspace of /] ? l
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Dvoretzky theorem in /7

Let ||x]]1 = >_ |xi| and B{ be the unit ball of /7 = (R",| - ||1)-
@ b(B[) = v/n because || - [[1 < v/nl - [|2.
n nE|N 071 cn
@ m(By) = MO @+ c\/n
So the Dvoretzky dimension of /7 is k = ce?n(M/b)? ~ cs2n.

Is there an explicit Dvoretzky subspace of /] ? \

Progress in this direction

@ Schechtman : E spanned by i.i.d. &1 vectors (n? random bits).

Guillaume AUBRUN (Lyon) Dvoretzky theorem and QIT Marne-La-Vallée, Dec. 2008 5/27



Dvoretzky theorem in /7

Let ||x]]1 = >_ |xi| and B{ be the unit ball of /7 = (R",| - ||1)-
@ b(B[) = v/n because || - [[1 < v/nl - [|2.
n nE|N 071 cn
@ m(By) = MO @+ c\/n
So the Dvoretzky dimension of /7 is k = ce?n(M/b)? ~ cs2n.

Is there an explicit Dvoretzky subspace of /] ? \

Progress in this direction

@ Schechtman : E spanned by i.i.d. &1 vectors (n? random bits).

@ Artstein—Milman, Lovett—Sodin, Guruswami-Lee—Widgerson :
construction using very few randomness (n‘5 random bits for any
d>0).
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Dvoretzky theorem in /7

Let ||x]]1 = >_ |xi| and B{ be the unit ball of /7 = (R",| - ||1)-
@ b(B[) = v/n because || - [[1 < v/nl - [|2.
n nE|N 071 cn
@ m(By) = MO @+ c\/n
So the Dvoretzky dimension of /7 is k = ce?n(M/b)? ~ cs2n.

Is there an explicit Dvoretzky subspace of /] ? \

Progress in this direction

@ Schechtman : E spanned by i.i.d. &1 vectors (n? random bits).

@ Artstein—Milman, Lovett—Sodin, Guruswami-Lee—Widgerson :
construction using very few randomness (n‘5 random bits for any
d>0).

@ Indyk : explicit embedding of 6’2‘ into E’l‘o(logk).
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Dvoretzky theorem in S¢

Let K =R or C, and M(K? K") be the space of d x n matrices,
equipped with the Hilbert—Schmidt inner product

(A,B)=TrA*B  ||A|lns = VTr A*A.
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Dvoretzky theorem in S¢

Let K =R or C, and M(K9, K") be the space of d x n matrices,
equipped with the Hilbert—Schmidt inner product

(A,B)=TrA*B  ||A|lns = VTr A*A.

Let S¢ be the space M(K?) with the operator norm || - ||op.
@ b(5%) =1since || - [lop < || - [liss.
@ M(S5%) ~ LE||G|op, where G is a random matrix with i.i.d. N(0,1)
entries.
© Standard results on random matrices assert that E||G||,, < CVd,
Therefore the Dvoretzky dimension of S&. is k = ce2d?(M/b)? = ce?d (in
a d?-dimensional space).
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Dvoretzky theorem in S¢ (continued)

A random c(g)d-dimensional subspace of S<. is (1 + )-Euclidean.

Problem

Find explicit Dvoretzky subspaces of S..

In the complex case, this would be presumably useful for quantum
information theory.
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Dvoretzky theorem in S¢ (continued)

A random c(g)d-dimensional subspace of S<. is (1 + )-Euclidean.

Problem

Find explicit Dvoretzky subspaces of S..

In the complex case, this would be presumably useful for quantum
information theory.

Misleading example : S contains obvious d-dimensional 1-Euclidean
subspaces : consider matrices with nonzero entries only in the first row.
For such a matrix A we have ||A|op = ||A||Hs, while on Dvoretzky
subspaces we have ||A||op = [|A||ns/Vd.

Guillaume AUBRUN (Lyon) Dvoretzky theorem and QIT Marne-La-Vallée, Dec. 2008 7/27



Slepian’s lemma

Lemma (Slepian’s lemma)
If K CR" and ® : K — RP is a (nonlinear) contraction, then

E ma ,y) < Ema ) X)s
ye¢();(<)<g” y) ek {gn: x)

where gy, is a standard n-dimensional Gaussian vector.
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Slepian’s lemma

Lemma (Slepian’s lemma)

If K CR" and ® : K — RP is a (nonlinear) contraction, then

E ma ,y) < Ema ) X)s
s )<gp y) < Emax{gy, x)

where gy, is a standard n-dimensional Gaussian vector.

The map x @ y — x ® y is the contraction on S9! x §9-1,

1/2
xoy—xoy|<(x—XP+ly—yP)". (1)
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Slepian’s lemma

Lemma (Slepian’s lemma)
If K CR" and ® : K — RP is a (nonlinear) contraction, then

E ma ,y) < Ema ) X)s
ye¢();(<)<g” y) ek {gn: x)

where gy, is a standard n-dimensional Gaussian vector.

The map x @ y — x ® y is the contraction on S9! x §9-1,
1/2
x@y =X @y| < (x=xXP+ly -y

Since

HGHOP: sup <GXay> = sup <G5X®y>7
Ix|I=lyl=1 IxI=lyl=1

Slepian inequality implies that
E[Gllop < 274 < 2Vd
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Slepian’s lemma

Lemma (Slepian’s lemma)

If K CR" and ® : K — RP is a (nonlinear) contraction, then

E <E s X)s
D558 Y) < Eaglan

where g, is a standard n-dimensional Gaussian vector.

The map x @ y — x ® y is the contraction on S9! x §9-1,

2
xay—x oy < (x—xP+ly -y

(1)

The inequality (1) is false on C9, even for d = 1.

Problem
How to use a Slepian-type lemma for complex Gaussian matrices ?
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Rectangular matrices

Let X = M(C9, CN), equipped with operator norm. Dvoretzky's theorem
controls the norm (largest singular value) on a large-dimensional subspace.
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Rectangular matrices

Let X = M(C9, CN), equipped with operator norm. Dvoretzky's theorem
controls the norm (largest singular value) on a large-dimensional subspace.
One can expect more : if N > d, a typical N x d Gaussian matrix G will
be close to an isometry. Let smin(G) = minj,—1 |Gx|. We have by a net
argument, that with large probability

VN — CVd < smin(G) < ||G|| < VN + CVd
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Rectangular matrices

Let X = M(C9, CN), equipped with operator norm. Dvoretzky's theorem
controls the norm (largest singular value) on a large-dimensional subspace.
One can expect more : if N > d, a typical N x d Gaussian matrix G will
be close to an isometry. Let smin(G) = minj,—1 |Gx|. We have by a net
argument, that with large probability

VN — CVd < smin(G) < ||G|| < VN + CVd

We can use another net argument to prove the following :

Fixe >0, and let N > Cd/sz. Let E C X be a random d-dimensional
subspace. Then with large probability, every matrix A € E satisfies

[All#s
Vd

Call such a subspace a strong Dvoretzky subspace.

[ AllHs

(1-¢) Ja

< Smin(A) < ”A”op < (1 +€)
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Rectangular matrices

Let X = M(C9, CN), equipped with operator norm. Dvoretzky's theorem
controls the norm (largest singular value) on a large-dimensional subspace.
One can expect more : if N > d, a typical N x d Gaussian matrix G will
be close to an isometry. Let smin(G) = minj,—1 |Gx|. We have by a net
argument, that with large probability

VN — CVd < smin(G) < ||G|| < VN + CVd

We can use another net argument to prove the following :

Fixe >0, and let N > Cd/sz. Let E C X be a random d-dimensional
subspace. Then with large probability, every matrix A € E satisfies

[ AllHs [ AllHs
Vd Vd

Call such a subspace a strong Dvoretzky subspace. In the real case,
Slepian-Gordon lemma leads to better estimates in the constants.

(1 — 8) g Smin(A) < ”A”OP < (1 +€)
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Correspondance between subspaces and completely

positive maps

Let d : C¢ — M(C? CN) and ®; : C¢ — C? to be the i-th row of ®.
N
O(x) =) le)(®i(x)|
i=1

We denote by |a)(b| the rank one operator ¢ — (b, c)a,
(la)(pl)" = [b)(al,
(la)(bl)(lc)(d]) = (b, c)|a)(d]|.
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Correspondance between subspaces and completely

positive maps

Let d : C¢ — M(C? CN) and ®; : C¢ — C? to be the i-th row of ®.

N
=3 Jei) (@i(x
i=1

N
V(x) := o(x)"®(x) = ZI‘D HPi(x)| =) dilx)(x|®;
i=1
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Correspondance between subspaces and completely

positive maps

Let d : C¢ — M(C? CN) and ®; : C¢ — C? to be the i-th row of ®.

N
=3 Jei) (@i(x
i=1

N
V(x) := o(x)"®(x) = ZI‘D HPi(x)| =) dilx)(x|®;
i=1

Identifying a unit vector x with ]x> (x|, W can be defined on M(C) as

N
= 0;pd;.
i=1
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Correspondance between subspaces and completely

positive maps

Let d : C¢ — M(C? CN) and ®; : C¢ — C? to be the i-th row of ®.

N
=3 Jei) (@i(x
i=1

N
V(x) := o(x)"®(x) = Z (i) (@i(x)] = D ®i[x) (x|}
i=1

Identifying a unit vector x with |x> (x|, W can be defined on M(C) as
N
= 0;pd;.
i=1

(1- )2 < sin(A) < A < (1+2)72 <= [|A*A—1d]lop <

Therefore the range of ® consists of (multiples of) almost isometries iff
the range of W consists of almost multiples of Id.
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Completely positive maps

Definition

A linear map & : M(C9) — M(C?) is completely positive (CP) if
® ® Id pq(cxy maps positive matrices to positive matrices for any k. This is
equivalent to say that there are matrices V; € M(CY) so that

N
d(X) = Z Vi XVv; (Kraus decomposition).
i=1
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Completely positive maps

Definition

A linear map & : M(C9) — M(C?) is completely positive (CP) if
® ® Id pq(cxy maps positive matrices to positive matrices for any k. This is
equivalent to say that there are matrices V; € M(C9) so that

N
d(X) = Z Vi XVv; (Kraus decomposition).
i=1

The minimal such N is called the Kraus rank of ® and is at most d2.
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Completely positive maps

Definition

A linear map & : M(C9) — M(C?) is completely positive (CP) if
® ® Id pq(cxy maps positive matrices to positive matrices for any k. This is
equivalent to say that there are matrices V; € M(C9) so that

N
d(X) = Z Vi XVv; (Kraus decomposition).
i=1

The minimal such N is called the Kraus rank of ® and is at most d2.

Definition

A state p € M(CY) is a positive self-adjoint matrix with trace 1.

@ The set of states is the convex hull of rank one projectors |x) (x|,
which are called pure states.

o The state % (the maximally mixed state) plays a central role.
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Quantum channels

Definition

A quantum channel © is a completely positive map which preseves trace

Tro(X) =TrX.
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Quantum channels

Definition

A quantum channel © is a completely positive map which preseves trace

Tro(X) =TrX.

@ A quantum channel maps states to states.
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Quantum channels

Definition

A quantum channel © is a completely positive map which preseves trace

Tro(X) =TrX.

@ A quantum channel maps states to states.

N
1
e If (U;) are unitary matrices, then X — N Z U;XU; is a quantum

i=1
channel.
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Quantum channels

Definition

A quantum channel © is a completely positive map which preseves trace

Tro(X) =TrX.

@ A quantum channel maps states to states.

N
1
e If (U;) are unitary matrices, then X — N Z U;XU; is a quantum

i=1
channel.

@ The depolarizing channel R : X — EUXU* with U Haar-distributed
on the unitary group U(d).
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Quantum channels

Definition
A quantum channel © is a completely positive map which preseves trace

Tro(X) =TrX.

@ A quantum channel maps states to states.

N

e If (U;) are unitary matrices, then X — %Z U;XU; is a quantum
channel. =

@ The depolarizing channel R : X — EUXU* with U Haar-distributed
on the unitary group U(d).

o R(X)=Trx4.
Proof : since EUXU* = V(EUXU*)V* for any V € U(d), EUXU*
commutes to M(C9), so it is a multiple of identity.
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Quantum channels

Definition
A quantum channel © is a completely positive map which preseves trace

Tro(X) =TrX.

@ A quantum channel maps states to states.

N

e If (U;) are unitary matrices, then X — %Z U;XU; is a quantum
channel. =

@ The depolarizing channel R : X — EUXU* with U Haar-distributed
on the unitary group U(d).

o R(X)=Trx4.
Proof : since EUXU* = V(EUXU*)V* for any V € U(d), EUXU*
commutes to M(C9), so it is a multiple of identity.

@ The Kraus rank of R is d2.
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e-randomizing channels

Definition (Hayden, Leung, Shor and Winter)

For 0 < & < 1, a quantum channel ® : M(C9) — M(CY) is
e-randomizing if for any state p

o4,

i.e. the spectrum of ®(p) belongs to [12, =],
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e-randomizing channels

Definition (Hayden, Leung, Shor and Winter)

For 0 < & < 1, a quantum channel ® : M(C9) — M(CY) is
e-randomizing if for any state p

o4,

i.e. the spectrum of ®(p) belongs to [12, =],

© By a convexity argument, it is enough to check (2) on pure states.
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e-randomizing channels

Definition (Hayden, Leung, Shor and Winter)

For 0 < & < 1, a quantum channel ® : M(C9) — M(CY) is
e-randomizing if for any state p

o4,

i.e. the spectrum of ®(p) belongs to [12, =],

© By a convexity argument, it is enough to check (2) on pure states.

Q@ Let d: X — SN UiXU?, and for 1 <j < d, let A; be the N x d
matrix whose i-th row is the j-th column of U;. Then & is
e-randomizing if and only if (A;) span a strong Dvoretzky subspace

d d
IN /N
|| g\/l — € < Smin E ajA; | < E ajA; < ol E\/l + e
j=1 j=1

op
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@ e-randomizing channels are useful in quantum information theory, and
especially quantum cryptography.
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@ e-randomizing channels are useful in quantum information theory, and
especially quantum cryptography.

@ The depolarizing channel is 0-randomizing, but has maximal Kraus
rank, equal to d?. Any Kraus decomposition of size d? yields a
d-dimensional subspace of M(CV,C?) in which every matrix is a
multiple of an isometry.

Problem

Find e-randomizing channels with small Kraus rank (proportional to d ).
Even better, find explicitly such channels.
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@ e-randomizing channels are useful in quantum information theory, and
especially quantum cryptography.

@ The depolarizing channel is 0-randomizing, but has maximal Kraus
rank, equal to d?. Any Kraus decomposition of size d? yields a
d-dimensional subspace of M(CV,C?) in which every matrix is a
multiple of an isometry.

Problem

Find e-randomizing channels with small Kraus rank (proportional to d ).
Even better, find explicitly such channels.

@ A e-randomizing channel must satisfy N > d.

Guillaume AUBRUN (Lyon) Dvoretzky theorem and QIT Marne-La-Vallée, Dec. 2008 14 /27



@ e-randomizing channels are useful in quantum information theory, and
especially quantum cryptography.

@ The depolarizing channel is 0-randomizing, but has maximal Kraus
rank, equal to d?. Any Kraus decomposition of size d? yields a
d-dimensional subspace of M(CV,C?) in which every matrix is a
multiple of an isometry.

Problem

Find e-randomizing channels with small Kraus rank (proportional to d ).
Even better, find explicitly such channels.

@ A e-randomizing channel must satisfy N > d.
Elementary algebraic geometry shows that a subspace of M(C?, CN)
in which every nonzero matrix is invertible has dimension
< N — d + 1, so the channel satisfies N > 2d — 1.
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@ e-randomizing channels are useful in quantum information theory, and
especially quantum cryptography.

@ The depolarizing channel is 0-randomizing, but has maximal Kraus
rank, equal to d?. Any Kraus decomposition of size d? yields a
d-dimensional subspace of M(CV,C?) in which every matrix is a
multiple of an isometry.

Problem

Find e-randomizing channels with small Kraus rank (proportional to d).
Even better, find explicitly such channels.

@ A e-randomizing channel must satisfy N > d.
Elementary algebraic geometry shows that a subspace of M(C?, CN)
in which every nonzero matrix is invertible has dimension
< N — d + 1, so the channel satisfies N > 2d — 1.

@ Random channels will provide examples with N proportional to d (we
could take N = (2 + n)d in the real using Slepian-Gordon lemma).
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Short e-randomizing channels

Theorem (Hayden, Leung, Shor, Winter — A.)

Let Uy,..., Uy be iid. Haar-distributed random d x d unitary matrices.
Then for N > Cd/az, the quantum channel

N
1 *

is e-randomizing with exponentially large probability.

@ HLSW had the weaker estimate N > Cd log d /.
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Short e-randomizing channels

Theorem (Hayden, Leung, Shor, Winter — A.)

Let Uy,..., Uy be iid. Haar-distributed random d x d unitary matrices.
Then for N > Cd/az, the quantum channel

N
1 *

is e-randomizing with exponentially large probability.

@ HLSW had the weaker estimate N > Cd log d /.
@ Optimal dependence in d.
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Short e-randomizing channels

Theorem (Hayden, Leung, Shor, Winter — A.)

Let Uy,..., Uy be iid. Haar-distributed random d x d unitary matrices.
Then for N > Cd/az, the quantum channel

N
1 *

is e-randomizing with exponentially large probability.

@ HLSW had the weaker estimate N > Cd log d /.
@ Optimal dependence in d.

@ For such random constructions, the dependence in ¢ is optimal.

Are there e-randomizing channels with a better dependence in € ?
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Proof of the theorem

Let¢:pr—>%ZU,-pU;‘, R:pH% and A =& — R. Let § be the set of
states ; we need to show that for any p € S, ||A(p)|lop < §. ie.

sup [TroA(p)| < .
p,0E€ES d
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Proof of the theorem

Let¢:pr—>%ZU,-pU;‘, R:pH% and A =& — R. Let § be the set of
states ; we need to show that for any p € S, ||A(p)|lop < §. ie.

sup [TroA(p)| < .
p,0E€ES d

@ We can restrict the supremum to pure states
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Proof of the theorem

Let¢:pr—>%ZU,-pU;‘, R:pH% and A =& — R. Let § be the set of
states ; we need to show that for any p € S, HA(p)HOP <§ e

sup [TraA(p)| <
p,0E€ES

@ We can restrict the supremum to pure states
@ Let \V be a d-net (w.r.t. || - |l1) in the set of pure states. Then

A:= sup |TroA(p)| < —— sup |TroA(p)|:=B
p,0ES 1_25,006
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Proof of the theorem

Let¢:pr—>%ZU,-pU;‘,R:pH%andA:dD—R. Let S be the set of

states ; we need to show that for any p € S, HA(p)HOP <§ e
sup |TraA(p)| <
p,0€S
@ We can restrict the supremum to pure states
@ Let AV be a d-net (w.r.t. || - |l1) in the set of pure states. Then

1
A:= sup |TroA(p)| < ——= sup |TroA(p)|:=B
p,0€S 1_25p06

Proof : For every pure states p, o, there are pg, 09 € N so that
lo = poll1 < 6,[|o — ool < 4. Then

[ TroA(p)| < [ Tr(o — 00)A(p)| 4 | TrooA(p — po)| + | TraoA(po)|
Taking supremum over p, o gives A < A+ A+ B.
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Proof of the theorem

Let¢:pr—>%ZU,-pU;‘, R:pH% and A =& — R. Let § be the set of
states ; we need to show that for any p € S, HA(p)HOP <§ e

sup [TraA(p)| <
p,0E€ES

@ We can restrict the supremum to pure states

@ Let \V be a d-net (w.r.t. || - |l1) in the set of pure states. Then
A:= sup |TroA(p)| < —— sup |TroA(p)|:=B
p,0ES 1_25,006
N 1
For fixed p = = TroA [(U;
© For fixed p = [x) (x|, o = Iy)y| . Troh(p) = 2_; -
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Proof of the theorem

Let¢:pn—>%ZU,-pU;‘,R:pH%andA:dD—R. Let S be the set of

states ; we need to show that for any p € S, HA(p)HOP <§ie
sup_[TraA(p)| <
p,0E€ES
@ We can restrict the supremum to pure states
@ Let \V be a d-net (w.r.t. || - |l1) in the set of pure states. Then
A:= sup |TroA(p)| < ——— sup | TroA(p)| := B
p,0ES 1-25 p,oEN
1< 1
H j— —_— . 2 —_—
© Forfxed p =[x} {xl.o = )1 o) = 3y D KU = 5
i

Using Bernstein inequalities, this quantity is smaller that €/d with
probability 1 — 2 exp(—cNe?)
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Proof of the theorem

Let¢:pn—>%ZU,-pU;‘, R:pH% and A =& — R. Let § be the set of
states ; we need to show that for any p € S, HA(p)HOP <§ie

sup [TraA(p)| <
p,0E€ES

@ We can restrict the supremum to pure states

@ Let \V be a d-net (w.r.t. || - |l1) in the set of pure states. Then
A:= sup |TroA(p)| < ——— sup | TroA(p)| := B
p,0ES 1-25 p,oEN
1 & 1
@ For fixed p = |x)(x|,0 = |y)(y| . TroA(p) = ,\,Z|<U,-x,y>\2—g

Using Bernstein inequalities, this quantity is smaller that e/d with
probability 1 — 2 exp(—cNe?)
@ There is a 1/4-net in the set of pure states of cardinality 400
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Proof of the theorem

Let¢:pn—>%ZU,-pU;‘, R:pH% and A =& — R. Let § be the set of
states ; we need to show that for any p € S, HA(p)HOP <§ie

©0

sup [TroA(p)] <

p,0E€ES
We can restrict the supremum to pure states
Let N be a §-net (w.r.t. || -]|1) in the set of pure states. Then
A:= sup |TroA(p)| < ——— sup | TroA(p)| := B
p,0ES 1-25 p,oEN
1< 1
For fixed p = |x)(x|.o = y){(y| , TroA(p) = & Z|<U;X7y>‘2 -z

Using Bernstein inequalities, this quantity is smaller that e/d with
probability 1 — 2 exp(—cNe?)

There is a 1/4-net in the set of pure states of cardinality 400¢.
The union bound work for cNe? > d log 400 + log 2.
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Derandomization

The same net argument works for i.i.d. copies of a ¢(d)-valued random
vector U which is

@ isotropic : for any unit vectors x,y € C?, E[(Ux,y)|? = . This is
equivalent to say that the covariance matrix of U is the same as the
Haar distribution.

@ subgaussian : for any x,y € C9, if Z = (Ux, y),

P(1Z| > t(EIZI)"?) < Cexp(—ct?).
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Derandomization

The same net argument works for i.i.d. copies of a ¢(d)-valued random
vector U which is

@ isotropic : for any unit vectors x,y € C?, E[(Ux,y)|? = . This is
equivalent to say that the covariance matrix of U is the same as the
Haar distribution.

@ subgaussian : for any x,y € C9, if Z = (Ux, y),
P(12] > t(EIZ1)2) < Cexp(—ct?).

Any subgaussian random vector has exponentially large support (already in
C9), so this proof cannot go below N x Cd =~ d? random bits.
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Derandomization

The same net argument works for i.i.d. copies of a ¢(d)-valued random
vector U which is

@ isotropic : for any unit vectors x,y € C?, E[(Ux,y)|? = . This is
equivalent to say that the covariance matrix of U is the same as the
Haar distribution.

@ subgaussian : for any x,y € C9, if Z = (Ux, y),
P(12] > t(EIZ1)2) < Cexp(—ct?).

Any subgaussian random vector has exponentially large support (already in
C9), so this proof cannot go below N x Cd =~ d? random bits.

Question (Hayden—Leung—Shor-Winter)
Can we drop the hypothesis "U subgaussian” ?
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Non-subgaussian isotropic U(d)-valued vectors

Consider the Pauli matrices

1 (01 (0 1 (1 0
UO - 2, 01 - 1 0 ) 02 - _1 0 9 03 - 0 _1

@ Then for any X € M»(C),

Id

1
2 (00Xog + 01X0] + 02X0o5 + 03X03) = TrXE.

so the uniform measure on {o;} is isotropic.
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Non-subgaussian isotropic U(d)-valued vectors

Consider the Pauli matrices

_Id /01 /0 1 /1 0
oo=1Id2, o1={, o), 2= _; o) 3=\ _1 )

@ Then for any X € M»(C),

1 Id
2 (00Xog + 01X0] + 02X0o5 + 03X03) = TrXE.
so the uniform measure on {o;} is isotropic.

@ Similarly, for any k, the uniform measure on k-fold tensor product of
Pauli matrices is isotropic in M(C2).
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Non-subgaussian isotropic U(d)-valued vectors

Consider the Pauli matrices

_Id /01 /0 1 /1 0
oo=1Id2, o1={, o), 2= _; o) 3=\ _1 )

@ Then for any X € M»(C),

1 Id
2 (00Xog + 01X0] + 02X0o5 + 03X03) = TrXE.

so the uniform measure on {o;} is isotropic.

@ Similarly, for any k, the uniform measure on k-fold tensor product of
Pauli matrices is isotropic in M(C2).

@ Replacing random Haar matrices by Pauli matrices would also give
e-randomizing channels with extra tensor structure.
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General isotropic vectors

Question (Hayden—Leung—Shor-Winter)

Can we construct a e-randomizing channel from Cd/e? i.i.d. copies of any
isotropic U(d)-valued random vector ?

@ No ; it can be checked that one needs N > C(g)d log d in some cases.
Related to the coupon’s collector problem.
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General isotropic vectors

Question (Hayden—Leung—Shor-Winter)

Can we construct a e-randomizing channel from Cd/e? i.i.d. copies of any
isotropic U(d)-valued random vector ?

@ No ; it can be checked that one needs N > C(g)d log d in some cases.
Related to the coupon’s collector problem.

@ Yes if we allow extra logarithmic factors.

Theorem (A.)

If U is a U(d)-valued isotropic random vector and U; denote i.i.d. copies,
is the channel

N
1 "
X5 2'_1: UiXU;

is e-randomizing with nonzero probability when N > Cd log® d /2.
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Proof (1)

We need to estimate, for U; € U(d) i.i.d. isotropic

N 1
Zny

M = E sup
Ix|=ly|=1

D.
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Proof (1)

We need to estimate, for U; € U(d) i.i.d. isotropic

M = sup [(Uix, y)|
|x| yl=1 Z d
1 1
= E sup |= ) |TrUilx) (vl — =
Ix|=ly|=1 N; d
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Proof (1)

We need to estimate, for U; € U(d) i.i.d. isotropic

1< 1
_ NUNF B
M o= E sip 5> (Ul -
x=lyl=1 |V i
1Y 1
— . 2_7
= E sup NZITrU,IXMyII ;
x=lyl=1 |V i
< E sup Z|TrUA|2 ETr|UAJ?
AeB(Sf) N

This is an empirical process in the Schatten space S¢ = (M(C?),]| - ||1)-

B(Sf') = conv {|x){yl,x.y € C, |x| = |y| = 1}.
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We can use results by Rudelson and Guédon, Mendelson, Pajor,

Tomczak-Jaegermann about empirical processes in a Banach space with a
good modulus of convexity (such as Hilbert space, £¢, Sld).
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Proof (2)

We can use results by Rudelson and Guédon, Mendelson, Pajor,
Tomczak-Jaegermann about empirical processes in a Banach space with a
good modulus of convexity (such as Hilbert space, £¢, Sld).
Proof (following [R],[GMPT])
@ Symmetrization arguement a la Giné—Zinn
L
M <2EyE. sup E|=> & TrUAP
acs(syy [N i3
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Proof (2)

We can use results by Rudelson and Guédon, Mendelson, Pajor,
Tomczak-Jaegermann about empirical processes in a Banach space with a
good modulus of convexity (such as Hilbert space, Ei’, Sld).

Proof (following [R],[GMPT])
@ Symmetrization arguement a la Giné—Zinn

1 N
5 > el TrUAP
i=1

@ The theorem follows from the next lemma

M < 2EyE. sup E
AeB(S{)

Let Us,...,Uyn € U(d) be deterministic, N > d. Then,

N

N
E. sup | TrU;A?| < Clog® N, | sup Z | Tr U;AP2.
AeB(SY) | i=1 A€B(S{) i=1
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Proof of the lemma

Let U,...,Un € U(d) be deterministic, N > d. Then,

N
&i| Tr U;A)?
i=1

N

< Clog® N, | sup Z | Tr U;A2.
AEB(S ), 1

E. sup
AeB(SY)
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Proof of the lemma

Let U,...,Un € U(d) be deterministic, N > d. Then,

N
&i| Tr U;A)?
i=1

N

< Clog® N, | sup Z\TrUA]2
AEB(S ), 1

m
S
2 AeB(S{)

E. sup
AeB(SY)

Let (g;) be independent N(0, 1)

N
> el TrUAP?
i=1

E. sup
AeB(Sf)

Zg,yTrUA|

i=1
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Proof of the lemma

Let U,...,Un € U(d) be deterministic, N > d. Then,

N
&i| Tr U;A)?
i=1

N
< Clog® N, | sup Z|TrUA]2

AEB(S ), 1
Zg,yTrUA|

™
S
2 AeB(SY) |i=1

< C/ \/IogN(B(Sf),cs,a)de
0

E. sup
AeB(SY)

Let (g;) be independent N(0, 1)

N
> el TrUAP?
i=1

E. sup
AeB(Sf)

Here § the distance induced by the Gaussian process and N(K,d,¢) the
number of balls of radius ¢ in the metric § needed to cover K.
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Proof of the lemma

The metric 4 can be upper-bounded

N
5(A B = S |ITrUAR —|Tr UiBP2|®
i=1

N
< (Zm Ui(A+ B)|2> ( sup | Tr Uj(A — B)|2>.
i=1

1<iKN
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Proof of the lemma

The metric 4 can be upper-bounded

N
5(A B = S |ITrUAR —|Tr UiBP2|®
i=1
N
< (Zm Ui(A+ B)|2) ( sup | Tr Uj(A — B)|2>.
=1 1<i<N

This leads to the bound

N 1/2 00
E. .- < C( sup Z|Tr U,'A|2> / \/IogN(B(Sf),H\.lH,a)d&?
0

AeB(SY) (=1

with [[|A[l] = sup |Tr UiA| < [|Al1.

IIx
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Proof of the lemma

The metric 4 can be upper-bounded

N
5(A B = S |ITrUAR —|Tr UiBP2|®
i=1
N
< (Zm Ui(A+ B)\Q) ( sup | Tr Uj(A — B)|2>.
=1 1<i<N

This leads to the bound

N 1/2 00
E. .- < C( sup Z|Tr U,'A|2> / \/IogN(B(Sf),H\.lH,a)d&?
0

AeB(SY) (=1

with [[|A[l] = sup |Tr UiA| < [|Al1.

IIx

The unit ball L of ||| - ||| has N «faces » and contains B(S{).
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Covering numbers

We need to estimate

1= [ \loe MBS 1L )de
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Covering numbers

We need to estimate

© ?
/:/ /108 N(B(S9). [I.][,2)de < Clog® N
0
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Covering numbers

We need to estimate

© ?
/:/ /108 N(B(S9). [I.][,2)de < Clog® N
0

Assume for the moment the duality property for covering numbers holds
(it is still a conjecture)

log N(K, L,e) < Clog N(L°, K°, ce)

Guillaume AUBRUN (Lyon) Dvoretzky theorem and QIT

Marne-La-Vallée, Dec. 2008 24 /27



Covering numbers

We need to estimate

© ?
/:/ /108 N(B(S9). [I.][,2)de < Clog® N
0

Assume for the moment the duality property for covering numbers holds
(it is still a conjecture)

log N(K, L,e) < Clog N(L°, K°, ce)

This leads to

I < C/ \/log N(L®, B(S2,), £)d.
0

With L° the unit ball for ||| - |||* — a convex body with N « vertices »
contained in B(S2)).
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End of the proof

Lemma (Maurey's lemma)
If K C L and K has N « vertices », then for all € > 0,

e\/log N(K, L,) < CTa(L)\/log N

Here T,(L) is the type 2 constant of the norm associated to L.
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End of the proof

Lemma (Maurey's lemma)
If K C L and K has N « vertices », then for all € > 0,

e\/log N(K, L,) < CTa(L)\/log N

Here T,(L) is the type 2 constant of the norm associated to L.
© In our case T»(S%) < Cy/logd (Tomczak-Jaegermann).
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End of the proof

Lemma (Maurey's lemma)
If K C L and K has N « vertices », then for all € > 0,

e\/log N(K, L,) < CTa(L)\/log N

Here T,(L) is the type 2 constant of the norm associated to L.

© In our case T»(S%) < Cy/logd (Tomczak-Jaegermann).

@ The duality conjecture holds up to a logarithmic factor. This follows
from results by Bourgain, Pajor, Szarek and Tomczak—Jaegermann
since S has a equivalent norm which has a good modulus of
convexity, namely the norm of Sg forp=1+1/logd
(Tomczak-Jaegermann, Ball-Carlen—Lieb).
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End of the proof

Lemma (Maurey's lemma)
If K C L and K has N « vertices », then for all € > 0,

e\/log N(K, L,) < CTa(L)\/log N

Here T,(L) is the type 2 constant of the norm associated to L.

© In our case T»(S%) < Cy/logd (Tomczak-Jaegermann).

@ The duality conjecture holds up to a logarithmic factor. This follows
from results by Bourgain, Pajor, Szarek and Tomczak—Jaegermann
since S has a equivalent norm which has a good modulus of
convexity, namely the norm of Sg forp=1+1/logd
(Tomczak-Jaegermann, Ball-Carlen—Lieb).

© Collect all the logarithms.

Guillaume AUBRUN (Lyon) Dvoretzky theorem and QIT Marne-La-Vallée, Dec. 2008 25 /27



Weakly e-randomizing channels

A quantum channel ® : M(C9) — M(CY) is weakly e-randomizing if for

any staty p,
Id
Hq’([)) 4 <

£
Hs  Vd
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Weakly e-randomizing channels

A quantum channel ® : M(C9) — M(CY) is weakly e-randomizing if for

any staty p,

_d

o) - :

<
Hs  Vd

o Since || - ||4s < V/d|| - ||op, @ e-randomizing channel is weakly
e-randomizing.
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Weakly e-randomizing channels

A quantum channel ® : M(C9) — M(CY) is weakly e-randomizing if for

any staty p,

_d

o) - :

<
Hs  Vd

o Since || - ||4s < V/d|| - ||op, @ e-randomizing channel is weakly
e-randomizing.

@ The Hilbert—=Schmidt norm is easier to handle than the operator norm
because it allows to use spectral methods.
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Weakly e-randomizing channels

A quantum channel ® : M(C9) — M(CY) is weakly e-randomizing if for
any staty p,

Id €
o) - 5| <=
H dllys ~ Vd
@ Since || - ||ns < \/3|| - |lop, @ e-randomizing channel is weakly

e-randomizing.

@ The Hilbert—=Schmidt norm is easier to handle than the operator norm
because it allows to use spectral methods.

@ There are explicit examples of weakly e-randomizing channels with
Kraus rank less than 16d/52, using Pauli matrices (Ambainis—Smith,
Dickinson—Nayak). Constructions are based on standard
derandomisation techniques (small bias subsets of (Z/2Z)N).

@ It seems hard to decide whether these channels are e-randomizing in
the strong sense.
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Additivity conjectures

Definition

The (von Neumann) entropy of a state p is S(p) = — Trplog p.
The minimal output entropy of a channel ® is Spin(P) = mig S(®(p))
pe
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Additivity conjectures

Definition

The (von Neumann) entropy of a state p is S(p) = — Trplog p.
The minimal output entropy of a channel ® is Spin(P) = mig S(®(p))
pe

An important question is to decide wheter S, is additive

Question (Additivity conjecture)

If ® and V are quantum channels, is it true thar
smin(q) &® \U) = Smin(cb) + Smin(w)-
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Additivity conjectures

Definition

The (von Neumann) entropy of a state p is S(p) = — Trplog p.
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© (Winter) The existence of e-randomizing channels with low Kraus
rank implies that (3) is false for p > 2.
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© (Winter) The existence of e-randomizing channels with low Kraus
rank implies that (3) is false for p > 2.

@ (Hayden—Winter) Applying Dvoretzky's theorem in S;,(C9, CN) gives
counterexamples to (3) for any p > 1.
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An important question is to decide wheter S,;, is additive

Question (Additivity conjecture)

If ® and V are quantum channels, is it true thar
Smin((I> & \U) = Smin(cb) + Smin(w)-

This would be implied (taking p — 1) by the following
max (& @ W) (o), = max [0(p) [y max V() (3)

© (Winter) The existence of e-randomizing channels with low Kraus
rank implies that (3) is false for p > 2.

@ (Hayden—Winter) Applying Dvoretzky's theorem in S;,(C9, CN) gives
counterexamples to (3) for any p > 1.

© (Hastings) Random counterexamples to the additivity conjecture !
Uses sharp results on the entropy of X*X, where X uniformly
distributed on the Hilbert-Schmidt sphere in M(CY, CN).
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