Around Dvoretzky theorem in quantum information theory

Guillaume AUBRUN
Université Lyon 1, France

Dvoretzky theorem

If $K \subset \mathbf{R}^{n}$ is a convex body, let $\|x\|_{K}=\inf \{t>0$ s.t. $x \in t K\}$.

Theorem (V. Milman)

Let $K \subset \mathbf{R}^{n}$ or be a convex body and X a random vector uniformly distributed on S^{n-1}. Let $M=\mathbf{E}\|X\|_{K}$ and $b=\sup \|X\|_{K}$. Then with high probability, a random k-dimensional subpsace $E \subset \mathbf{R}^{n}$ satisfies

$$
\forall x \in E \cap S^{n-1}, \quad(1-\varepsilon) M \leqslant\|x\|_{K} \leqslant(1+\varepsilon) M
$$

with $k=\left\lfloor c \varepsilon^{2} n(M / b)^{2}\right\rfloor$.

- Probability is given on the Grassman manifold is the Haar measure.
- Also true for unit balls of complex normed spaces.
- Combined with the fact that every convex body has an affine image for which $M / b \geqslant \sqrt{\log n} / \sqrt{n}$, this shows that every convex body has a $\left\lfloor c \varepsilon^{2} \log n\right\rfloor$-dimensional section which is $(1+\varepsilon)$-Euclidean.

Dvoretzky theorem

If $K \subset \mathbf{R}^{n}$ is a convex body, let $\|x\|_{K}=\inf \{t>0$ s.t. $x \in t K\}$.

Theorem (V. Milman)

Let $K \subset \mathbf{R}^{n}$ or be a convex body and X a random vector uniformly distributed on S^{n-1}. Let $M=\mathbf{E}\|X\|_{K}$ and $b=\sup \|X\|_{K}$. Then with high probability, a random k-dimensional subpsace $E \subset \mathbf{R}^{n}$ satisfies

$$
\forall x \in E \cap S^{n-1}, \quad(1-\varepsilon) M \leqslant\|x\|_{K} \leqslant(1+\varepsilon) M
$$

with $k=\left\lfloor c \varepsilon^{2} n(M / b)^{2}\right\rfloor$.

- Probability is given on the Grassman manifold is the Haar measure.
- Also true for unit balls of complex normed spaces.
- Combined with the fact that every convex body has an affine image for which $M / b \geqslant \sqrt{\log n} / \sqrt{n}$, this shows that every convex body has a $\left\lfloor c \varepsilon^{2} \log n\right\rfloor$-dimensional section which is $(1+\varepsilon)$-Euclidean.

Dvoretzky theorem

If $K \subset \mathbf{R}^{n}$ is a convex body, let $\|x\|_{K}=\inf \{t>0$ s.t. $x \in t K\}$.

Theorem (V. Milman)

Let $K \subset \mathbf{R}^{n}$ or be a convex body and X a random vector uniformly distributed on S^{n-1}. Let $M=\mathbf{E}\|X\|_{K}$ and $b=\sup \|X\|_{K}$. Then with high probability, a random k-dimensional subpsace $E \subset \mathbf{R}^{n}$ satisfies

$$
\forall x \in E \cap S^{n-1}, \quad(1-\varepsilon) M \leqslant\|x\|_{K} \leqslant(1+\varepsilon) M
$$

with $k=\left\lfloor c \varepsilon^{2} n(M / b)^{2}\right\rfloor$.

- Probability is given on the Grassman manifold is the Haar measure.
- Also true for unit balls of complex normed spaces.
- Combined with the fact that every convex body has an affine image for which $M / b \geqslant \sqrt{\log n} / \sqrt{n}$, this shows that every convex body has a $\left\lfloor c \varepsilon^{2} \log n\right\rfloor$-dimensional section which is $(1+\varepsilon)$-Euclidean.

Dvoretzky theorem : sketch of proof

Theorem (V. Milman)

Let $K \subset \mathbf{R}^{n}$ be a convex body and X a random vector uniformly distributed on S^{n-1}. Let $M(K):=\mathbf{E}\|X\|_{K}$ and $b(K)=\sup \|X\|_{K}$. Then with high probability, a random k-dimensional subpsace $E \subset \mathbf{R}^{n}$ satisfies

$$
\forall x \in E \cap S^{n-1}, \quad(1-\varepsilon) M \leqslant\|x\|_{K} \leqslant(1+\varepsilon) M
$$

with $k=\left\lfloor c \varepsilon^{2} n(M / b)^{2}\right\rfloor$.
(1) Concentration on measure on the sphere implies that the proportion of $x \in S^{n-1}$ satisfying

$$
(1-\varepsilon) M \leqslant\|x\|_{K} \leqslant(1+\varepsilon) M
$$

is $1-\exp (-c k)$.
(2) A ε-net in a k-dimensional sphere containts $(1 / \varepsilon)^{c k}$ points.

Dvoretzky theorem : sketch of proof

Theorem (V. Milman)

Let $K \subset \mathbf{R}^{n}$ be a convex body and X a random vector uniformly distributed on S^{n-1}. Let $M(K):=\mathbf{E}\|X\|_{K}$ and $b(K)=\sup \|X\|_{K}$. Then with high probability, a random k-dimensional subpsace $E \subset \mathbf{R}^{n}$ satisfies

$$
\forall x \in E \cap S^{n-1}, \quad(1-\varepsilon) M \leqslant\|x\|_{K} \leqslant(1+\varepsilon) M
$$

with $k=\left\lfloor c \varepsilon^{2} n(M / b)^{2}\right\rfloor$.
(1) Concentration on measure on the sphere implies that the proportion of $x \in S^{n-1}$ satisfying

$$
(1-\varepsilon) M \leqslant\|x\|_{K} \leqslant(1+\varepsilon) M
$$

is $1-\exp (-c k)$.
(2) A ε-net in a k-dimensional sphere containts $(1 / \varepsilon)^{c k}$ points.

Dvoretzky theorem (continued)

How to compute $M(K)$?

- Let X be uniformly distributed on the sphere, and let G be a $N\left(0, \operatorname{Id}_{n}\right)$ random vector.
Then $G /|G|$
(1) is independent of $|G|$,
(2) has the same distribution as X.
- Therefore,

$$
M(K)=\mathbf{E}\|X\|_{K}=\frac{\mathbf{E}\|G\|_{K}}{\mathbf{E}|G|}=\frac{\mathbf{E}\|G\|_{K}}{\gamma_{n}} .
$$

with $\gamma_{n}:=\mathbf{E}|G|$; one checks that $\sqrt{n-1} \leqslant \gamma_{n} \leqslant \sqrt{n}$

Dvoretzky theorem (continued)

How to compute $M(K)$?

- Let X be uniformly distributed on the sphere, and let G be a $N\left(0, \operatorname{Id}_{n}\right)$ random vector.
Then $G /|G|$
(1) is independent of $|G|$,
(2) has the same distribution as X.
- Therefore,

$$
M(K)=\mathbf{E}\|X\|_{K}=\frac{\mathbf{E}\|G\|_{K}}{\mathbf{E}|G|}=\frac{\mathbf{E}\|G\|_{K}}{\gamma_{n}} .
$$

with $\gamma_{n}:=\mathbf{E}|G|$; one checks that $\sqrt{n-1} \leqslant \gamma_{n} \leqslant \sqrt{n}$.

Dvoretzky theorem in ℓ_{1}^{n}

Let $\|x\|_{1}=\sum\left|x_{i}\right|$ and B_{1}^{n} be the unit ball of $\ell_{1}^{n}=\left(\mathbf{R}^{n},\|\cdot\|_{1}\right)$.
(1) $b\left(B_{1}^{n}\right)=\sqrt{n}$ because $\|\cdot\|_{1} \leqslant \sqrt{n}\|\cdot\|_{2}$.
(2) $M\left(B_{1}^{n}\right)=\frac{n \mathrm{E}|N(0,1)|}{\gamma_{n}}$

So the Dvoretzky dimension of ℓ_{1}^{n} is $k=c \varepsilon^{2} n(M / b)^{2}$

Question

Is there an explicit Dvoretzky subspace of ℓ_{1}^{n} ?

Progress in this direction

- Schechtman: E spanned by i.i.d. ± 1 vectors (n^{2} random bits)
- Artstein-Milman, Lovett-Sodin, Guruswami-Lee-Widgerson construction using very few randomness (n^{δ} random bits for any $\delta>0$)
- Indyk: explicit embedding of ℓ_{2}^{k} into $\ell_{1}^{k^{O(\log k)}}$

Dvoretzky theorem in ℓ_{1}^{n}

Let $\|x\|_{1}=\sum\left|x_{i}\right|$ and B_{1}^{n} be the unit ball of $\ell_{1}^{n}=\left(\mathbf{R}^{n},\|\cdot\|_{1}\right)$.
(1) $b\left(B_{1}^{n}\right)=\sqrt{n}$ because $\|\cdot\|_{1} \leqslant \sqrt{n}\|\cdot\|_{2}$.
(2) $M\left(B_{1}^{n}\right)=\frac{n \mathrm{E}|N(0,1)|}{\gamma_{n}} \sim \frac{c n}{\sqrt{n}} \sim c \sqrt{n}$

So the Dvoretzky dimension of ℓ_{1}^{n} is $k=c \varepsilon^{2} n(M / b)^{2} \sim c \varepsilon^{2} n$.

Question

Is there an explicit Dvoretzky subspace of ℓ_{1}^{n} ?
Progress in this direction

- Schechtman: E spanned by i.i.d. ± 1 vectors (n^{2} random bits)
- Artstein-Milman, Lovett-Sodin, Guruswami-Lee-Widgerson construction using very few randomness (n^{δ} random bits for any $\delta>0$)
- Indyk : explicit embedding of ℓ_{2}^{k} into $\ell_{1}^{k^{O(\log k)}}$

Dvoretzky theorem in ℓ_{1}^{n}

Let $\|x\|_{1}=\sum\left|x_{i}\right|$ and B_{1}^{n} be the unit ball of $\ell_{1}^{n}=\left(\mathbf{R}^{n},\|\cdot\|_{1}\right)$.
(1) $b\left(B_{1}^{n}\right)=\sqrt{n}$ because $\|\cdot\|_{1} \leqslant \sqrt{n}\|\cdot\|_{2}$.
(2) $M\left(B_{1}^{n}\right)=\frac{n \mathrm{E}|N(0,1)|}{\gamma_{n}} \sim \frac{c n}{\sqrt{n}} \sim c \sqrt{n}$

So the Dvoretzky dimension of ℓ_{1}^{n} is $k=c \varepsilon^{2} n(M / b)^{2} \sim c \varepsilon^{2} n$.

Question

Is there an explicit Dvoretzky subspace of ℓ_{1}^{n} ?
Progress in this direction

- Schechtman : E spanned by i.i.d. ± 1 vectors (n^{2} random bits)
- Artstein-Milman, Lovett-Sodin, Guruswami-Lee-Widgerson construction using very few randomness (n^{δ} random bits for any $\delta>0$)
- Indyk: explicit embedding of ℓ_{2}^{k} into $\ell_{1}^{k^{O(\log k)}}$

Dvoretzky theorem in ℓ_{1}^{n}

Let $\|x\|_{1}=\sum\left|x_{i}\right|$ and B_{1}^{n} be the unit ball of $\ell_{1}^{n}=\left(\mathbf{R}^{n},\|\cdot\|_{1}\right)$.
(1) $b\left(B_{1}^{n}\right)=\sqrt{n}$ because $\|\cdot\|_{1} \leqslant \sqrt{n}\|\cdot\|_{2}$.
(2) $M\left(B_{1}^{n}\right)=\frac{n \mathbf{E}|N(0,1)|}{\gamma_{n}} \sim \frac{c n}{\sqrt{n}} \sim c \sqrt{n}$

So the Dvoretzky dimension of ℓ_{1}^{n} is $k=c \varepsilon^{2} n(M / b)^{2} \sim c \varepsilon^{2} n$.

Question

Is there an explicit Dvoretzky subspace of ℓ_{1}^{n} ?
Progress in this direction

- Schechtman : E spanned by i.i.d. ± 1 vectors (n^{2} random bits).
- Artstein-Milman, Lovett-Sodin, Guruswami-Lee-Widgerson construction using very few randomness (n^{δ} random bits for any $\delta>0$).
- Indyk : explicit embedding of ℓ_{2}^{k} into $\ell_{1}^{\mathrm{k}^{(\log k)}}$

Dvoretzky theorem in ℓ_{1}^{n}

Let $\|x\|_{1}=\sum\left|x_{i}\right|$ and B_{1}^{n} be the unit ball of $\ell_{1}^{n}=\left(\mathbf{R}^{n},\|\cdot\|_{1}\right)$.
(1) $b\left(B_{1}^{n}\right)=\sqrt{n}$ because $\|\cdot\|_{1} \leqslant \sqrt{n}\|\cdot\|_{2}$.
(2) $M\left(B_{1}^{n}\right)=\frac{n \mathrm{E}|N(0,1)|}{\gamma_{n}} \sim \frac{c n}{\sqrt{n}} \sim c \sqrt{n}$

So the Dvoretzky dimension of ℓ_{1}^{n} is $k=c \varepsilon^{2} n(M / b)^{2} \sim c \varepsilon^{2} n$.

Question

Is there an explicit Dvoretzky subspace of ℓ_{1}^{n} ?
Progress in this direction

- Schechtman : E spanned by i.i.d. ± 1 vectors (n^{2} random bits).
- Artstein-Milman, Lovett-Sodin, Guruswami-Lee-Widgerson : construction using very few randomness (n^{δ} random bits for any $\delta>0$).
- Indyk : explicit embedding of ℓ_{2}^{k} into $\ell_{1}^{\mathrm{K}^{0(\log k)}}$

Dvoretzky theorem in ℓ_{1}^{n}

Let $\|x\|_{1}=\sum\left|x_{i}\right|$ and B_{1}^{n} be the unit ball of $\ell_{1}^{n}=\left(\mathbf{R}^{n},\|\cdot\|_{1}\right)$.
(1) $b\left(B_{1}^{n}\right)=\sqrt{n}$ because $\|\cdot\|_{1} \leqslant \sqrt{n}\|\cdot\|_{2}$.
(2) $M\left(B_{1}^{n}\right)=\frac{n \mathrm{E}|N(0,1)|}{\gamma_{n}} \sim \frac{c n}{\sqrt{n}} \sim c \sqrt{n}$

So the Dvoretzky dimension of ℓ_{1}^{n} is $k=c \varepsilon^{2} n(M / b)^{2} \sim c \varepsilon^{2} n$.

Question

Is there an explicit Dvoretzky subspace of ℓ_{1}^{n} ?
Progress in this direction

- Schechtman : E spanned by i.i.d. ± 1 vectors (n^{2} random bits).
- Artstein-Milman, Lovett-Sodin, Guruswami-Lee-Widgerson : construction using very few randomness ($n{ }^{\delta}$ random bits for any $\delta>0$).
- Indyk : explicit embedding of ℓ_{2}^{k} into $\ell_{1}^{k^{O(\log k)}}$.

Dvoretzky theorem in S_{∞}^{d}

Let $\mathbf{K}=\mathbf{R}$ or \mathbf{C}, and $\mathcal{M}\left(\mathbf{K}^{d}, \mathbf{K}^{n}\right)$ be the space of $d \times n$ matrices, equipped with the Hilbert-Schmidt inner product

$$
\langle A, B\rangle=\operatorname{Tr} A^{*} B \quad\|A\|_{H S}=\sqrt{\operatorname{Tr} A^{*} A} .
$$

Let S_{∞}^{d} be the space $\mathcal{M}\left(\mathbf{K}^{d}\right)$ with the operator norm $\|\cdot\|_{\text {op }}$
(1) $b\left(S_{\infty}^{d}\right)=1$ since $\|\cdot\|_{o p} \leqslant\|\cdot\|_{H S}$
(2) $M\left(S_{\infty}^{d}\right) \sim \frac{1}{d} \mathbf{E}\|G\|_{o p}$, where G is a random matrix with i.i.d. $N(0,1)$
entries.
(3) Standard results on random matrices assert that $\mathbf{E}\|G\|_{o p} \leqslant C \sqrt{d}$

Therefore the Dvoretzky dimension of S_{∞}^{d} is $k=c \varepsilon^{2} d^{2}(M / b)^{2}=c \varepsilon^{2} d$ (in a d^{2}-dimensional space)

Dvoretzky theorem in S_{∞}^{d}

Let $\mathbf{K}=\mathbf{R}$ or \mathbf{C}, and $\mathcal{M}\left(\mathbf{K}^{d}, \mathbf{K}^{n}\right)$ be the space of $d \times n$ matrices, equipped with the Hilbert-Schmidt inner product

$$
\langle A, B\rangle=\operatorname{Tr} A^{*} B \quad\|A\|_{H S}=\sqrt{\operatorname{Tr} A^{*} A} .
$$

Let S_{∞}^{d} be the space $\mathcal{M}\left(\mathbf{K}^{d}\right)$ with the operator norm $\|\cdot\|_{\text {op }}$.
(1) $b\left(S_{\infty}^{d}\right)=1$ since $\|\cdot\|_{o p} \leqslant\|\cdot\|_{H S}$.
(3) $M\left(S_{\infty}^{d}\right) \sim \frac{1}{d} \mathbf{E}\|G\|_{\text {op }}$, where G is a random matrix with i.i.d. $N(0,1)$ entries.

- Standard results on random matrices assert that $\mathbf{E}\|G\|_{o p} \leqslant C \sqrt{d}$, Therefore the Dvoretzky dimension of S_{∞}^{d} is $k=c \varepsilon^{2} d^{2}(M / b)^{2}=c \varepsilon^{2} d$ (in a d^{2}-dimensional space).

Dvoretzky theorem in S_{∞}^{d} (continued)

A random $c(\varepsilon) d$-dimensional subspace of S_{∞}^{d} is $(1+\varepsilon)$-Euclidean.

Problem

Find explicit Dvoretzky subspaces of S_{∞}^{d}.
In the complex case, this would be presumably useful for quantum information theory.

Misleading example : S_{∞}^{d} contains obvious d-dimensional 1-Euclidean subspaces : consider matrices with nonzero entries only in the first row. For such a matrix A we have $\|A\|_{o D}=\|A\|_{H S}$, while on Dvoretzky subspaces we have $\|A\|_{o p} \approx\|A\|_{H S} / \sqrt{d}$

Dvoretzky theorem in S_{∞}^{d} (continued)

A random $c(\varepsilon) d$-dimensional subspace of S_{∞}^{d} is $(1+\varepsilon)$-Euclidean.

Problem

Find explicit Dvoretzky subspaces of S_{∞}^{d}.
In the complex case, this would be presumably useful for quantum information theory.

Misleading example : S_{∞}^{d} contains obvious d-dimensional 1-Euclidean subspaces : consider matrices with nonzero entries only in the first row. For such a matrix A we have $\|A\|_{o p}=\|A\|_{H S}$, while on Dvoretzky subspaces we have $\|A\|_{o p} \approx\|A\|_{H S} / \sqrt{d}$.

Slepian's lemma

Lemma (Slepian's lemma)

If $K \subset \mathbf{R}^{n}$ and $\Phi: K \rightarrow \mathbf{R}^{p}$ is a (nonlinear) contraction, then

$$
\mathbf{E} \max _{y \in \Phi(K)}\left\langle g_{p}, y\right\rangle \leqslant \mathbf{E} \max _{x \in K}\left\langle g_{n}, x\right\rangle,
$$

where g_{n} is a standard n-dimensional Gaussian vector.

Since

Slepian inequality implies that

$$
\mathbf{E}\|G\|_{o p} \leqslant 2 \gamma_{d} \leqslant 2 \sqrt{d}
$$

Slepian's lemma

Lemma (Slepian's lemma)

If $K \subset \mathbf{R}^{n}$ and $\Phi: K \rightarrow \mathbf{R}^{p}$ is a (nonlinear) contraction, then

$$
\mathbf{E} \max _{y \in \Phi(K)}\left\langle g_{p}, y\right\rangle \leqslant \mathbf{E} \max _{x \in K}\left\langle g_{n}, x\right\rangle,
$$

where g_{n} is a standard n-dimensional Gaussian vector.
The map $x \oplus y \mapsto x \otimes y$ is the contraction on $S^{d-1} \times S^{d-1}$,

$$
\begin{equation*}
\left|x \otimes y-x^{\prime} \otimes y^{\prime}\right| \leqslant\left(\left|x-x^{\prime}\right|^{2}+\left|y-y^{\prime}\right|^{2}\right)^{1 / 2} \tag{1}
\end{equation*}
$$

Since

Slepian inequality implies that
$\mathbf{E}\|G\|_{o p} \leqslant 2 \gamma_{d} \leqslant 2 \sqrt{d}$

Slepian's lemma

Lemma (Slepian's lemma)

If $K \subset \mathbf{R}^{n}$ and $\Phi: K \rightarrow \mathbf{R}^{p}$ is a (nonlinear) contraction, then

$$
\mathbf{E} \max _{y \in \Phi(K)}\left\langle g_{p}, y\right\rangle \leqslant \mathbf{E} \max _{x \in K}\left\langle g_{n}, x\right\rangle,
$$

where g_{n} is a standard n-dimensional Gaussian vector.
The map $x \oplus y \mapsto x \otimes y$ is the contraction on $S^{d-1} \times S^{d-1}$,

$$
\begin{equation*}
\left|x \otimes y-x^{\prime} \otimes y^{\prime}\right| \leqslant\left(\left|x-x^{\prime}\right|^{2}+\left|y-y^{\prime}\right|^{2}\right)^{1 / 2} \tag{1}
\end{equation*}
$$

Since

$$
\|G\|_{o p}=\sup _{|x|=|y|=1}\langle G x, y\rangle=\sup _{|x|=|y|=1}\langle G, x \otimes y\rangle,
$$

Slepian inequality implies that

$$
\mathbf{E}\|G\|_{o p} \leqslant 2 \gamma_{d} \leqslant 2 \sqrt{d}
$$

Slepian's lemma

Lemma (Slepian's lemma)

If $K \subset \mathbf{R}^{n}$ and $\Phi: K \rightarrow \mathbf{R}^{p}$ is a (nonlinear) contraction, then

$$
\mathbf{E} \max _{y \in \Phi(K)}\left\langle g_{p}, y\right\rangle \leqslant \mathbf{E} \max _{x \in K}\left\langle g_{n}, x\right\rangle,
$$

where g_{n} is a standard n-dimensional Gaussian vector.
The map $x \oplus y \mapsto x \otimes y$ is the contraction on $S^{d-1} \times S^{d-1}$,

$$
\begin{equation*}
\left|x \otimes y-x^{\prime} \otimes y^{\prime}\right| \leqslant\left(\left|x-x^{\prime}\right|^{2}+\left|y-y^{\prime}\right|^{2}\right)^{1 / 2} \tag{1}
\end{equation*}
$$

The inequality (1) is false on \mathbf{C}^{d}, even for $d=1$.

Problem

How to use a Slepian-type lemma for complex Gaussian matrices ?

Rectangular matrices

Let $X=\mathcal{M}\left(\mathbf{C}^{d}, \mathbf{C}^{N}\right)$, equipped with operator norm. Dvoretzky's theorem controls the norm (largest singular value) on a large-dimensional subspace. One can expect more : if $N \gg d$, a typical $N \times d$ Gaussian matrix G will be close to an isometry. Let $s_{\min }(G)=\min _{|x|=1}|G x|$. We have by a net argument, that with large probability

We can use another net argument to prove the following

Theorem

subspace. Then with large probability, every matrix $A \in E$ satisfies

Call such a subspace a strong Dvoretzky subspace. In the real case, Slepian-Gordon lemma leads to better estimates in the constants.

Rectangular matrices

Let $X=\mathcal{M}\left(\mathbf{C}^{d}, \mathbf{C}^{N}\right)$, equipped with operator norm. Dvoretzky's theorem controls the norm (largest singular value) on a large-dimensional subspace. One can expect more : if $N \gg d$, a typical $N \times d$ Gaussian matrix G will be close to an isometry. Let $s_{\text {min }}(G)=\min _{|x|=1}|G x|$. We have by a net argument, that with large probability

$$
\sqrt{N}-C \sqrt{d} \leqslant s_{\min }(G) \leqslant\|G\| \leqslant \sqrt{N}+C \sqrt{d}
$$

We can use another net argument to prove the following

Theorem

Fix $\varepsilon>0$, and let $N \geqslant \mathrm{Cd} / \varepsilon^{2}$. Let $E \subset X$ be a random d-dimensional
subspace. Then with large probability, every matrix $A \in E$ satisfies

[^0]
Rectangular matrices

Let $X=\mathcal{M}\left(\mathbf{C}^{d}, \mathbf{C}^{N}\right)$, equipped with operator norm. Dvoretzky's theorem controls the norm (largest singular value) on a large-dimensional subspace. One can expect more : if $N \gg d$, a typical $N \times d$ Gaussian matrix G will be close to an isometry. Let $s_{\min }(G)=\min _{|x|=1}|G x|$. We have by a net argument, that with large probability

$$
\sqrt{N}-C \sqrt{d} \leqslant s_{\min }(G) \leqslant\|G\| \leqslant \sqrt{N}+C \sqrt{d}
$$

We can use another net argument to prove the following :

Theorem

Fix $\varepsilon>0$, and let $N \geqslant C d / \varepsilon^{2}$. Let $E \subset X$ be a random d-dimensional subspace. Then with large probability, every matrix $A \in E$ satisfies

$$
(1-\varepsilon) \frac{\|A\|_{H S}}{\sqrt{d}} \leqslant s_{\min }(A) \leqslant\|A\|_{o p} \leqslant(1+\varepsilon) \frac{\|A\|_{H S}}{\sqrt{d}}
$$

Call such a subspace a strong Dvoretzky subspace.
Slepian-Gordon lemma leads to better estimates in the constants.

Rectangular matrices

Let $X=\mathcal{M}\left(\mathbf{C}^{d}, \mathbf{C}^{N}\right)$, equipped with operator norm. Dvoretzky's theorem controls the norm (largest singular value) on a large-dimensional subspace. One can expect more : if $N \gg d$, a typical $N \times d$ Gaussian matrix G will be close to an isometry. Let $s_{\min }(G)=\min _{|x|=1}|G x|$. We have by a net argument, that with large probability

$$
\sqrt{N}-C \sqrt{d} \leqslant s_{\min }(G) \leqslant\|G\| \leqslant \sqrt{N}+C \sqrt{d}
$$

We can use another net argument to prove the following :

Theorem

Fix $\varepsilon>0$, and let $N \geqslant C d / \varepsilon^{2}$. Let $E \subset X$ be a random d-dimensional subspace. Then with large probability, every matrix $A \in E$ satisfies

$$
(1-\varepsilon) \frac{\|A\|_{H S}}{\sqrt{d}} \leqslant s_{\min }(A) \leqslant\|A\|_{o p} \leqslant(1+\varepsilon) \frac{\|A\|_{H S}}{\sqrt{d}}
$$

Call such a subspace a strong Dvoretzky subspace. In the real case, Slepian-Gordon lemma leads to better estimates in the constants.

Correspondance between subspaces and completely positive maps

Let $\Phi: \mathbf{C}^{d} \rightarrow \mathcal{M}\left(\mathbf{C}^{d}, \mathbf{C}^{N}\right)$ and $\Phi_{i}: \mathbf{C}^{d} \rightarrow \mathbf{C}^{d}$ to be the i-th row of Φ.

$$
\Phi(x)=\sum_{i=1}^{N}\left|e_{i}\right\rangle\left\langle\Phi_{i}(x)\right|
$$

- We denote by $|a\rangle\langle b|$ the rank one operator $c \mapsto\langle b, c\rangle a$,
- $(|a\rangle\langle b|)^{*}=|b\rangle\langle a|$,
- $(|a\rangle\langle b|)(|c\rangle\langle d|)=\langle b, c\rangle|a\rangle\langle d|$.

Identifying a unit vector x with $|x\rangle\langle x|, \Psi$ can be defined on $\mathcal{M}\left(\mathbf{C}^{d}\right)$ as

Correspondance between subspaces and completely positive maps

Let $\Phi: \mathbf{C}^{d} \rightarrow \mathcal{M}\left(\mathbf{C}^{d}, \mathbf{C}^{N}\right)$ and $\Phi_{i}: \mathbf{C}^{d} \rightarrow \mathbf{C}^{d}$ to be the i-th row of Φ.

$$
\begin{gathered}
\Phi(x)=\sum_{i=1}^{N}\left|e_{i}\right\rangle\left\langle\Phi_{i}(x)\right| \\
\Psi(x):=\Phi(x)^{*} \Phi(x)=\sum_{i=1}^{N}\left|\Phi_{i}(x)\right\rangle\left\langle\Phi_{i}(x)\right|=\sum_{i=1}^{N} \Phi_{i}|x\rangle\langle x| \Phi_{i}^{*}
\end{gathered}
$$

Identifying a unit vector x with $|x\rangle\langle x|, \Psi$ can be defined on $\mathcal{M}\left(\mathbf{C}^{d}\right)$

Therefore the range of Φ consists of (multiples of) almost isometries iff the range of Ψ consists of almost multiples of Id.

Correspondance between subspaces and completely positive maps

Let $\Phi: \mathbf{C}^{d} \rightarrow \mathcal{M}\left(\mathbf{C}^{d}, \mathbf{C}^{N}\right)$ and $\Phi_{i}: \mathbf{C}^{d} \rightarrow \mathbf{C}^{d}$ to be the i-th row of Φ.

$$
\begin{gathered}
\Phi(x)=\sum_{i=1}^{N}\left|e_{i}\right\rangle\left\langle\Phi_{i}(x)\right| \\
\Psi(x):=\Phi(x)^{*} \Phi(x)=\sum_{i=1}^{N}\left|\Phi_{i}(x)\right\rangle\left\langle\Phi_{i}(x)\right|=\sum_{i=1}^{N} \Phi_{i}|x\rangle\langle x| \Phi_{i}^{*}
\end{gathered}
$$

Identifying a unit vector x with $|x\rangle\langle x|, \Psi$ can be defined on $\mathcal{M}\left(\mathbf{C}^{d}\right)$ as

$$
\Psi(\rho)=\sum_{i=1}^{N} \Phi_{i} \rho \Phi_{i}^{*}
$$

Therefore the range of Φ consists of (multiples of) almost isometries iff the range of ψ consists of almost multiples of Id.

Correspondance between subspaces and completely positive maps

Let $\Phi: \mathbf{C}^{d} \rightarrow \mathcal{M}\left(\mathbf{C}^{d}, \mathbf{C}^{N}\right)$ and $\Phi_{i}: \mathbf{C}^{d} \rightarrow \mathbf{C}^{d}$ to be the i-th row of Φ.

$$
\begin{gathered}
\Phi(x)=\sum_{i=1}^{N}\left|e_{i}\right\rangle\left\langle\Phi_{i}(x)\right| \\
\Psi(x):=\Phi(x)^{*} \Phi(x)=\sum_{i=1}^{N}\left|\Phi_{i}(x)\right\rangle\left\langle\Phi_{i}(x)\right|=\sum_{i=1}^{N} \Phi_{i}|x\rangle\langle x| \Phi_{i}^{*}
\end{gathered}
$$

Identifying a unit vector x with $|x\rangle\langle x|, \Psi$ can be defined on $\mathcal{M}\left(\mathbf{C}^{d}\right)$ as

$$
\Psi(\rho)=\sum_{i=1}^{N} \Phi_{i} \rho \Phi_{i}^{*}
$$

$$
(1-\varepsilon)^{1 / 2} \leqslant s_{\min }(A) \leqslant\|A\| \leqslant(1+\varepsilon)^{1 / 2} \Longleftrightarrow\left\|A^{*} A-\mathrm{Id}\right\|_{o p} \leqslant \varepsilon
$$

Therefore the range of Φ consists of (multiples of) almost isometries iff the range of Ψ consists of almost multiples of Id.

Completely positive maps

Definition

A linear map $\Phi: \mathcal{M}\left(\mathbf{C}^{d}\right) \rightarrow \mathcal{M}\left(\mathbf{C}^{d}\right)$ is completely positive (CP) if $\Phi \otimes \operatorname{Id}_{\mathcal{M}\left(\mathbf{C}^{k}\right)}$ maps positive matrices to positive matrices for any k. This is equivalent to say that there are matrices $V_{i} \in \mathcal{M}\left(\mathbf{C}^{d}\right)$ so that

$$
\Phi(X)=\sum_{i=1}^{N} V_{i} X V_{i}^{*} \quad \text { (Kraus decomposition) }
$$

The minimal such N is called the Kraus rank of Φ and is at most d^{2}

Definition

A state $n \in M\left(C^{d}\right)$ is a positive self-adjoint matrix with trace 1 .

- The set of states is the convex hull of rank one projectors $|x\rangle\langle x|$, which are called pure states.
- The state $\frac{I d}{d}$ (the maximally mixed state) plays a central role.

Completely positive maps

Definition

A linear map $\Phi: \mathcal{M}\left(\mathbf{C}^{d}\right) \rightarrow \mathcal{M}\left(\mathbf{C}^{d}\right)$ is completely positive (CP) if $\Phi \otimes \operatorname{Id}_{\mathcal{M}\left(\mathbf{C}^{k}\right)}$ maps positive matrices to positive matrices for any k. This is equivalent to say that there are matrices $V_{i} \in \mathcal{M}\left(\mathbf{C}^{d}\right)$ so that

$$
\Phi(X)=\sum_{i=1}^{N} V_{i} X V_{i}^{*} \quad \text { (Kraus decomposition) }
$$

The minimal such N is called the Kraus rank of Φ and is at most d^{2}.
\square
Definition
A state $\rho \in \mathcal{M}\left(\mathbf{C}^{d}\right)$ is a positive self-adjoint matrix with trace 1 .

- The set of states is the convex hull of rank one projectors $|x\rangle\langle x|$, which are called pure states.
- The state $\frac{\mathrm{Id}}{d}$ (the maximally mixed state) plays a central role.

Completely positive maps

Definition

A linear map $\Phi: \mathcal{M}\left(\mathbf{C}^{d}\right) \rightarrow \mathcal{M}\left(\mathbf{C}^{d}\right)$ is completely positive (CP) if $\Phi \otimes \mathrm{Id}_{\mathcal{M}\left(\mathbf{C}^{k}\right)}$ maps positive matrices to positive matrices for any k. This is equivalent to say that there are matrices $V_{i} \in \mathcal{M}\left(\mathbf{C}^{d}\right)$ so that

$$
\Phi(X)=\sum_{i=1}^{N} V_{i} X V_{i}^{*} \quad \text { (Kraus decomposition). }
$$

The minimal such N is called the Kraus rank of Φ and is at most d^{2}.

Definition

A state $\rho \in \mathcal{M}\left(\mathbf{C}^{d}\right)$ is a positive self-adjoint matrix with trace 1 .

- The set of states is the convex hull of rank one projectors $|x\rangle\langle x|$, which are called pure states.
- The state $\frac{\text { Id }}{d}$ (the maximally mixed state) plays a central role.

Quantum channels

Definition

A quantum channel Φ is a completely positive map which preseves trace

$$
\operatorname{Tr} \Phi(X)=\operatorname{Tr} X
$$

- A quantum channel maps states to states.
- If $\left(U_{i}\right)$ are unitary matrices, then $X \mapsto \frac{1}{N} \sum_{i=1}^{N} U_{i} X U_{i}^{*}$ is a quantum channel.
- The depolarizing channel $R: X \mapsto E U X U^{*}$ with U Haar-distributed on the unitary group $\mathcal{U}(d)$.
- $R(X)=\operatorname{Tr} X \frac{I d}{d}$.

Proof: since $\mathbb{E} U X U^{*}=V\left(\mathbb{E} U X U^{*}\right) V^{*}$ for any $V \in \mathcal{U}(d)$, $\mathbb{E} U X U^{*}$ commutes to $\mathcal{M}\left(\mathbf{C}^{d}\right)$, so it is a multiple of identity.

- The Kraus rank of R is d^{2}.

Quantum channels

Definition

A quantum channel Φ is a completely positive map which preseves trace

$$
\operatorname{Tr} \Phi(X)=\operatorname{Tr} X
$$

- A quantum channel maps states to states.
- If $\left(U_{i}\right)$ are unitary matrices, then $X \mapsto \frac{1}{N} \sum_{i=1}^{N} U_{i} X U_{i}^{*}$ is a quantum channel.
- The depolarizing channel $R: X \mapsto E U X U^{*}$ with U Haar-distributed on the unitary group $\mathcal{U}(d)$.
- $R(X)=\operatorname{Tr} X \frac{\text { Id }}{d}$.

Proof: since $E \cup X U^{*}=V\left(E \cup X U^{*}\right) V^{*}$ for any $V \in U(d)$, $E \cup X U^{*}$ commutes to $\mathcal{M}\left(\mathbf{C}^{d}\right)$, so it is a multiple of identity.

- The Kraus rank of R is d^{2}

Quantum channels

Definition

A quantum channel Φ is a completely positive map which preseves trace

$$
\operatorname{Tr} \Phi(X)=\operatorname{Tr} X
$$

- A quantum channel maps states to states.
- If $\left(U_{i}\right)$ are unitary matrices, then $X \mapsto \frac{1}{N} \sum_{i=1}^{N} U_{i} X U_{i}^{*}$ is a quantum channel.
- The depolarizing channel $R: X \mapsto E U X U^{*}$ with U Haar-distributed on the unitary group $\mathcal{U}(d)$.
- $R(X)=\operatorname{Tr} X \frac{\mathrm{Id}}{d}$.

Proof: since $E \cup X U^{*}=V\left(E \cup X U^{*}\right) V^{*}$ for any $V \in \mathcal{U}(d), E \cup X U^{*}$ commutes to $\mathcal{M}\left(\mathbf{C}^{d}\right)$, so it is a multiple of identity.

- The Kraus rank of R is d^{2}

Quantum channels

Definition

A quantum channel Φ is a completely positive map which preseves trace

$$
\operatorname{Tr} \Phi(X)=\operatorname{Tr} X
$$

- A quantum channel maps states to states.
- If $\left(U_{i}\right)$ are unitary matrices, then $X \mapsto \frac{1}{N} \sum_{i=1}^{N} U_{i} X U_{i}^{*}$ is a quantum channel.
- The depolarizing channel $R: X \mapsto E U X U^{*}$ with U Haar-distributed on the unitary group $\mathcal{U}(d)$.
- $R(X)=\operatorname{Tr} X \frac{I d}{d}$.
Proof : since $E U X U^{*}=V\left(E \cup X U^{*}\right) V^{*}$ for any $V \in \mathcal{U}(d), E \cup X U^{*}$ commutes to $\mathcal{M}\left(\mathbf{C}^{d}\right)$, so it is a multiple of identity.
- The Kraus rank of R is d^{2}.

Quantum channels

Definition

A quantum channel Φ is a completely positive map which preseves trace

$$
\operatorname{Tr} \Phi(X)=\operatorname{Tr} X
$$

- A quantum channel maps states to states.
- If $\left(U_{i}\right)$ are unitary matrices, then $X \mapsto \frac{1}{N} \sum_{i=1}^{N} U_{i} X U_{i}^{*}$ is a quantum channel.
- The depolarizing channel $R: X \mapsto E U X U^{*}$ with U Haar-distributed on the unitary group $\mathcal{U}(d)$.
- $R(X)=\operatorname{Tr} X \frac{\text { Id }}{d}$.

Proof : since $\mathbf{E} U X U^{*}=V\left(\mathbf{E} U X U^{*}\right) V^{*}$ for any $V \in \mathcal{U}(d), \mathbf{E} U X U^{*}$ commutes to $\mathcal{M}\left(\mathbf{C}^{d}\right)$, so it is a multiple of identity.

Quantum channels

Definition

A quantum channel Φ is a completely positive map which preseves trace

$$
\operatorname{Tr} \Phi(X)=\operatorname{Tr} X
$$

- A quantum channel maps states to states.
- If $\left(U_{i}\right)$ are unitary matrices, then $X \mapsto \frac{1}{N} \sum_{i=1}^{N} U_{i} X U_{i}^{*}$ is a quantum channel.
- The depolarizing channel $R: X \mapsto E U X U^{*}$ with U Haar-distributed on the unitary group $\mathcal{U}(d)$.
- $R(X)=\operatorname{Tr} X \frac{\text { Id }}{d}$.

Proof : since $\mathbf{E} U X U^{*}=V\left(\mathbf{E} \cup X U^{*}\right) V^{*}$ for any $V \in \mathcal{U}(d), \mathbf{E} U X U^{*}$ commutes to $\mathcal{M}\left(\mathbf{C}^{d}\right)$, so it is a multiple of identity.

- The Kraus rank of R is d^{2}.

ε-randomizing channels

Definition (Hayden, Leung, Shor and Winter)

For $0<\varepsilon<1$, a quantum channel $\Phi: \mathcal{M}\left(\mathbf{C}^{d}\right) \rightarrow \mathcal{M}\left(\mathbf{C}^{d}\right)$ is ε-randomizing if for any state ρ

$$
\begin{equation*}
\left\|\Phi(\rho)-\frac{\operatorname{Id}}{d}\right\|_{\infty} \leqslant \frac{\varepsilon}{d} \tag{2}
\end{equation*}
$$

i.e. the spectrum of $\Phi(\rho)$ belongs to $\left[\frac{1-\varepsilon}{d}, \frac{1+\varepsilon}{d}\right]$.
(1) By a convexity argument, it is enough to check (2) on pure states.
matrix whose i-th row is the j-th column of U_{i}. Then Φ is
ε-randomizing if and only if $\left(A_{j}\right)$ span a strong Dvoretzky subspace

ε-randomizing channels

Definition (Hayden, Leung, Shor and Winter)

For $0<\varepsilon<1$, a quantum channel $\Phi: \mathcal{M}\left(\mathbf{C}^{d}\right) \rightarrow \mathcal{M}\left(\mathbf{C}^{d}\right)$ is ε-randomizing if for any state ρ

$$
\begin{equation*}
\left\|\Phi(\rho)-\frac{\operatorname{Id}}{d}\right\|_{\infty} \leqslant \frac{\varepsilon}{d} \tag{2}
\end{equation*}
$$

i.e. the spectrum of $\Phi(\rho)$ belongs to $\left[\frac{1-\varepsilon}{d}, \frac{1+\varepsilon}{d}\right]$.
(1) By a convexity argument, it is enough to check (2) on pure states.
matrix whose i-th row is the j-th column of U_{i}. Then Φ is ε-randomizing if and only if $\left(A_{j}\right)$ span a strong Dvoretzky subspace

ε-randomizing channels

Definition (Hayden, Leung, Shor and Winter)

For $0<\varepsilon<1$, a quantum channel $\Phi: \mathcal{M}\left(\mathbf{C}^{d}\right) \rightarrow \mathcal{M}\left(\mathbf{C}^{d}\right)$ is ε-randomizing if for any state ρ

$$
\begin{equation*}
\left\|\Phi(\rho)-\frac{\operatorname{Id}}{d}\right\|_{\infty} \leqslant \frac{\varepsilon}{d} \tag{2}
\end{equation*}
$$

i.e. the spectrum of $\Phi(\rho)$ belongs to $\left[\frac{1-\varepsilon}{d}, \frac{1+\varepsilon}{d}\right]$.
(1) By a convexity argument, it is enough to check (2) on pure states.
(2) Let $\Phi: X \mapsto \sum_{i=1}^{N} U_{i} X U_{i}^{*}$, and for $1 \leqslant j \leqslant d$, let A_{j} be the $N \times d$ matrix whose i-th row is the j-th column of U_{i}. Then Φ is ε-randomizing if and only if $\left(A_{j}\right)$ span a strong Dvoretzky subspace

$$
|\alpha| \sqrt{\frac{N}{d}} \sqrt{1-\varepsilon} \leqslant s_{\min }\left(\sum_{j=1}^{d} \alpha_{j} A_{j}\right) \leqslant\left\|\sum_{j=1}^{d} \alpha_{j} A_{j}\right\|_{o p} \leqslant|\alpha| \sqrt{\frac{N}{d}} \sqrt{1+\varepsilon}
$$

- ε-randomizing channels are useful in quantum information theory, and especially quantum cryptography.
- The depolarizing channel is 0-randomizing, but has maximal Kraus rank, equal to d^{2}. Any Kraus decomposition of size d^{2} yields a d-dimensional subspace of $\mathcal{M}\left(\mathbf{C}^{N}, \mathbf{C}^{d}\right)$ in which every matrix is a multiple of an isometry.

Problem

> Find ε-randomizing channels with small Kraus rank (proportional to d). Even better, find explicitly such channels.

- A ε-randomizing channel must satisfy $N \geqslant d$.

Elementary algebraic geometry shows that a subspace of $\mathcal{M}\left(\mathrm{C}^{d}, \mathrm{C}^{N}\right)$
in which every nonzero matrix is invertible has dimension
$\leqslant N-d+1$, so the channel satisfies $N \geqslant 2 d-1$.

- Random channels will provide examples with N proportional to d (we could take $N=(2+\eta) d$ in the real using Slepian-Gordon lemma).
- ε-randomizing channels are useful in quantum information theory, and especially quantum cryptography.
- The depolarizing channel is 0-randomizing, but has maximal Kraus rank, equal to d^{2}. Any Kraus decomposition of size d^{2} yields a d-dimensional subspace of $\mathcal{M}\left(\mathbf{C}^{N}, \mathbf{C}^{d}\right)$ in which every matrix is a multiple of an isometry.

Problem

Find ε-randomizing channels with small Kraus rank (proportional to d). Even better, find explicitly such channels.

- A ε-randomizing channel must satisfy $N \geqslant d$. Elementary algebraic geometry shows that a subspace of $\mathcal{M}\left(\mathbf{C}^{d}, C^{N}\right)$ in which every nonzero matrix is invertible has dimension $N-d+1$, so the channel satisfies $N \geqslant 2 d-1$.
- Random channels will provide examples with N proportional to d (we could take $N=(2+\eta) d$ in the real using Slepian-Gordon lemma).
- ε-randomizing channels are useful in quantum information theory, and especially quantum cryptography.
- The depolarizing channel is 0-randomizing, but has maximal Kraus rank, equal to d^{2}. Any Kraus decomposition of size d^{2} yields a d-dimensional subspace of $\mathcal{M}\left(\mathbf{C}^{N}, \mathbf{C}^{d}\right)$ in which every matrix is a multiple of an isometry.

Problem

Find ε-randomizing channels with small Kraus rank (proportional to d). Even better, find explicitly such channels.

- A ε-randomizing channel must satisfy $N \geqslant d$.

- ε-randomizing channels are useful in quantum information theory, and especially quantum cryptography.
- The depolarizing channel is 0-randomizing, but has maximal Kraus rank, equal to d^{2}. Any Kraus decomposition of size d^{2} yields a d-dimensional subspace of $\mathcal{M}\left(\mathbf{C}^{N}, \mathbf{C}^{d}\right)$ in which every matrix is a multiple of an isometry.

Problem

Find ε-randomizing channels with small Kraus rank (proportional to d). Even better, find explicitly such channels.

- A ε-randomizing channel must satisfy $N \geqslant d$.

Elementary algebraic geometry shows that a subspace of $\mathcal{M}\left(\mathbf{C}^{d}, \mathbf{C}^{N}\right)$ in which every nonzero matrix is invertible has dimension
$\leqslant N-d+1$, so the channel satisfies $N \geqslant 2 d-1$.

- ε-randomizing channels are useful in quantum information theory, and especially quantum cryptography.
- The depolarizing channel is 0-randomizing, but has maximal Kraus rank, equal to d^{2}. Any Kraus decomposition of size d^{2} yields a d-dimensional subspace of $\mathcal{M}\left(\mathbf{C}^{N}, \mathbf{C}^{d}\right)$ in which every matrix is a multiple of an isometry.

Problem

Find ε-randomizing channels with small Kraus rank (proportional to d). Even better, find explicitly such channels.

- A ε-randomizing channel must satisfy $N \geqslant d$. Elementary algebraic geometry shows that a subspace of $\mathcal{M}\left(\mathbf{C}^{d}, \mathbf{C}^{N}\right)$ in which every nonzero matrix is invertible has dimension $\leqslant N-d+1$, so the channel satisfies $N \geqslant 2 d-1$.
- Random channels will provide examples with N proportional to d (we could take $N=(2+\eta) d$ in the real using Slepian-Gordon lemma).

Short ε-randomizing channels

Theorem (Hayden, Leung, Shor, Winter - A.)

Let U_{1}, \ldots, U_{N} be i.i.d. Haar-distributed random $d \times d$ unitary matrices. Then for $N \geqslant C d / \varepsilon^{2}$, the quantum channel

$$
\Phi: X \mapsto \frac{1}{N} \sum_{i=1}^{N} U_{i} X U_{i}^{*}
$$

is ε-randomizing with exponentially large probability.

- HLSW had the weaker estimate $N \geqslant C d \log d / \varepsilon^{2}$.
- Optimal dependence in d.
- For such random constructions, the dependence in ε is optimal.

Question

Are there ε-randomizing channels with a better dependence in ε ?

Short ε-randomizing channels

Theorem (Hayden, Leung, Shor, Winter - A.)

Let U_{1}, \ldots, U_{N} be i.i.d. Haar-distributed random $d \times d$ unitary matrices. Then for $N \geqslant C d / \varepsilon^{2}$, the quantum channel

$$
\Phi: X \mapsto \frac{1}{N} \sum_{i=1}^{N} U_{i} X U_{i}^{*}
$$

is ε-randomizing with exponentially large probability.

- HLSW had the weaker estimate $N \geqslant C d \log d / \varepsilon^{2}$.
- Optimal dependence in d.
- For such random constructions, the dependence in ε is optimal.

Question

Are there ε-randomizing channels with a better dependence in ε ?

Short ε-randomizing channels

Theorem (Hayden, Leung, Shor, Winter - A.)

Let U_{1}, \ldots, U_{N} be i.i.d. Haar-distributed random $d \times d$ unitary matrices. Then for $N \geqslant C d / \varepsilon^{2}$, the quantum channel

$$
\Phi: X \mapsto \frac{1}{N} \sum_{i=1}^{N} U_{i} X U_{i}^{*}
$$

is ε-randomizing with exponentially large probability.

- HLSW had the weaker estimate $N \geqslant C d \log d / \varepsilon^{2}$.
- Optimal dependence in d.
- For such random constructions, the dependence in ε is optimal.

Question

Are there ε-randomizing channels with a better dependence in ε ?

Proof of the theorem

Let $\Phi: \rho \mapsto \frac{1}{N} \sum U_{i} \rho U_{i}^{*}, R: \rho \mapsto \frac{\text { Id }}{d}$ and $\Delta=\Phi-R$. Let \mathcal{S} be the set of states ; we need to show that for any $\rho \in \mathcal{S},\|\Delta(\rho)\|_{o p} \leqslant \frac{\varepsilon}{d}$, i.e.

$$
\sup _{\rho, \sigma \in \mathcal{S}}|\operatorname{Tr} \sigma \Delta(\rho)| \leqslant \frac{\varepsilon}{d}
$$

(1) We can restrict the supremum to pure states
(2) Let \mathcal{N} be a δ-net (w.r.t. $\|\cdot\|_{1}$) in the set of pure states. Then

Using Bernstein inequalities, this quantity is smaller that ε / d with probability $1-2 \exp \left(-c N \varepsilon^{2}\right)$
(- There is a $1 / 4$-net in the set of pure states of cardinality 400^{d}
(3) The union bound work for $c N \varepsilon^{2} \geqslant d \log 400+\log 2$.

Proof of the theorem

Let $\Phi: \rho \mapsto \frac{1}{N} \sum U_{i} \rho U_{i}^{*}, R: \rho \mapsto \frac{\text { Id }}{d}$ and $\Delta=\Phi-R$. Let \mathcal{S} be the set of states ; we need to show that for any $\rho \in \mathcal{S},\|\Delta(\rho)\|_{o p} \leqslant \frac{\varepsilon}{d}$, i.e.

$$
\sup _{\rho, \sigma \in \mathcal{S}}|\operatorname{Tr} \sigma \Delta(\rho)| \leqslant \frac{\varepsilon}{d} .
$$

(1) We can restrict the supremum to pure states

Proof of the theorem

Let $\Phi: \rho \mapsto \frac{1}{N} \sum U_{i} \rho U_{i}^{*}, R: \rho \mapsto \frac{\text { Id }}{d}$ and $\Delta=\Phi-R$. Let \mathcal{S} be the set of states ; we need to show that for any $\rho \in \mathcal{S},\|\Delta(\rho)\|_{o p} \leqslant \frac{\varepsilon}{d}$, i.e.

$$
\sup _{\rho, \sigma \in \mathcal{S}}|\operatorname{Tr} \sigma \Delta(\rho)| \leqslant \frac{\varepsilon}{d}
$$

(1) We can restrict the supremum to pure states
(2) Let \mathcal{N} be a δ-net (w.r.t. $\|\cdot\|_{1}$) in the set of pure states. Then

$$
A:=\sup _{\rho, \sigma \in \mathcal{S}}|\operatorname{Tr} \sigma \Delta(\rho)| \leqslant \frac{1}{1-2 \delta} \sup _{\rho, \sigma \in \mathcal{N}}|\operatorname{Tr} \sigma \Delta(\rho)|:=B
$$

Using Bernstein inequalities, this quantity is smaller that ε / d with probability $1-2 \exp \left(-c N \varepsilon^{2}\right)$
(- There is a $1 / 4-$ net in the set of pure states of cardinality 400^{d}

Proof of the theorem

Let $\Phi: \rho \mapsto \frac{1}{N} \sum U_{i} \rho U_{i}^{*}, R: \rho \mapsto \frac{\text { Id }}{d}$ and $\Delta=\Phi-R$. Let \mathcal{S} be the set of states ; we need to show that for any $\rho \in \mathcal{S},\|\Delta(\rho)\|_{o p} \leqslant \frac{\varepsilon}{d}$, i.e.

$$
\sup _{\rho, \sigma \in \mathcal{S}}|\operatorname{Tr} \sigma \Delta(\rho)| \leqslant \frac{\varepsilon}{d}
$$

(1) We can restrict the supremum to pure states
(2) Let \mathcal{N} be a δ-net (w.r.t. $\|\cdot\|_{1}$) in the set of pure states. Then

$$
A:=\sup _{\rho, \sigma \in \mathcal{S}}|\operatorname{Tr} \sigma \Delta(\rho)| \leqslant \frac{1}{1-2 \delta} \sup _{\rho, \sigma \in \mathcal{N}}|\operatorname{Tr} \sigma \Delta(\rho)|:=B
$$

Proof: For every pure states ρ, σ, there are $\rho_{0}, \sigma_{0} \in \mathcal{N}$ so that $\left\|\rho-\rho_{0}\right\|_{1} \leqslant \delta,\left\|\sigma-\sigma_{0}\right\| \leqslant \delta$. Then

$$
|\operatorname{Tr} \sigma \Delta(\rho)| \leqslant\left|\operatorname{Tr}\left(\sigma-\sigma_{0}\right) \Delta(\rho)\right|+\left|\operatorname{Tr} \sigma_{0} \Delta\left(\rho-\rho_{0}\right)\right|+\left|\operatorname{Tr} \sigma_{0} \Delta\left(\rho_{0}\right)\right|
$$

Taking supremum over ρ, σ gives $A \leqslant \delta A+\delta A+B$.

Proof of the theorem

Let $\Phi: \rho \mapsto \frac{1}{N} \sum U_{i} \rho U_{i}^{*}, R: \rho \mapsto \frac{\text { Id }}{d}$ and $\Delta=\Phi-R$. Let \mathcal{S} be the set of states ; we need to show that for any $\rho \in \mathcal{S},\|\Delta(\rho)\|_{o p} \leqslant \frac{\varepsilon}{d}$, i.e.

$$
\sup _{\rho, \sigma \in \mathcal{S}}|\operatorname{Tr} \sigma \Delta(\rho)| \leqslant \frac{\varepsilon}{d}
$$

(1) We can restrict the supremum to pure states
(2) Let \mathcal{N} be a δ-net (w.r.t. $\|\cdot\|_{1}$) in the set of pure states. Then

$$
A:=\sup _{\rho, \sigma \in \mathcal{S}}|\operatorname{Tr} \sigma \Delta(\rho)| \leqslant \frac{1}{1-2 \delta} \sup _{\rho, \sigma \in \mathcal{N}}|\operatorname{Tr} \sigma \Delta(\rho)|:=B
$$

(3) For fixed $\rho=|x\rangle\langle x|, \sigma=|y\rangle\langle y|, \operatorname{Tr} \sigma \Delta(\rho)=\frac{1}{N} \sum_{i=1}^{N}\left|\left\langle U_{i} x, y\right\rangle\right|^{2}-\frac{1}{d}$

Using Bernstein inequalities, this quantity is smaller that ε / d with
probability $1-2 \exp \left(-c N \varepsilon^{2}\right)$
(4) There is a $1 / 4$-net in the set of pure states of cardinality 400^{d}

Proof of the theorem

Let $\Phi: \rho \mapsto \frac{1}{N} \sum U_{i} \rho U_{i}^{*}, R: \rho \mapsto \frac{I d}{d}$ and $\Delta=\Phi-R$. Let \mathcal{S} be the set of states ; we need to show that for any $\rho \in \mathcal{S},\|\Delta(\rho)\|_{o p} \leqslant \frac{\varepsilon}{d}$, i.e.

$$
\sup _{\rho, \sigma \in \mathcal{S}}|\operatorname{Tr} \sigma \Delta(\rho)| \leqslant \frac{\varepsilon}{d}
$$

(1) We can restrict the supremum to pure states
(2) Let \mathcal{N} be a δ-net (w.r.t. $\|\cdot\|_{1}$) in the set of pure states. Then

$$
A:=\sup _{\rho, \sigma \in \mathcal{S}}|\operatorname{Tr} \sigma \Delta(\rho)| \leqslant \frac{1}{1-2 \delta} \sup _{\rho, \sigma \in \mathcal{N}}|\operatorname{Tr} \sigma \Delta(\rho)|:=B
$$

(3) For fixed $\rho=|x\rangle\langle x|, \sigma=|y\rangle\langle y|, \operatorname{Tr} \sigma \Delta(\rho)=\frac{1}{N} \sum_{i=1}^{N}\left|\left\langle U_{i} x, y\right\rangle\right|^{2}-\frac{1}{d}$ Using Bernstein inequalities, this quantity is smaller that ε / d with probability $1-2 \exp \left(-c N \varepsilon^{2}\right)$

Proof of the theorem

Let $\Phi: \rho \mapsto \frac{1}{N} \sum U_{i} \rho U_{i}^{*}, R: \rho \mapsto \frac{I d}{d}$ and $\Delta=\Phi-R$. Let \mathcal{S} be the set of states ; we need to show that for any $\rho \in \mathcal{S},\|\Delta(\rho)\|_{o p} \leqslant \frac{\varepsilon}{d}$, i.e.

$$
\sup _{\rho, \sigma \in \mathcal{S}}|\operatorname{Tr} \sigma \Delta(\rho)| \leqslant \frac{\varepsilon}{d}
$$

(1) We can restrict the supremum to pure states
(2) Let \mathcal{N} be a δ-net (w.r.t. $\|\cdot\|_{1}$) in the set of pure states. Then

$$
A:=\sup _{\rho, \sigma \in \mathcal{S}}|\operatorname{Tr} \sigma \Delta(\rho)| \leqslant \frac{1}{1-2 \delta} \sup _{\rho, \sigma \in \mathcal{N}}|\operatorname{Tr} \sigma \Delta(\rho)|:=B
$$

(3) For fixed $\rho=|x\rangle\langle x|, \sigma=|y\rangle\langle y|, \operatorname{Tr} \sigma \Delta(\rho)=\frac{1}{N} \sum_{i=1}^{N}\left|\left\langle U_{i} x, y\right\rangle\right|^{2}-\frac{1}{d}$ Using Bernstein inequalities, this quantity is smaller that ε / d with probability $1-2 \exp \left(-c N \varepsilon^{2}\right)$
(9) There is a $1 / 4$-net in the set of pure states of cardinality 400^{d}.

Proof of the theorem

Let $\Phi: \rho \mapsto \frac{1}{N} \sum U_{i} \rho U_{i}^{*}, R: \rho \mapsto \frac{I d}{d}$ and $\Delta=\Phi-R$. Let \mathcal{S} be the set of states ; we need to show that for any $\rho \in \mathcal{S},\|\Delta(\rho)\|_{o p} \leqslant \frac{\varepsilon}{d}$, i.e.

$$
\sup _{\rho, \sigma \in \mathcal{S}}|\operatorname{Tr} \sigma \Delta(\rho)| \leqslant \frac{\varepsilon}{d}
$$

(1) We can restrict the supremum to pure states
(2) Let \mathcal{N} be a δ-net (w.r.t. $\|\cdot\|_{1}$) in the set of pure states. Then

$$
A:=\sup _{\rho, \sigma \in \mathcal{S}}|\operatorname{Tr} \sigma \Delta(\rho)| \leqslant \frac{1}{1-2 \delta} \sup _{\rho, \sigma \in \mathcal{N}}|\operatorname{Tr} \sigma \Delta(\rho)|:=B
$$

(3) For fixed $\rho=|x\rangle\langle x|, \sigma=|y\rangle\langle y|, \operatorname{Tr} \sigma \Delta(\rho)=\frac{1}{N} \sum_{i=1}^{N}\left|\left\langle U_{i} x, y\right\rangle\right|^{2}-\frac{1}{d}$ Using Bernstein inequalities, this quantity is smaller that ε / d with probability $1-2 \exp \left(-c N \varepsilon^{2}\right)$
(9) There is a $1 / 4$-net in the set of pure states of cardinality 400^{d}.
(5) The union bound work for $c N \varepsilon^{2} \geqslant d \log 400+\log 2$.

Derandomization

The same net argument works for i.i.d. copies of a $\mathcal{U}(d)$-valued random vector U which is
(1) isotropic: for any unit vectors $x, y \in \mathbf{C}^{d}, \mathbf{E}|\langle U x, y\rangle|^{2}=\frac{1}{d}$. This is equivalent to say that the covariance matrix of U is the same as the Haar distribution.
(2) subgaussian : for any $x, y \in \mathbf{C}^{d}$, if $Z=\langle U x, y\rangle$,

$$
\mathbf{P}\left(|Z| \geqslant t\left(\mathbf{E}|Z|^{2}\right)^{1 / 2}\right) \leqslant C \exp \left(-c t^{2}\right)
$$

Any subgaussian random vector has exponentially large support (already in \mathbf{C}^{d}), so this proof cannot go below $N \times C d \approx d^{2}$ random bits.

Question (Hayden-Leung-Shor-Winter)

Can we drop the hypothesis " U subgaussian

Derandomization

The same net argument works for i.i.d. copies of a $\mathcal{U}(d)$-valued random vector U which is
(1) isotropic: for any unit vectors $x, y \in \mathbf{C}^{d}, \mathbf{E}|\langle U x, y\rangle|^{2}=\frac{1}{d}$. This is equivalent to say that the covariance matrix of U is the same as the Haar distribution.
(2) subgaussian : for any $x, y \in \mathbf{C}^{d}$, if $Z=\langle U x, y\rangle$,

$$
\mathbf{P}\left(|Z| \geqslant t\left(\mathbf{E}|Z|^{2}\right)^{1 / 2}\right) \leqslant C \exp \left(-c t^{2}\right)
$$

Any subgaussian random vector has exponentially large support (already in \mathbf{C}^{d}), so this proof cannot go below $N \times C d \approx d^{2}$ random bits.

[^1]
Derandomization

The same net argument works for i.i.d. copies of a $\mathcal{U}(d)$-valued random vector U which is
(1) isotropic: for any unit vectors $x, y \in \mathbf{C}^{d}, \mathbf{E}|\langle U x, y\rangle|^{2}=\frac{1}{d}$. This is equivalent to say that the covariance matrix of U is the same as the Haar distribution.
(2) subgaussian : for any $x, y \in \mathbf{C}^{d}$, if $Z=\langle U x, y\rangle$,

$$
\mathbf{P}\left(|Z| \geqslant t\left(\mathbf{E}|Z|^{2}\right)^{1 / 2}\right) \leqslant C \exp \left(-c t^{2}\right)
$$

Any subgaussian random vector has exponentially large support (already in \mathbf{C}^{d}), so this proof cannot go below $N \times C d \approx d^{2}$ random bits.

Question (Hayden-Leung-Shor-Winter)

Can we drop the hypothesis "U subgaussian"?

Non-subgaussian isotropic $\mathcal{U}(d)$-valued vectors

Consider the Pauli matrices

$$
\sigma_{0}=\mathrm{Id}_{2}, \quad \sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

- Then for any $X \in \mathcal{M}_{2}(\mathbf{C})$,

$$
\frac{1}{4}\left(\sigma_{0} X \sigma_{0}^{*}+\sigma_{1} X \sigma_{1}^{*}+\sigma_{2} X \sigma_{2}^{*}+\sigma_{3} X \sigma_{3}^{*}\right)=\operatorname{Tr} X \frac{\mathrm{Id}}{2}
$$

so the uniform measure on $\left\{\sigma_{i}\right\}$ is isotropic.

- Similarly, for any k, the uniform measure on k-fold tensor product of Pauli matrices is isotropic in $\mathcal{M}\left(\mathbf{C}^{2^{k}}\right)$
- Replacing random Haar matrices by Pauli matrices would also give ε-randomizing channels with extra tensor structure.

Non-subgaussian isotropic $\mathcal{U}(d)$-valued vectors

Consider the Pauli matrices
$\sigma_{0}=\mathrm{Id}_{2}, \quad \sigma_{1}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$.

- Then for any $X \in \mathcal{M}_{2}(\mathbf{C})$,

$$
\frac{1}{4}\left(\sigma_{0} X \sigma_{0}^{*}+\sigma_{1} X \sigma_{1}^{*}+\sigma_{2} X \sigma_{2}^{*}+\sigma_{3} X \sigma_{3}^{*}\right)=\operatorname{Tr} X \frac{\mathrm{Id}}{2}
$$

so the uniform measure on $\left\{\sigma_{i}\right\}$ is isotropic.

- Similarly, for any k, the uniform measure on k-fold tensor product of Pauli matrices is isotropic in $\mathcal{M}\left(\mathbf{C}^{2^{k}}\right)$.
- Replacing random Haar matrices by Pauli matrices would also give ε-randomizing channels with extra tensor structure.

Non-subgaussian isotropic $\mathcal{U}(d)$-valued vectors

Consider the Pauli matrices
$\sigma_{0}=\mathrm{Id}_{2}, \quad \sigma_{1}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$.

- Then for any $X \in \mathcal{M}_{2}(\mathbf{C})$,

$$
\frac{1}{4}\left(\sigma_{0} X \sigma_{0}^{*}+\sigma_{1} X \sigma_{1}^{*}+\sigma_{2} X \sigma_{2}^{*}+\sigma_{3} X \sigma_{3}^{*}\right)=\operatorname{Tr} X \frac{\mathrm{Id}}{2}
$$

so the uniform measure on $\left\{\sigma_{i}\right\}$ is isotropic.

- Similarly, for any k, the uniform measure on k-fold tensor product of Pauli matrices is isotropic in $\mathcal{M}\left(\mathbf{C}^{2^{k}}\right)$.
- Replacing random Haar matrices by Pauli matrices would also give ε-randomizing channels with extra tensor structure.

General isotropic vectors

Question (Hayden-Leung-Shor-Winter)

Can we construct a ε-randomizing channel from $C d / \varepsilon^{2}$ i.i.d. copies of any isotropic $\mathcal{U}(d)$-valued random vector ?

- No ; it can be checked that one needs $N \geqslant C(\varepsilon) d \log d$ in some cases. Related to the coupon's collector problem.
- Yes if we allow extra logarithmic factors.

is ε-randomizing with nonzero probability when N

General isotropic vectors

Question (Hayden-Leung-Shor-Winter)

Can we construct a ε-randomizing channel from $C d / \varepsilon^{2}$ i.i.d. copies of any isotropic $\mathcal{U}(d)$-valued random vector ?

- No ; it can be checked that one needs $N \geqslant C(\varepsilon) d \log d$ in some cases. Related to the coupon's collector problem.
- Yes if we allow extra logarithmic factors.

Theorem (A.)

If U is a $\mathcal{U}(d)$-valued isotropic random vector and U_{i} denote i.i.d. copies, is the channel

$$
X \mapsto \frac{1}{N} \sum_{i=1}^{N} U_{i} X U_{i}^{*}
$$

is ε-randomizing with nonzero probability when $N \geqslant C d \log ^{6} d / \varepsilon^{2}$.

Proof (1)

We need to estimate, for $U_{i} \in \mathcal{U}(d)$ i.i.d. isotropic

$$
\left.M=\left.\mathbf{E} \sup _{|x|=|y|=1}\left|\frac{1}{N} \sum_{i=1}^{N}\right|\left\langle U_{i} x, y\right\rangle\right|^{2}-\frac{1}{d} \right\rvert\,
$$

This is an empirical process in the Schatten space $S_{1}^{d}=\left(\mathcal{M}\left(\mathbf{C}^{d}\right),\|\cdot\|_{1}\right)$. $B\left(S_{1}^{d}\right)=\operatorname{conv}\left\{|x\rangle\langle y|, x, y \in \mathbb{C}^{d},|x|=|y|=1\right\}$.

Proof (1)

We need to estimate, for $U_{i} \in \mathcal{U}(d)$ i.i.d. isotropic

$$
\begin{aligned}
M & \left.=\left.\mathbf{E} \sup _{|x|=|y|=1}\left|\frac{1}{N} \sum_{i=1}^{N}\right|\left\langle U_{i} x, y\right\rangle\right|^{2}-\frac{1}{d} \right\rvert\, \\
& \left.=\left.\mathbf{E} \sup _{|x|=|y|=1}\left|\frac{1}{N} \sum_{i=1}^{N}\right| \operatorname{Tr} U_{i}|x\rangle\langle y|\right|^{2}-\frac{1}{d} \right\rvert\, \\
& \left.\leqslant\left. E \sup _{A \in B\left(S_{1}^{d}\right)}\left|\frac{1}{N} \sum_{i=1}^{N}\right| \operatorname{Tr} U_{i} A\right|^{2}-E \operatorname{Tr} \right\rvert\, U A
\end{aligned}
$$

This is an empirical process in the Schatten space $S_{1}^{d}=\left(\mathcal{M}\left(\mathbf{C}^{d}\right),\|\cdot\|_{1}\right)$
$B\left(S_{1}^{d}\right)=\operatorname{conv}\left\{|x\rangle\langle y|, x, y \in \mathbb{C}^{d},|x|=|y|=1\right\}$.

Proof (1)

We need to estimate, for $U_{i} \in \mathcal{U}(d)$ i.i.d. isotropic

$$
\begin{aligned}
M & \left.=\left.\mathbf{E} \sup _{|x|=|y|=1}\left|\frac{1}{N} \sum_{i=1}^{N}\right|\left\langle U_{i} x, y\right\rangle\right|^{2}-\frac{1}{d} \right\rvert\, \\
& =\mathbf{E} \sup _{|x|=|y|=1}\left|\frac{1}{N} \sum_{i=1}^{N}\right| \operatorname{Tr} U_{i}|x\rangle\left\langle\left. y\right|^{2}-\frac{1}{d}\right| \\
& \left.\leqslant\left. E \sup _{A \in B\left(S_{1}^{d}\right)}\left|\frac{1}{N} \sum_{i=1}^{N}\right| \operatorname{Tr} U_{i} A\right|^{2}-\mathbf{E} \operatorname{Tr}|U A|^{2} \right\rvert\,
\end{aligned}
$$

This is an empirical process in the Schatten space $S_{1}^{d}=\left(\mathcal{M}\left(\mathbf{C}^{d}\right),\|\cdot\|_{1}\right)$.

$$
B\left(S_{1}^{d}\right)=\operatorname{conv}\left\{|x\rangle\langle y|, x, y \in \mathbf{C}^{d},|x|=|y|=1\right\}
$$

Proof (2)

We can use results by Rudelson and Guédon, Mendelson, Pajor, Tomczak-Jaegermann about empirical processes in a Banach space with a good modulus of convexity (such as Hilbert space, ℓ_{1}^{d}, S_{1}^{d}).
Proof (following [R],[GMPT])

- Symmetrization arguement à la Giné-Zinn

- The theorem follows from the next lemma

Lamm?

Let $U_{1}, \ldots, U_{N} \in \mathcal{U}(d)$ be deterministic, $N \geqslant d$. Then,

Proof (2)

We can use results by Rudelson and Guédon, Mendelson, Pajor, Tomczak-Jaegermann about empirical processes in a Banach space with a good modulus of convexity (such as Hilbert space, ℓ_{1}^{d}, S_{1}^{d}). Proof (following [R],[GMPT])

- Symmetrization arguement à la Giné-Zinn

$$
\left.M \leqslant\left. 2 \mathbf{E}_{U} \mathbf{E}_{\varepsilon} \sup _{A \in B\left(S_{1}^{d}\right)} \mathbf{E}\left|\frac{1}{N} \sum_{i=1}^{N} \varepsilon_{i}\right| \operatorname{Tr} U_{i} A\right|^{2} \right\rvert\,
$$

- The theorem follows from the next lemma
$U_{N} \in \mathcal{U}(d)$ be deterministic, $N \geqslant d$. Then,

Proof (2)

We can use results by Rudelson and Guédon, Mendelson, Pajor, Tomczak-Jaegermann about empirical processes in a Banach space with a good modulus of convexity (such as Hilbert space, ℓ_{1}^{d}, S_{1}^{d}). Proof (following [R],[GMPT])

- Symmetrization arguement à la Giné-Zinn

$$
\left.M \leqslant\left. 2 \mathbf{E}_{U} \mathbf{E}_{\varepsilon} \sup _{A \in B\left(S_{1}^{d}\right)} \mathbf{E}\left|\frac{1}{N} \sum_{i=1}^{N} \varepsilon_{i}\right| \operatorname{Tr} U_{i} A\right|^{2} \right\rvert\,
$$

- The theorem follows from the next lemma

Lemma

Let $U_{1}, \ldots, U_{N} \in \mathcal{U}(d)$ be deterministic, $N \geqslant d$. Then,

$$
\left.\mathbf{E}_{\varepsilon} \sup _{A \in B\left(S_{1}^{d}\right)}\left|\sum_{i=1}^{N} \varepsilon_{i}\right| \operatorname{Tr} U_{i} A\right|^{2} \mid \leqslant C \log ^{3} N \sqrt{\sup _{A \in B\left(S_{1}^{d}\right)} \sum_{i=1}^{N}\left|\operatorname{Tr} U_{i} A\right|^{2}} .
$$

Proof of the lemma

Lemma

Let $U_{1}, \ldots, U_{N} \in \mathcal{U}(d)$ be deterministic, $N \geqslant d$. Then,

$$
\left.\mathbf{E}_{\varepsilon} \sup _{A \in B\left(S_{1}^{d}\right)}\left|\sum_{i=1}^{N} \varepsilon_{i}\right| \operatorname{Tr} U_{i} A\right|^{2} \mid \leqslant C \log ^{3} N \sqrt{\sup _{A \in B\left(S_{1}^{d}\right)} \sum_{i=1}^{N}\left|\operatorname{Tr} U_{i} A\right|^{2}} .
$$

Let $\left(g_{i}\right)$ be independent $N(0,1)$

Here δ the distance induced by the Gaussian process and $N(K, \delta, \varepsilon)$ the number of balls of radius ε in the metric δ needed to cover K.

Proof of the lemma

Lemma

Let $U_{1}, \ldots, U_{N} \in \mathcal{U}(d)$ be deterministic, $N \geqslant d$. Then,

$$
\left.\mathbf{E}_{\varepsilon} \sup _{A \in B\left(S_{1}^{d}\right)}\left|\sum_{i=1}^{N} \varepsilon_{i}\right| \operatorname{Tr} U_{i} A\right|^{2} \mid \leqslant C \log ^{3} N \sqrt{\sup _{A \in B\left(S_{1}^{d}\right)} \sum_{i=1}^{N}\left|\operatorname{Tr} U_{i} A\right|^{2}} .
$$

Let $\left(g_{i}\right)$ be independent $N(0,1)$

$$
\left.\left.\mathbf{E}_{\varepsilon} \sup _{A \in B\left(S_{1}^{d}\right)}\left|\sum_{i=1}^{N} \varepsilon_{i}\right| \operatorname{Tr} U_{i} A\right|^{2}\left|\leqslant \sqrt{\frac{\pi}{2}} \mathbf{E}_{g} \sup _{A \in B\left(S_{1}^{d}\right)}\right| \sum_{i=1}^{N} g_{i}\left|\operatorname{Tr} U_{i} A\right|^{2} \right\rvert\,
$$

Here δ the distance induced by the Gaussian process and $N(K, \delta, \varepsilon)$ the number of balls of radius ε in the metric δ needed to cover K.

Proof of the lemma

Lemma

Let $U_{1}, \ldots, U_{N} \in \mathcal{U}(d)$ be deterministic, $N \geqslant d$. Then,

$$
\left.\mathbf{E}_{\varepsilon} \sup _{A \in B\left(S_{1}^{d}\right)}\left|\sum_{i=1}^{N} \varepsilon_{i}\right| \operatorname{Tr} U_{i} A\right|^{2} \mid \leqslant C \log ^{3} N \sqrt{\sup _{A \in B\left(S_{1}^{d}\right)} \sum_{i=1}^{N}\left|\operatorname{Tr} U_{i} A\right|^{2}} .
$$

Let $\left(g_{i}\right)$ be independent $N(0,1)$

$$
\begin{aligned}
\left.\mathbf{E}_{\varepsilon} \sup _{A \in B\left(S_{1}^{d}\right)}\left|\sum_{i=1}^{N} \varepsilon_{i}\right| \operatorname{Tr} U_{i} A\right|^{2} \mid & \left.\leqslant\left.\sqrt{\frac{\pi}{2}} \mathbf{E}_{g} \sup _{A \in B\left(S_{1}^{d}\right)}\left|\sum_{i=1}^{N} g_{i}\right| \operatorname{Tr} U_{i} A\right|^{2} \right\rvert\, \\
& \leqslant C \int_{0}^{\infty} \sqrt{\log N\left(B\left(S_{1}^{d}\right), \delta, \varepsilon\right)} d \varepsilon
\end{aligned}
$$

Here δ the distance induced by the Gaussian process and $N(K, \delta, \varepsilon)$ the number of balls of radius ε in the metric δ needed to cover K.

Proof of the lemma

The metric δ can be upper-bounded

$$
\begin{aligned}
\delta(A, B)^{2} & =\left.\sum_{i=1}^{N}| | \operatorname{Tr} U_{i} A\right|^{2}-\left.\left|\operatorname{Tr} U_{i} B\right|^{2}\right|^{2} \\
& \leqslant\left(\sum_{i=1}^{N}\left|\operatorname{Tr} U_{i}(A+B)\right|^{2}\right)\left(\sup _{1 \leqslant i \leqslant N}\left|\operatorname{Tr} U_{i}(A-B)\right|^{2}\right)
\end{aligned}
$$

This leads to the bound

with $\left|\|A\|\left\|=\sup _{1 \leqslant i \leqslant N}\left|\operatorname{Tr} U_{i} A\right| \leqslant\right\| A \|_{1}\right.$.
The unit ball L of III : II has N " faces \% and contains $B\left(S_{1}^{d}\right)$.

Proof of the lemma

The metric δ can be upper-bounded

$$
\begin{aligned}
\delta(A, B)^{2} & =\left.\sum_{i=1}^{N}| | \operatorname{Tr} U_{i} A\right|^{2}-\left.\left|\operatorname{Tr} U_{i} B\right|^{2}\right|^{2} \\
& \leqslant\left(\sum_{i=1}^{N}\left|\operatorname{Tr} U_{i}(A+B)\right|^{2}\right)\left(\sup _{1 \leqslant i \leqslant N}\left|\operatorname{Tr} U_{i}(A-B)\right|^{2}\right)
\end{aligned}
$$

This leads to the bound

$$
\mathbf{E}_{\varepsilon} \cdots \leqslant C\left(\sup _{A \in B\left(S_{1}^{d}\right)} \sum_{i=1}^{N}\left|\operatorname{Tr} U_{i} A\right|^{2}\right)^{1 / 2} \int_{0}^{\infty} \sqrt{\log N\left(B\left(S_{1}^{d}\right),|||\cdot|||, \varepsilon\right)} d \varepsilon
$$

with $\left||A|\left\|\left|=\sup _{1 \leqslant i \leqslant N}\right| \operatorname{Tr} U_{i} A \mid \leqslant\right\| A \|_{1}\right.$.
The unit ball L of ||| $\cdot\left|\left|\mid\right.\right.$ has N «faces» and contains $B\left(S_{1}^{d}\right)$.

Proof of the lemma

The metric δ can be upper-bounded

$$
\begin{aligned}
\delta(A, B)^{2} & =\left.\sum_{i=1}^{N}| | \operatorname{Tr} U_{i} A\right|^{2}-\left.\left|\operatorname{Tr} U_{i} B\right|^{2}\right|^{2} \\
& \leqslant\left(\sum_{i=1}^{N}\left|\operatorname{Tr} U_{i}(A+B)\right|^{2}\right)\left(\sup _{1 \leqslant i \leqslant N}\left|\operatorname{Tr} U_{i}(A-B)\right|^{2}\right)
\end{aligned}
$$

This leads to the bound

$$
\mathbf{E}_{\varepsilon} \cdots \leqslant C\left(\sup _{A \in B\left(S_{1}^{d}\right)} \sum_{i=1}^{N}\left|\operatorname{Tr} U_{i} A\right|^{2}\right)^{1 / 2} \int_{0}^{\infty} \sqrt{\log N\left(B\left(S_{1}^{d}\right),|||\cdot|||, \varepsilon\right)} d \varepsilon
$$

with $\left||A|\left\|\left|=\sup _{1 \leqslant i \leqslant N}\right| \operatorname{Tr} U_{i} A \mid \leqslant\right\| A \|_{1}\right.$.
The unit ball L of $\left|\|\cdot \mid\|\right.$ has N «faces» and contains $B\left(S_{1}^{d}\right)$.

Covering numbers

We need to estimate

$$
I=\int_{0}^{\infty} \sqrt{\log N\left(B\left(S_{1}^{d}\right),|\||\cdot \||, \varepsilon)\right.} d \varepsilon \leqslant C \log ^{3} N
$$

Assume for the moment the duality property for covering numbers holds (it is still a conjecture)

$$
\log N(K, L, \varepsilon) \leqslant C \log N\left(L^{\circ}, K^{\circ}, C \varepsilon\right)
$$

This leads to

$$
I \leqslant C \int_{0}^{\infty} \sqrt{\log N\left(L^{\circ}, B\left(S_{\infty}^{d}\right), \varepsilon\right)} d \varepsilon .
$$

With L° the unit ball for $\|\|\cdot\|\|^{*}$ — a convex body with N 《vertices contained in $B\left(S_{\infty}^{d}\right)$.

Covering numbers

We need to estimate

$$
I=\int_{0}^{\infty} \sqrt{\log N\left(B\left(S_{1}^{d}\right),\||\cdot|\|, \varepsilon\right)} d \varepsilon \stackrel{?}{\leqslant} C \log ^{3} N
$$

Assume for the moment the duality property for covering numbers holds (it is still a conjecture)

$$
\log N(K, L, \varepsilon) \leqslant C \log N\left(L^{\circ}, K^{\circ}, C \varepsilon\right)
$$

This leads to

$$
I \leqslant C \int_{0}^{\infty} \sqrt{\log N\left(L^{\circ}, B\left(S_{\infty}^{d}\right), \varepsilon\right)} d \varepsilon .
$$

With L° the unit ball for $\|\|\cdot\|\|^{*}$ - a convex body with N 《vertices contained in $B\left(S_{\infty}^{\boldsymbol{d}}\right)$.

Covering numbers

We need to estimate

$$
I=\int_{0}^{\infty} \sqrt{\log N\left(B\left(S_{1}^{d}\right),|\|\cdot|\||, \varepsilon)\right.} d \varepsilon \stackrel{?}{\leqslant} C \log ^{3} N
$$

Assume for the moment the duality property for covering numbers holds (it is still a conjecture)

$$
\log N(K, L, \varepsilon) \leqslant C \log N\left(L^{\circ}, K^{\circ}, c \varepsilon\right)
$$

This leads to

$$
I \leqslant C \int_{0}^{\infty} \sqrt{\log N\left(L^{\circ}, B\left(S_{\infty}^{d}\right), \varepsilon\right)} d \varepsilon
$$

With L° the unit ball for $\|\|\cdot\|\|^{*}$ - a convex body with N «vertices contained in $B\left(S_{\infty}^{d}\right)$.

Covering numbers

We need to estimate

$$
I=\int_{0}^{\infty} \sqrt{\log N\left(B\left(S_{1}^{d}\right),|||\cdot| \|, \varepsilon)\right.} d \varepsilon \stackrel{?}{\leqslant} C \log ^{3} N
$$

Assume for the moment the duality property for covering numbers holds (it is still a conjecture)

$$
\log N(K, L, \varepsilon) \leqslant C \log N\left(L^{\circ}, K^{\circ}, c \varepsilon\right)
$$

This leads to

$$
I \leqslant C \int_{0}^{\infty} \sqrt{\log N\left(L^{\circ}, B\left(S_{\infty}^{d}\right), \varepsilon\right)} d \varepsilon
$$

With L° the unit ball for $\|\|\cdot\|\|^{*}$ - a convex body with N «vertices» contained in $B\left(S_{\infty}^{d}\right)$.

End of the proof

Lemma (Maurey's lemma)

If $K \subset L$ and K has N vertices», then for all $\varepsilon>0$,

$$
\varepsilon \sqrt{\log N(K, L, \varepsilon)} \leqslant C T_{2}(L) \sqrt{\log N}
$$

Here $T_{2}(L)$ is the type 2 constant of the norm associated to L.
(1) In our case $T_{2}\left(S_{\infty}^{d}\right) \leqslant C \sqrt{\log d}$ (Tomczak-Jaegermann)
(2) The duality conjecture holds up to a logarithmic factor. This follows from results by Bourgain, Pajor, Szarek and Tomczak-Jaegermann since S_{1}^{d} has a equivalent norm which has a good modulus of convexity, namely the norm of S_{p}^{d} for $p=1+1 / \log d$ (Tomczak-Jaegermann, Ball-Carlen-Lieb)
(3) Collect all the logarithms.

End of the proof

Lemma (Maurey's lemma)

If $K \subset L$ and K has N «vertices», then for all $\varepsilon>0$,

$$
\varepsilon \sqrt{\log N(K, L, \varepsilon)} \leqslant C T_{2}(L) \sqrt{\log N}
$$

Here $T_{2}(L)$ is the type 2 constant of the norm associated to L.
(1) In our case $T_{2}\left(S_{\infty}^{d}\right) \leqslant C \sqrt{\log d}$ (Tomczak-Jaegermann).
(3) The duality conjecture holds up to a logarithmic factor. This follows from results by Bourgain, Pajor, Szarek and Tomczak-Jaegermann since S_{1}^{d} has a equivalent norm which has a good modulus of convexity, namely the norm of S_{p}^{d} for $p=1+1 / \log d$ (Tomczak-Jaegermann, Ball-Carlen-Lieb).
(3) Collect all the logarithms.

End of the proof

Lemma (Maurey's lemma)

If $K \subset L$ and K has N «vertices», then for all $\varepsilon>0$,

$$
\varepsilon \sqrt{\log N(K, L, \varepsilon)} \leqslant C T_{2}(L) \sqrt{\log N}
$$

Here $T_{2}(L)$ is the type 2 constant of the norm associated to L.
(1) In our case $T_{2}\left(S_{\infty}^{d}\right) \leqslant C \sqrt{\log d}$ (Tomczak-Jaegermann).
(2) The duality conjecture holds up to a logarithmic factor. This follows from results by Bourgain, Pajor, Szarek and Tomczak-Jaegermann since S_{1}^{d} has a equivalent norm which has a good modulus of convexity, namely the norm of S_{p}^{d} for $p=1+1 / \log d$ (Tomczak-Jaegermann, Ball-Carlen-Lieb).
© Collect all the logarithms.

End of the proof

Lemma (Maurey's lemma)

If $K \subset L$ and K has N «vertices», then for all $\varepsilon>0$,

$$
\varepsilon \sqrt{\log N(K, L, \varepsilon)} \leqslant C T_{2}(L) \sqrt{\log N}
$$

Here $T_{2}(L)$ is the type 2 constant of the norm associated to L.
(1) In our case $T_{2}\left(S_{\infty}^{d}\right) \leqslant C \sqrt{\log d}$ (Tomczak-Jaegermann).
(2) The duality conjecture holds up to a logarithmic factor. This follows from results by Bourgain, Pajor, Szarek and Tomczak-Jaegermann since S_{1}^{d} has a equivalent norm which has a good modulus of convexity, namely the norm of S_{p}^{d} for $p=1+1 / \log d$ (Tomczak-Jaegermann, Ball-Carlen-Lieb).
(3) Collect all the logarithms.

Weakly ε-randomizing channels

A quantum channel $\Phi: \mathcal{M}\left(\mathbf{C}^{d}\right) \rightarrow \mathcal{M}\left(\mathbf{C}^{d}\right)$ is weakly ε-randomizing if for any staty ρ,

$$
\left\|\Phi(\rho)-\frac{\mathrm{Id}}{d}\right\|_{H S} \leqslant \frac{\varepsilon}{\sqrt{d}}
$$

- Since $\|\cdot\|_{H S} \leqslant \sqrt{d}\|\cdot\|_{\text {op }}$, a ε-randomizing channel is weakly ε-randomizing.
- The Hilbert-Schmidt norm is easier to handle than the operator norm because it allows to use spectral methods.
- There are explicit examples of weakly ε-randomizing channels with Kraus rank less than $16 d / \varepsilon^{2}$, using Pauli matrices (Ambainis-Smith, Dickinson-Nayak). Constructions are based on standard derandomisation techniques (small bias subsets of $\left.(\mathbf{Z} / 2 \mathbf{Z})^{N}\right)$.
- It seems hard to decide whether these channels are ε-randomizing in the strong sense.

Weakly ε-randomizing channels

A quantum channel $\Phi: \mathcal{M}\left(\mathbf{C}^{d}\right) \rightarrow \mathcal{M}\left(\mathbf{C}^{d}\right)$ is weakly ε-randomizing if for any staty ρ,

$$
\left\|\Phi(\rho)-\frac{\mathrm{Id}}{d}\right\|_{H S} \leqslant \frac{\varepsilon}{\sqrt{d}}
$$

- Since $\|\cdot\|_{H S} \leqslant \sqrt{d}\|\cdot\|_{o p}$, a ε-randomizing channel is weakly ε-randomizing.
- The Hilbert-Schmidt norm is easier to handle than the operator norm because it allows to use spectral methods.
- There are explicit examples of weakly ε-randomizing channels with Kraus rank less than $16 d / \varepsilon^{2}$, using Pauli matrices (Ambainis-Smith, Dickinson-Nayak). Constructions are based on standard derandomisation techniques (small bias subsets of $\left.(\mathbf{Z} / 2 \mathbf{Z})^{N}\right)$
- It seems hard to decide whether these channels are ε-randomizing in the strong sense.

Weakly ε-randomizing channels

A quantum channel $\Phi: \mathcal{M}\left(\mathbf{C}^{d}\right) \rightarrow \mathcal{M}\left(\mathbf{C}^{d}\right)$ is weakly ε-randomizing if for any staty ρ,

$$
\left\|\Phi(\rho)-\frac{\operatorname{Id}}{d}\right\|_{H S} \leqslant \frac{\varepsilon}{\sqrt{d}}
$$

- Since $\|\cdot\|_{H S} \leqslant \sqrt{d}\|\cdot\|_{o p}$, a ε-randomizing channel is weakly ε-randomizing.
- The Hilbert-Schmidt norm is easier to handle than the operator norm because it allows to use spectral methods.
- There are explicit examples of weakly ε-randomizing channels with
Kraus rank less than $16 d / \varepsilon^{2}$, using Pauli matrices (Ambainis-Smith, Dickinson-Nayak). Constructions are based on standard derandomisation techniques (small bias subsets of $\left.(\mathbf{Z} / 2 \mathbf{Z})^{N}\right)$
- It seems hard to decide whether these channels are ε-randomizing in the strong sense.

Weakly ε-randomizing channels

A quantum channel $\Phi: \mathcal{M}\left(\mathbf{C}^{d}\right) \rightarrow \mathcal{M}\left(\mathbf{C}^{d}\right)$ is weakly ε-randomizing if for any staty ρ,

$$
\left\|\Phi(\rho)-\frac{\mathrm{Id}}{d}\right\|_{H S} \leqslant \frac{\varepsilon}{\sqrt{d}}
$$

- Since $\|\cdot\|_{H S} \leqslant \sqrt{d}\|\cdot\|_{o p}$, a ε-randomizing channel is weakly ε-randomizing.
- The Hilbert-Schmidt norm is easier to handle than the operator norm because it allows to use spectral methods.
- There are explicit examples of weakly ε-randomizing channels with Kraus rank less than $16 d / \varepsilon^{2}$, using Pauli matrices (Ambainis-Smith, Dickinson-Nayak). Constructions are based on standard derandomisation techniques (small bias subsets of $\left.(\mathbf{Z} / 2 \mathbf{Z})^{N}\right)$.
- It seems hard to decide whether these channels are ε-randomizing in the strong sense.

Additivity conjectures

Definition

The (von Neumann) entropy of a state ρ is $S(\rho)=-\operatorname{Tr} \rho \log \rho$. The minimal output entropy of a channel Φ is $S_{\text {min }}(\Phi)=\min _{\rho \in S} S(\Phi(\rho))$

An important question is to decide wheter $S_{\min }$ is additive
Question (Additivity conjecture)
If Φ and ψ are quantum channels, is it true thar
$S_{\min }(\Phi \otimes \Psi)=S_{\min }(\Phi)+S_{\min }(\Psi)$
This would be implied (taking $p \rightarrow 1$) by the following
$\max _{\rho}\|(\Phi \otimes \psi)(\rho)\|_{p}=\max _{\rho}\|\Phi(\rho)\|_{p} \max \|\Psi(\rho)\|_{p}$.
(1) (Winter) The existence of ε-randomizing channels with low Kraus rank implies that (3) is false for $p>2$.
(2) (Hayden-Winter) Applying Dvoretzky's theorem in $S_{2 p}\left(C^{d}, C^{N}\right)$ gives

Additivity conjectures

Definition

The (von Neumann) entropy of a state ρ is $S(\rho)=-\operatorname{Tr} \rho \log \rho$. The minimal output entropy of a channel Φ is $S_{\min }(\Phi)=\min _{\rho \in S} S(\Phi(\rho))$

An important question is to decide wheter $S_{\text {min }}$ is additive

Question (Additivity conjecture)

If Φ and Ψ are quantum channels, is it true thar
$S_{\min }(\Phi \otimes \Psi)=S_{\min }(\Phi)+S_{\min }(\Psi)$.
This would be implied (taking $p \rightarrow 1$) by the following
$\max \|(\Phi \otimes \Psi)(\rho)\|_{p}=\max \|\Phi(\rho)\|_{p} \max \|\Psi(\rho)\|_{p}$
(1) (Winter) The existence of ε-randomizing channels with low Kraus rank implies that (3) is false for $p>2$.
(3) (Hayden-Winter) Applying Dvoretzky's theorem in $S_{2 p}\left(\mathbf{C}^{d}, \mathrm{C}^{N}\right)$ gives

Additivity conjectures

Definition

The (von Neumann) entropy of a state ρ is $S(\rho)=-\operatorname{Tr} \rho \log \rho$.
The minimal output entropy of a channel Φ is $S_{\min }(\Phi)=\min _{\rho \in S} S(\Phi(\rho))$
An important question is to decide wheter $S_{\text {min }}$ is additive

Question (Additivity conjecture)

If Φ and Ψ are quantum channels, is it true thar
$S_{\text {min }}(\Phi \otimes \Psi)=S_{\text {min }}(\Phi)+S_{\text {min }}(\Psi)$.
This would be implied (taking $p \rightarrow 1$) by the following

$$
\begin{equation*}
\max _{\rho}\|(\Phi \otimes \Psi)(\rho)\|_{p}=\max _{\rho}\|\Phi(\rho)\|_{p} \max _{\rho}\|\Psi(\rho)\|_{p} \tag{3}
\end{equation*}
$$

(Winter) The existence of ε-randomizing channels with low Kraus
rank implies that (3) is false for $p>2$.
(3) (Hayden-Winter) Applying Dvoretzky's theorem in $S_{2 p}\left(C^{d}, C^{N}\right)$ gives

Additivity conjectures

An important question is to decide wheter $S_{\text {min }}$ is additive

Question (Additivity conjecture)

If Φ and Ψ are quantum channels, is it true thar
$S_{\min }(\Phi \otimes \Psi)=S_{\text {min }}(\Phi)+S_{\text {min }}(\Psi)$.
This would be implied (taking $p \rightarrow 1$) by the following

$$
\begin{equation*}
\max _{\rho}\|(\Phi \otimes \Psi)(\rho)\|_{p}=\max _{\rho}\|\Phi(\rho)\|_{p} \max _{\rho}\|\Psi(\rho)\|_{p} \tag{3}
\end{equation*}
$$

(1) (Winter) The existence of ε-randomizing channels with low Kraus rank implies that (3) is false for $p>2$.
(3) (Hayden-Winter) Applying Dvoretzky's theorem in $S_{2 p}\left(\mathrm{C}^{d}, \mathrm{C}^{N}\right)$ gives
counterexamples to (3) for any $p>1$.
(Hastings) Random counterexamples to the additivity conjecture!
Uses sharp results on the entropy of $X^{*} X$, where X uniformly
distributed on the Hilbert-Schmidt sphere in $\mathcal{M}\left(\mathbf{C}^{d}, \mathrm{C}^{N}\right)$.

Additivity conjectures

An important question is to decide wheter $S_{\text {min }}$ is additive

Question (Additivity conjecture)

If Φ and Ψ are quantum channels, is it true thar
$S_{\text {min }}(\Phi \otimes \Psi)=S_{\text {min }}(\Phi)+S_{\text {min }}(\Psi)$.
This would be implied (taking $p \rightarrow 1$) by the following

$$
\begin{equation*}
\max _{\rho}\|(\Phi \otimes \Psi)(\rho)\|_{p}=\max _{\rho}\|\Phi(\rho)\|_{p} \max _{\rho}\|\Psi(\rho)\|_{p} \tag{3}
\end{equation*}
$$

(1) (Winter) The existence of ε-randomizing channels with low Kraus rank implies that (3) is false for $p>2$.
(2) (Hayden-Winter) Applying Dvoretzky's theorem in $S_{2 p}\left(\mathbf{C}^{d}, \mathbf{C}^{N}\right)$ gives counterexamples to (3) for any $p>1$.
((Hastings) Random counterexamples to the additivity conjecture Uses sharp results on the entropy of $X^{*} X$, where X uniformly distributed on the Hilbert-Schmidt sphere in $\mathcal{M}\left(\mathbf{C}^{d}, \mathbf{C}^{N}\right)$.

Additivity conjectures

An important question is to decide wheter $S_{\min }$ is additive

Question (Additivity conjecture)

If Φ and Ψ are quantum channels, is it true thar
$S_{\text {min }}(\Phi \otimes \Psi)=S_{\text {min }}(\Phi)+S_{\text {min }}(\Psi)$.
This would be implied (taking $p \rightarrow 1$) by the following

$$
\begin{equation*}
\max _{\rho}\|(\Phi \otimes \Psi)(\rho)\|_{p}=\max _{\rho}\|\Phi(\rho)\|_{p} \max _{\rho}\|\Psi(\rho)\|_{p} \tag{3}
\end{equation*}
$$

(1) (Winter) The existence of ε-randomizing channels with low Kraus rank implies that (3) is false for $p>2$.
(2) Hayden-Winter) Applying Dvoretzky's theorem in $S_{2 p}\left(\mathbf{C}^{d}, \mathbf{C}^{N}\right)$ gives counterexamples to (3) for any $p>1$.
(3) (Hastings) Random counterexamples to the additivity conjecture! Uses sharp results on the entropy of $X^{*} X$, where X uniformly distributed on the Hilbert-Schmidt sphere in $\mathcal{M}\left(\mathbf{C}^{d}, \mathbf{C}^{N}\right)$.

[^0]: Call such a subspace a strong Dvoretzky subspace. In the real case, Slenian-Gordon lemma leads to better estimates in the constants

[^1]: Question (Hayden-Leung-Shor-Winter)
 Can we drop the hypothesis 'U subgaussian'

