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1 Introduction

The aim of this paper is to compare different definitions of Hardy-Sobolev spaces on
manifolds. In particular, we consider characterizations of these spaces in terms of
maximal functions, atomic decompositions, and gradients, some of which have been
shown in the Euclidean setting, and apply them to the L; Sobolev space defined by
Hajtasz.

In the Euclidean setting, specifically on a domain 2 C R™, Miyachi [28] shows that
for a locally integrable function f to have partial derivatives 0% f (taken in the sense
of distributions) belonging to the real Hardy space H,(§2), is equivalent to a certain
maximal function of f being in L,(£2). Earlier work by Gatto, Jiménez and Segovia
[14] on Hardy-Sobolev spaces, defined via powers of the Laplacian, used a maximal
function introduced by Calderén [6] in characterizing Sobolev spaces for p > 1 to
extend his results to p < 1. Calder6n’s maximal function was subsequently studied by
Devore and Sharpley [12], who showed that it is pointwise equivalent to the following
variant of the sharp function. For simplicity we only give the definition in the special
case corresponding to one derivative in L, which is what this article is concerned
with. We will call this function the Sobolev sharp maximal function (it is also called
a “fractional sharp maximal function” in [21]):

Definition 1.1. For f € Ly o, define N f by
1
Nf(x)= su — fgldu,
@) = sup s 17 = fildn

where B denotes a ball, r(B) its radius and fp the average of f over B.

Another definition of Hardy-Sobolev spaces on R™, using second differences, is
given by Strichartz [30], who also obtains an atomic decomposition. Further charac-
terizations of Hardy-Sobolev spaces on R™ by means of atoms are given in [8] and [25].
For related work see [20].

Several recent results provide a connection between Hardy-Sobolev spaces and the
p = 1 case of Hajlasz’s definition of L, Sobolev spaces on a metric measure space
(X, d, p):

Definition 1.2 (Hajtasz). Let 1 < p < co. The (homogeneous) Sobolev space Mg 18
the set of all functions u € Lo such that there exists a measurable function g > 0,
g € L,, satisfying

u(z) —uly)| < d(z,y)(g(x) +9(y)) p—a.e. (1)
We equip Z\'/[; with the semi-norm

= inf .
g =, _int gl



In the Euclidean setting, Hajtasz [15] showed the equivalence of this definition with
the usual one for 1 < p < oo. For p € (n/n + 1, 1], Koskela and Saksman [22] proved
that MI} (R™) coincides with the homogeneous Hardy-Sobolev space H; (R™) defined
by requiring all first-order partial derivatives of f to lie in the real Hardy space H,
(the same space defined by Miyachi [28]). In recent work [23|, the Hajlasz Sobolev
spaces M 5, for 0 < s <1 and -~ < p < 0o, are characterized as homogeneous grand
Triebel- leorkln spaces.

In the more general setting of a metric space with a doubling measure, Kinnunen
and Tuominen [21] show that Hajtasz’s condition is equivalent to Miyachi’s maxi-
mal function characterization, extending to p = 1 a previous result of Hajtasz and
Kinnunen [17] for p > 1:

Theorem 1.3 ([17],[21]). For 1 <p < o0

={f€Lijc: Nf €Ly}

with
[l xzy ~ (1N flp-
Moreover, if f € L1)oc and N f € Ly, then f satisfies
|f(z) = f(y)l < Cd(z,y)(N f(z) + Nf(y)) (2)

for u—ae.x y.

We now restrict the discussion to a complete Riemannian manifold M satisfying
a doubling condition and a Poincaré inequality (see below for definitions). In this
setting, Badr and Bernicot [5] defined a family of homogeneous atomic Hardy-Sobolev

spaces H S and proved the following comparison between these spaces:

t,ato

Theorem 1.4. ([5]) Let M be a complete Riemannian manifold satzsfymg a doubling

condition and a Poincaré mequalu‘y (P,) for some ¢ > 1. Then s, HS;ato for

every t > q and therefore HS, — HS,

to,ato

t, ato

for every q < ty,ty < 0.

t1,ato

In particular, under the assumption of the Poincaré inequality (P;), for every ¢ > 1
we can take 1 < ¢ < ¢ for which (P,) holds so all the atomic Hardy-Sobolev spaces

HS, ., coincide and can be denoted by H s ato-
The main result of this paper is to identify this atomic Hardy-Sobolev space with
Hajtasz’s Sobolev space for p = 1:

t,ato

Theorem 1.5. Let M be a complete Riemannian manifold satisfying a doubling con-
dition and the Poincaré inequality (Py). Then

Mll = HS;to



The definition of the atomic Hardy-Sobolev spaces, as well as the doubling con-
dition, the Poincaré inequality, and other preliminaries, can be found in Section 2.
The proof of Theorem 1.5, based on the characterization given by Theorem 1.3 and a
Calderén-Zygmund decomposition, follows in Section 3. In Section 4, a nonhomoge-
neous version of Theorem 1.5 is obtained. Finally, in Section 5, we characterize our
Hardy-Sobolev spaces in terms of derivatives. In particular, we show that the space
of differentials df of our Hardy-Sobolev functions coincides with the molecular Hardy
space of differential one-forms defined by Auscher, McIntosh and Russ [3] (and by Lou
and McIntosh [24] in the Euclidean setting).

2 Preliminaries

In all of this paper M denotes a complete non-compact Riemannian manifold. We
write T,, M for the tangent space at the point z € M, (-, -), for the Riemannian metric
at x, and p for the Riemannian measure (volume) on M. The Riemannian metric
induces a distance function p which makes (M, p) into a metric space, and B(x,r) will
denote the ball of radius r centered at x in this space.

Let T M be the cotangent space at x, ATM the complex exterior algebra, and
d the exterior derivative acting on C§°(AT*M). We will work only with functions
(0-forms) and hence for a smooth function f, df will be a 1-form. In fact, in most
of the paper we will deal instead with the gradient V f, defined as the image of df
under the isomorphism between TM and T, M (see [32], Section 4.10). Since this
isomorphism preserves the inner product, we have

{df df)e = (Vf, V) (3)

Letting L, := L,(M, p), 1 < p < 0o, and denoting by |-| the length induced by the
Riemannian metric on the tangent space (forgetting the subscript z for simplicity), we
can define |V f||, :== |||V fl|lz, ) and, in view of (3), [|df ||, = ||V fl|,. If d* denotes
the adjoint of d on Lo(ATM), then the Laplace-Beltrami operator A is defined by
dd* + d*d. However since d* is null on 0-forms, this simplifies to Af = d*df on
functions and we have, for f,g € C5°(M), using (3),

<Af,g>L2(M>z/M(Af,gMdu:/M(df, dg)zdp = (V £,V g) L)

We will use Lip(M) to denote the space of Lipschitz functions, i.e. functions f
satisfying, for some C' < oo, the global Lipschitz condition

1f(x) — f(y)] < Cp(x,y) Va,ye M.

The smallest such constant C' will be denoted by || f||Lip- By Lipg(M) we will denote
the space of compactly supported Lipschitz functions. For such functions the gradient
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V f can be defined p-almost everywhere and is in Lo, (M), with ||V f|le = || f|Lip (see
|7] for Rademacher’s theorem on metric measure spaces and also the discussion of
upper gradients in [18], Section 10.2).

2.1 The doubling property

Definition 2.1. Let M be a Riemannian manifold. One says that M satisfies the
(global) doubling property (D) if there exists a constant C > 0, such that for all
x € M, r >0 we have

u(B(z,2r)) < Cu(B(z,r)). (D)

Observe that if M satisfies (D) then
diam(M) < oo & p(M) < o0

(see [1]). Therefore if M is a complete non-compact Riemannian manifold satisfying
(D) then u(M) = cc.

Lemma 2.2. Let M be a Riemannian manifold satisfying (D) and let s = log, Cp).
Then for all x,y € M and 6 > 1

p(B(xz,0R)) < CO°u(B(z, R)). (4)

Theorem 2.3 (Maximal theorem, [9]). Let M be a Riemannian manifold satisfying
(D). Denote by M the non-centered Hardy-Littlewood maximal function over open

balls of M, defined by
Mf(x) = sup |f]s,

B ball
r€EB

1
where fg ::][ fdu = —/ fdu. Then for every 1 < p < oo, M s L, bounded
E n(E) Je

and moreover it is of weak type (1,1). Consequently, for r € (0,00), the operator M,
defined by

M, f(x) = M) @)
is of weak type (r,r) and L, bounded for all r < p < oco.
Recall that an operator 7' is of weak type (p, p) if there is C' > 0 such that for any
a >0, p({z: |Tf(x)| > a}) < Sl

2.2 Poincaré inequality

Definition 2.4 (Poincaré inequality on M). We say that a complete Riemannian
manifold M admits a Poincaré inequality (P,) for some q € [1,00) if there exists



a constant C' > 0 such that, for every function f € Lipy,(M) and every ball B of M
of radius r > 0, we have

1/q 1/q
(][ - fB|qdu) <cr (][ IVfquu) . (P,)
B B

We also recall the following result

Theorem 2.5. ([16], Theorem 8.7) Let u € M} and g € Ly such that (u,g) satisfies
(1). Take 1 <g<landA>1. Then (u, g) satisfies the following Sobolev-Poincaré
inequality: there is a constant C' > 0 depending on (D) and X, independent of (u, g)

such that for all balls B of radius r > 0,

. 1/q* 1/q
(flu—ualran) < (f ), )
B AB
Applying this together with Theorem 1.3, for u € ]\411 we have

(ﬁ} lu — uBy‘f‘du) " < Cr (]éB(Nu)qd,u) v (6)

2.3 Comparison between N f and |V f]

The following Proposition shows that the maximal function N f controls the gradient
of f in the pointwise almost-everywhere sense. In the Fuclidean setting this result
was demonstrated by Calderon (see [6], Theorem 4) for his maximal function N(f,z)
(denoted by f* in Section 4.2 below), which was shown to be pointwise equivalent to
our N f by Devore and Sharpley (see also the stronger inequality (5.5) in [28], which
bounds the maximal function of the partial derivatives).

Recall that if u € C§°(M), given any smooth vector field ® with compact support,
we can write, based on (3) and the definition of d*,

where ¢* = %.

for all balls B.

[ @y = [ @ wnhudu= [ aldn)dg

M

where wg is the 1-form corresponding to ® under the isomorphism between the tangent
space T, M and the co-tangent space T M (see [32], Section 4.10). Denoting d*we by
div ®, we can define, for u € L joc, the gradient Vu in the sense of distributions by

(Vu,®) := —/Mu(div ®)du (7)
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for all smooth vector fields ® with compact support (see [27]). When M is orientable,
div ® is given by *d*we with * the Hodge star operator (see [32]), and in the Euclidean
case this corresponds to the usual notion of divergence of a vector field.

Proposition 2.6. Assume that M satisfies (D), and suppose u € Ly 1o with Nu € L.
Then Vu, initially defined by (7), is given by an Ly vector field and satisfies

|IVu| < CNu p— a.e.

Proof. Fix r > 0. We begin with a covering of M by balls B; = B(z;,7), i = 1,2...
such that

1. M C U;B;,

2. Y lgp, < K.

Note that the constant K can be taken independent of r. Then we take {p;}; a
partition of unity related to the covering {B;}; such that 0 < ¢; < 1, ¢, = 0 on
(6B,)°, i > con 3B; and > ,¢; = 1. The ¢;’s are C/r Lipschitz. For details
concerning this covering we refer to [13], [21], [19], [10]. Now let (see [13], p. 1908 and

[21], Section 3.1)
) = Z p;(x)usp; - (8)

The sum is locally finite and defines a Lipschitz function so we can take its gradient
and we have, for p-almost every x,

V(@) = 1) Vs(@)uss,|
J
> Vi) (uss, — unon)
{j:.TEGBj}
1
< CK—f U — Up(z,on|d1t
,97)
< CKNu(z). 9)
We used the fact that Y V¢; = 0 and that for z € 6B;, 3B; C B(x,9r).

To see that u, — u p— a.e. and moreover in L; when r — 0 (see also [13],p. 1908),
write, for z a Lebesgue point of u,

Jur (@ )| < Z pj(@)|u(@) —usp | < Y fule) = usp,| < CKrM(Nu)(z)
{j:l'EGBj}
where 5 < ¢ < 1. The last inequality follows from estimates of |u(x) — up(.or| and

|usp, — UB(on|, T € 65;, which are the same as estimates (12)-(14) in the proof of
Lemma 1 in [21], using the doubling property and (6).
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Now let @ be a smooth vector field with compact support. Using the convergence
in Ly, the fact that div ® € C{°(M), and the estimate on |Vu,| above, we have

!/M<Vu,<1>>xdm = y/Mu(div ®)dyl

= | limo u(div ®)dp|

T — M

Slimsup/ |VUTH‘I>|d,u§CK/|Nu||<I>|dM.
M

r—0

Taking the supremum of the left-hand-side over all such ® with |®| < 1, we get that
the total variation of u is bounded (see [27], (1.4), p. 104), i.e.

| Dul(M) < Cl[Nul[y ) < 00,

hence u is a function of bounded variation on M, and |Du| defines a finite measure
on M. We can write the distributional gradient as

(Vu, ®) = /M (X, ®),d|Dul

for some vector field X, with | X,| = 1 a.e. (see again [27], p. 104 where this is expressed
in terms of the corresponding 1-form o). Moreover, from the above estimates and the
fact that Nu € Ly, we further deduce that the measure |Du| is absolutely continuous
with respect to the Riemannian measure p, so there is an L; function g such that we
can write Vu = ¢X,,, and |Vu| < CNu, p — a.e. ]

Corollary 2.7. Assume that M satisfies (D). Then
M} c Wi
Proof. The result follows from Proposition 2.6 and Theorem 1.3. O

2.4 Hardy spaces

We begin by introducing the maximal function characterization of the real Hardy
space H.

Definition 2.8. Let f € Ly1o.(M). We define its grand mazimal function, denoted
by fT, as follows:

fr(z) == sup
p€T1 ()

/fsodu‘ (10)



where Ti(x) is the set of all test functions ¢ € Lipy(M) such that for some ball
B := B(xz,r) containing the support of i,
Vil <

[¥]lo < (11)

L N
pu(B)’ ru(B)

Set Hymax(M) = {f € Lijoo(M) : f+ € Li(M)}.

While this definition assumes f to be only locally integrable, by taking an appro-
priate sequence ¢, € 71(x), the Lebesgue differentiation theorem implies that

/fsos
SO Hl,maX(M) - Ll(M>

Another characterization is given in terms of atoms (see [10]).

|f(x)| = lim

e—0

< fH(x) for p-a.e. x, (12)

Definition 2.9. Fiz 1 <t < o0, % + tl, = 1. We say that a function a is an Hi-atom
of

1. a is supported in a ball B,

2. |lall; < u(B)"¥, and

3. [adu=0.

We say f lies in the atomic Hardy space Hy o if f can be represented, in Li(M), by

F=> N (13)

or sequences of Hy-atoms {a;} and scalars {\;} € ¢*. Note that this representation
J q f j J P
s not unique and we define

1111 o 2= D A
where the infimum is taken over all atomic decompositions (13).
A priori this definition depends on the choice of t. However, we claim
Proposition 2.10. Let M be a complete Riemannian manifold satisfying (D). Then
Hiato(M) = Hi max (M)

with equivalent norms

11110 2 1712
(where the constants of proportionality depend on the choice of t).
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In the case of a space of homogeneous type (X, d, u1), this was shown in [26] (Theo-
rem 4.13) for a normal space of order o and in [31] (Theorem C) under the assumption
of the existence of a family of Lipschitz kernels (see also the remarks following The-
orem (4.5) in [10]). For the manifold M this will follow as a corollary of the atomic
decomposition for the Hardy-Sobolev space below. We first prove the inclusion

Hiato(M) C Hymax(M). (14)

Proof. We show that if f € Hj a0 then f* € L. Let ¢t > 1 and a be an atom supported

in a ball By = B(xg,79). We want to prove that a™ € L;. First take x € 2B,. We

have a*(z) = sup |fB agodu| < CM(a)(xz). Then by the L;i-boundedness of the
)

Py (x
Hardy-Littlewood maximal function for ¢ > 1 (Theorem 2.3) and the size condition
on a,

1/t
[ 1o @< ) ([ ) < Gt
QB() 2BO
< Cou(Bo)"" |lalle < C. (15)

Note that the constant depends on t due to the dependence of the constant in the
boundedness of the Hardy-Littlewood maximal function, which blows up as t — 17.
Now if x € M \ 2By, there exists k € N* such that x € Cy(By) := 281 By \ 2 B,.
Let ¢ € T1(z) and take a ball B = B(x,r) such that ¢ is supported in and satisfies
(11) with respect to B. Using the moment condition for a and the Lipschitz bound
/ a(y)(e(y) — e(xo))dp(y)
BNB

on ¢, we get
/agpdu' =
B
d(y> 33'0)

gcémﬁw»aﬁgww

To
<C .
= T/w(B)HaHl

Note that for the integral not to vanish we must have BN By # (). We claim that this
implies

r > 281rg and 2" B, C 8B. (16)
To see this, let y € BN By. Then r > d(y,z) > d(x, z0) —d(y, zo) > 2Frg—re > 2 1r,.
Thus if d(z, z9) < 2" ry then d(z,x) < d(z,z0) +d(z, 1) < 28Frg +28Fry < 8 and
we deduce that 271 B, ¢ 8 B. We then have

u(21By) < O8'(B)
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by (4). Using this estimate and the fact that ||al|; < 1, we have

o |(x)dp = /
/:E¢QBO Z Ck BO

k>1
8521 k
< Cllall Y~y O (B0)
k,‘>1
S 088221—k
k>1
<C.

Thus a™ € Ly with ||a™]; < C}.
Now for f € Hj a0, take an atomic decomposition of f as in (13). By the conver-
gence of the series in L, we have, for each x and each ¢ € 7;(z),

‘ / fs@du' <

so fT is pointwise dominated by Y |\;|a;, giving

I < >0 lllad Tl < Gy Il
J

J

ajm‘ < 3 Inlat (@)

Taking the infimum over all the atomic decompositions of f yields || f*]1 < Cil| flm,-
[l

The proof of the converse, namely that if f* € L; then f € Hj a0, relies on an
atomic decomposition and will follow from the proof of Proposition 3.4 below.

2.5 Atomic Hardy-Sobolev spaces

In [5], the authors defined atomic Hardy-Sobolev spaces. Let us recall their definition
of homogeneous Hardy-Sobolev atoms. These are similar to H; atoms but instead of
the usual L; size condition they are bounded in the Sobolev space W

Definition 2.11 ([5]). For 1 <t < oo, + + 1

homogeneous Hardy-Sobolev (1,t)-atom if

7 = 1, we say that a function a is a

1. a is supported in a ball B,
2. ally = IValle < p(B)~?, and

3. [adu=0.
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They then define, for every 1 < t < oo, the homogeneous Hardy-Sobolev space
H Stl?ato as follows: f € H Stl’ato if there exists a sequence of homogeneous Hardy-

Sobolev (1,t)-atoms {a;}; such that
F=Y_Na (17)
J
with > i |\;| < co. This space is equipped with the semi-norm

1y = inf S7 1AL
J

where the infimum is taken over all possible decompositions (17).

Remarks 2.12. 1. Since condition 2 implies that the homogeneous Sobolev W}

semi-norm of the atoms is bounded by a constant, the sum in (17) converges in
1

WL and therefore we can consider HS, ..,

as its subspace.

2. Since we are working with homogeneous spaces, we can modify functions by
constants so the cancellation conditions are, in a sense, irrelevant. As we will
see below, and when comparing to other definitions in the literature (see, for
example, [25]), condition 3 can be replaced by one of the following:

3. la|ly <r(B), or
3. |l < r(B)u(B)~7,

where r(B) is the radius of the ball B. Clearly condition 3" implies 3', and
conditions 2 and 3 imply 3" (respectively 3" ) if we assume the Poincaré inequality
(Py) (respectively (Py)). It is most common to consider the case t = 2 under the
assumption (Py).

3. As mentioned in the introduction, from Theorem 1.4 we have that under (P;)

all the spaces H.Siato can be identified as one space HSitO. As we will see, in

this case the atomic decomposition can be taken with condition 3" instead of 3.

3 Atomic decomposition of M} and comparison with
. 1
HS

t,ato

C M}. While
1
t,ato

We begin by proving that under the Poincaré inequality (P)), HS.

ato
. . 2 . :
under this assumption the space HS,,, is equivalent to any one of the spaces H.S
defined above, if we want to consider the norms we need to fix some ¢ > 1.

12



Proposition 3.1. Let M be a complete Riemannian manifold satisfying (D) and
(Pr). Let1 <t < oo and a be a homogeneous Hardy-Sobolev (1,t)-atom. Then
a € M} with HaHMll < C4, the constant C' depending only on t, the doubling constant

and the constant appearmg in (P), and independent of a.
c M} with

1y < Collf

Consequently s,

t,ato

Proof. Let a be an (1,t)-atom supported in a ball By = B(xq,r). We want to prove
that Na € L;. For x € 2B, we have, using (P;),

Na(z) = sup
B:2eBT

)iJw—@wugcsmnfnmuu=CWMVme

B:zeBJB

Then, exactly as in (15), by the L; boundedness of M for ¢ > 1 (with a constant
depending on t), and properties 1 and 2 of (1,t)-Hardy-Sobolev atoms,

1/t
t/ Na(z)|du < Cu(Bo)"" (/’<A4ﬂva»%w) < Cou(Bo)" | Vall, < C.
2B, 2By

Now if 2 ¢ 2By, then there exists k € N* such that x € Cy(By) := 281 B, \ 28 By.
Let B = B(y,r(B)) be a ball containing x. Then

S 1 el = s (fgmgo“1"GB“”‘*‘/LHBSV””d“>

1
< BB Sy 1 )

From (16) we have that BN By # () implies r(B) > 28"1rg and p(2¥1 By) < C8°u(B).
This, together with the doubling and Poincaré assumptions (D) and (P;), the cancel-
lation condition 3 for a and the size condition 2 for Va, yield

Na(z) < 5 & / laldu < 3 & / \Valdy < 3&
= 26Ty u(21Byg) Jp, M= o1 2k By) 5 M= ak1B,)

Note that at this point we could have used condition 3’ (see Remarks 2.12) instead of
conditions 2,3, (D) and (P).
Therefore

1
Nal(x)d / Nal|(z)dp < C8? 2” k“/ ——du(x
/a:géZBol ()= Z Cyo(Bo) [Nal(z)du Z (Bo) (281 By) ()

k>1 k>1 Ck

<

< C8° Z o~k — O,

k>1

13



Thus Na € Ly with || Nal|; < Cs,.
Now if f € s,

tator take an atomic decomposition of f: f = > Aja; with a;
(1,t)-atoms and } . [\;| < oco. Then the sum »_; A\;Na; converges absolutely in L; so

by Theorem 1.3 the sequence of functions f; = Z?Zl Aja; has a limit, ¢, in the Banach
space ]\/[11 By Proposition 2.6, this implies convergence in Wll. Since (as pointed out
in Remarks 2.12) the convergence of the decomposition f = i Aja; also takes place

in Wf, we get that f = g in Wll. This allows us to consider f as a (locally integrable)
element of M, take N f and estimate

INFll <D IIINag e < G Il
j j

Taking the infimum over all the atomic decompositions of f yields [N f|l; < Cy[|f]| ;o1 -
E] (o}

Remark 3.2. As pointed out in the proof, Proposition 3.1 remains valid if we take,
for the definition of a (1,t)-atom, instead of condition 3 of Definition 2.11, condition
3" or 3" of Remarks 2.12.

1

+ ato> We establish an atomic

Now for the converse, that is, to prove that Ml1 CHS
decomposition for functions f € M11 To attain this goal, we need a Calderon-
Zygmund decomposition for such functions. We refer to [2] for the original proof of

the Calderon-Zygmund decomposition for Sobolev spaces on Riemannian manifolds.

Proposition 3.3 (Calderén-Zygmund decomposition). Let M be a complete Rieman-
nian manifold satisfying (D). Let f € M, 71 <q¢<1and a>0. Then one can
find a collection of balls { B;};, functions b; € W} and a Lipschitz function g such that

the following properties hold:

\Vg(z)| < Ca  forp—ae xe M, (19)

Q=

supp b; C By, [|bill1 < Cau(Bi)rs, [[Vbill, < Capu(B;)q,
C
Z#(Bi) < E/Nfd,uv (20)

and

> xm <K (21)

The constants C and K only depend on the constant in (D).
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Proof. Let f € Mll, +7 <¢<1land a>0. Consider the open set

Q={z: M,(Nf)(z)> a}.
If Q =0, then set
g=1Ff, b =0 forall:

so that (19) is satisfied according to the Lebesgue differentiation theorem. Otherwise

u(@ < ¢ [ M
<¢ | gy
g%/ Nfdp < oo. (22)

We used the fact the M is L/, bounded since 1/¢ > 1 and Theorem 1.3. In particular
Q#M as u(M) = +o00.

Let F' be the complement of €. Since € is an open set distinct from M, let {B;};
be a Whitney decomposition of € (see [10]). That is, the B; are pairwise disjoint, and
there exist two constants C'y > (] > 1, depending only on the metric, such that

1. Q=U;B; with B; = C1 B, and the balls B; have the bounded overlap property;
2. r=1r(B) = %d(xi, F) and z; is the center of B;;
3. each ball B; = CyB; intersects F (Cy = 4C, works).

For z € ), denote I, = {i: 2z € B;}. By the bounded overlap property of the balls
B;, we have that #I, < K, and moreover, fixing k € I, ri <7, <3r; and B; C 7By
for all i € I,. '

Condition (21) is nothing but the bounded overlap property of the B;’s and (20)
follows from (21) and (22). Note also that using the doubling property, we have

/Bl_ [N f|*dp < Cu(Bz)][

i

(N fl%dp < p(B)MGIN f)(y) < Cau(B;)  (23)

for some y € B; N F, whose existence is guaranteed by property 3 of the Whitney
decomposition.
Let us now define the functions b;. For this, we construct a partition of unity {x;}:
of Q subordinate to the covering {B;};. Each x; is a Lipschitz function supported in
C
B; with 0 < y; <1 and [|[Vxilleo < — (see for example [13], p. 1908).
T

(2
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We set b; = (f — ¢;)x; where ¢; := @f& fxidp and x;(B;) means fBi Xidj,

which is comparable to p(B;). Note that by the properties of the x; we have the

trivial estimate

bl < /If—czldu</ e+ 2 /|f|d <C [ 15110

but we need a better estimate, as follows:

1
s

[ (@) = ) ut)into)| duo

< ) L @ - s
1(Bi)

1/q
< Cr; (/B_INflqdu) 1(B;)

< CriMy(Nf)(y)u(Bs)
< Criap(B;),

(24)

(25)

as in (23). Here we have used the Sobolev-Poincaré inequality (6) with A = 4 and the

fact that ¢* > 1.

Together with the estimate on ||b;||1, we use the fact that |V f| is in L; (see Propo-

sition 2.6) to bound ||Vb;]|; and conclude that b; € W:

IVbi] < / f — al [Vl + / 1V f|di
Bi Bi

1 l/q
<L) (][ |Nf|qdu) + [ 19l
T 4B; B;
< Cap(B) + / 1V fldp < .
B;

(26)

Similarly, we can estimate b; in the Sobolev space qu; note again that by Propo-

sition 2.6, |V f| is in L; and can be bounded pointwise u-a.e. by N f:

IVbillg <] I( - Cz IVxilllg + 1V FIxillg

| /\

/q 1/q
<c ( INfquu) W(B) + ( /!Nfl"du>
Bi Bi

16
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< Cau(B;)"1 (27)

by (23).

Set now g = f — ) .b;. Since the sum is locally finite on 2, g is defined almost
everywhere on M and g = f on F. Observe that ¢ is a locally integrable function on
M. Indeed, let ¢ € Lo, with compact support. Since d(z, F') > r; for = € supp b;, we

obtain
/Z|b||so|cm< /Z’ i) sup (dle ) o(o)])

Hence by (25) and the bounded overlap property,

| 3 el < 0’38 sup (. P < Ot sup (e, (o))

zeM reM

Since f € L1 o, we conclude that g € Ly joc.
It remains to prove (19). Indeed, using the fact that on © we have > x; = 1 and
> Vx =0, we get

Vg=Vf[-— Z Vb;
— QU XIVI =~ )V

From Proposition 2.6, the definition of F' and the Lebesgue differentiation theorem,
we have that 1p|V f| <1pNf < «a, u—a.e. We claim that a similar estimate holds for

h = Z(f — ) Vxi,

i.e. |h(z)] < Ca for all x € M. For this, note first that by the properties of the balls
B; and the partition of unity, h vanishes on F' and the sum defining A is locally finite
on ). Then fix z €  and let By, be some Whitney ball containing x. Again using the

fact that Z Vxi(z) = 0, we can replace f(z) by any constant in the sum above, so

h(z) = GZI <]{B fdu — cz-) V().

For all ¢,k € I, by the construction of the Whitney collection, the balls B; and By
have equivalent radii and B; C 7Bj. Thus

1
a—1 f du‘ < /
]éBk Xi(Bi) B;

17
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5][ = fomldp
7By,

1/q
< (][ !Nf\"du>
TABy

S arg. (29)
We used (D), (6) , xi(B;) ~ u(B;) and (23) for 7By. Hence

h(z)] < Zam(m)‘l < CKa. (30)

[]

Proposition 3.4. Let M be a complete Riemannian manifold satisfying (D). Let

fe ]\411 Then for all 3 < q <1, ¢ = %}, there is a sequence of homogeneous

(1,¢*) Hardy-Sobolev atoms {a;};, and a sequence of scalars {\;};, such that

F=> Na; in Wl and Y N < Collflln-
j

Consequently, M} C HS;* ato With | fll ot < Collfllyp-
’ g*,ato 1
Remark 3.5. Note that for the inclusion M} C HS;*7ato, we do not need to assume

any additional hypothesis, such as a Poincaré inequality, on the doubling manifold.

Proof of Proposition 3.4. Let f € Ml1 We follow the general scheme of the atomic
decomposition for Hardy spaces, found in [29], Section 111.2.3. For every j € Z*, we
take the Calderén-Zygmund decomposition, Proposition 3.3, for f with a = 2/. Then

f=¢+) b

with b{ . ¢’ satisfying the properties of Proposition 3.3.
We want to write

f=Y (" =¢) (31)

in VVl1 First let us see that ¢/ — f in as j — oo. Indeed, since the sum is locally
finite we can write

V(s = Dl = 193 el < 3 9l

18



By (26),

S < CR2u() + K [ 1Vsldu
i &
— [+ 11, (32)

When j — oo, I; — 0 since . 2/u(Q;) ~ [ My(Nf)du < oo. This also implies
M, (N f) is finite p-a.e., hence (Q; = 0 so II; — 0, since |V f| € L.

When j — — oo, we want to show ||[Vg;|; — 0. Breaking Vg up as in (28), we
know that

V| = / 1|V /| < / Nf—0, (33)
Fi (Nf<27)

since N f € Ly. For the other part we have, by (30),

/Q e / h(x)] < CK2u(0) — 0 (34)

from the convergence of > 27,()), as above. ’
Denoting ¢/*! — g7 by ¢/, we have supp / C §; so using the partition of unity {x7}
corresponding to the Whitney decomposition for Q;, we can write f = ) ; LU x in

W Let us compute ||[#/ ]|l . We have
q*

V(¢x}) = (V&)X + V.

. . - 1/q* .
From the estimate ||V¢? || < C27 it follows that <fBj ALK d,u> ! < C2’, while
k

OVxi=| Y. (== D>, (F=ddT |V (35)

i:B]NBJ#0 1:BINB] T £0

Observe that since Q2,41 C €, for a fixed k, the balls Blj+1 with B,z N Ble # () must
have radii 7/ *' < ¢r) for some constant ¢. Therefore B/*' < (B]) = (1 + 2¢)B;.
Moreover, by the properties of the Whitney balls, given A > 1 we can take ¢ sufficiently
large so that (B})" contains AB/ for all B/ intersecting B]. Using this fact as well as
(6) and (23), and proceeding in the same way as in the derivations of (25) and (29),
we get

()" / 16V
Bj

i< KT [ (gl Y gl )
k % 1

<Ky /j!f—cif

‘ . BY
#BInBIAp " i

q*du

19



+ Kq*_l [Bj), Z]lBlj-‘rlLf - f(Bi)/ + f(Bi)l - Clj+1|q*dﬂ (36)
k l

SKC Y (I (B + K (12 (B
i:BiﬂBg#@
S KT (r2)" u(BY)).

(Lo

The ¢ Xi’s seem to be a good choice for our atoms but unfortunately they do
not satisfy the cancellation condition. If we wanted to get atoms with property 3’
(see Remarks 2.12) instead of the vanishing moment condition 3, we could use (25)
to bound the L; norm of ¢ XZ;, then normalize as below. However, if we want to
obtain the vanishing moment condition, we need to consider instead the following
decomposition of the #’s: ¢/ = 3", ¢1 with

o= (f—exi =Y (f =" J+ch< 7 (38)

l

Therefore

1
*

) q < CK?2. (37)

where
1 z+1 J+1 ]
B /B?“U e

First, this decomposition holds since ), Xf; = 1 on the support of X{ 1 and Yk Chl =
0. Furthermore, the cancellation condition

/ éidu: 0
M

follows from the fact that fM f cl)x 'du = 0 and the definition of ¢;;, which imme-

diately gives [ ((f — AN = crax] ) dp = 0.
Noting that £ is supported in the ball (B})’ (see above), let us estimate || V41|, . (B
Write

V= (VXL (f =)Vl =D (f =™ vxixd

l

— Z — ™IV = (VP o, + D eV
l

= Vf( — o, )X+ ((f =) — Z(f — "XV

_Z f— CJ+1 VXH-I J +ZCMVX]+1'
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Since the first term, concerning the gradient of f, is supported in B,i N Fj41, we can
use Proposition 2.6, the definition of Fj;; and the Lebesgue differentiation theorem
to bound it, namely

[ I9A17 dp < 257 ().

By

Recalling (35), we see that the estimate of the L, norm of the second term is given
by (37). The third term can be handled by the pointwise estimate (30):

1N = ™V Nl < CR27H (B
l

For >, CMVX{'H, note first that ¢;; = 0 when Bi N Bf“ = () and |egy| < C2jrljJrl
thanks to (25). By the properties of the partition of unity, this gives |z, Vi | < C27
for every [, and as the sum has at most K terms at each point we get the pointwise
bound
| Z Ck,le{—H’ < CK?Y,
1

from which it follows that

1Y eVl < CE2p((BLY).
l

Thus ' ' '
IVE || < 727 u((BL))7. (39)

We now set aj, = v~ 1277 u((BL)) "¢, and \jx = v2/u((B])"). Then f = >k Akl
with ai being (1, ¢*) homogeneous Hardy-Sobolev atoms and

J.k
< 7’22‘7#({33 P M(Nf)(z) > 27})

< C’//\/lq(Nf)dM
< ClINFll ~ N fll sy

We used that u((B])) ~ ,u(B_i) thanks to (D), and the fact that the B;i are disjoint.
[
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Remark 3.6. As pointed out in the proof following (37), we can get an atomic decom-
position as in Proposition 3.4, but replacing the vanishing moment condition 3 of the

atoms from Definition 2.11 by condition 3' in Remarks 2.12. This does not assume a
Poincaré inequality.

Conclusion: Let M be a complete Riemannian manifold satisfying (D). Then

L forall S5 <q <1,

1
g*,ato"

M} c HS
2. (Theorem 1.5) If moreover we assume (P;), then

M= HS,

t,ato

for all ¢t > 1.

4 The nonhomogeneous case

We begin by recalling the definitions of the nonhomogeneous versions of the spaces
considered above.

Definition 4.1. ([16]) Let 1 < p < oo. The Sobolev space MI} 1s the set of all functions
u € L, such that there exists a measurable function g > 0, g € L,, satisfying

u(z) —u(y)| < d(z,y)(g(x) +9(y)) p—a.e. (40)
That is, My = L, N Mg. We equip M, with the norm

= inf :
lullg = lullp+_inf gl

From Theorem 1.3, we deduce that for 1 < p < oo,
My={feL,: NfeL,}

with equivalent norm

[ llag = [[fllp + INFlp-

Definition 4.2. We define the Hardy-Sobolev space Mll as the set of all functions
u € Hj max such that there exists a measurable function g > 0, g € Ly, satisfying

u(z) —u(y)| < d(z,y)(g(x) +9(y)) p—a.e. (41)
We equip ZT/[/l1 with the norm

— — ||yt inf
lully = u*lh+ | inf gl

We have Mll = Hj max N M}
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Again by Theorem 1.3,
M} = {f € Hypax: Nf € L1},
with equivalent norm
1Az = 1T+ INfll
By (12) and Corollary 2.7, we have

M} c M} c Wi

In [5], the authors also defined the nonhomogeneous atomic Hardy-Sobolev spaces.
Let us recall their definition.

Definition 4.3 ([5]). For 1 <t < oo, we say that a function a is a nonhomogeneous
Hardy-Sobolev (1,t)-atom if

1. a s supported in a ball B,

1
2. Nlallw, := llalle + IValls < u(B)"7,
3. [adp=0.

They then define, for every 1 < t < 0o, the nonhomogeneous Hardy-Sobolev space
HS} ., as follows: f € HS},, if there exists a sequence of nonhomogeneous Hardy-

Sobolev (1,t)-atoms {a;}; such that f = > Aja; with > [A;] < oo. This space is
equipped with the norm
If sy, = mf Y I,
J

where the infimum is taken over all such decompositions.
We also recall the following comparison between these atomic Hardy-Sobolev
spaces.

Theorem 4.4. (|5]) Let M be a complete Riemannian manifold satisfying (D) and a
Poincaré inequality (P,) for some ¢ > 1. Then HS} ., C HSL ., for everyt > q and
therefore HS}, .., = HS,,

ta,ato

ato

for every q < t1,ty < 0.

,ato

4.1 Atomic decomposition of ]\711 and comparison with H Stl,ato

C ]/\\/[/11
Proposition 4.5. Let M be a complete Riemannian manifold satisfying (D) and (P).

Let 1 <t < oo and a be a nonhomogeneous Hardy-Sobolev (1,t)-atom. Then a € Mll
with ||a||]\711 < (4, the constant depending only on t, the doubling constant and the

C Mll with

As in the homogeneous case, under the Poincaré inequality (P;), H Stl,ato

constant appearing in (Py) , but not on a. Consequently HS;

15z < Cullf s

ato

,ato
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Proof. The proof follows analogously to that of Proposition 3.1, noting that in the
nonhomogeneous case every Hardy-Sobolev (1, ¢)-atom a is an H; atom and so by (14)
is in Hj max With norm bounded by a constant. ]

Now for the converse, that is, to prove that M}! ¢ H S} ato> We establish, as in the

ato»
homogeneous case, an atomic decomposition for functions f € M| using a Calderon-
Zygmund decomposition for such functions.

Proposition 4.6 (Calderon-Zygmund decomposition). Let M be a complete Rieman-
nian manifold satisfying (D). Let f € M, 7 <q¢<1and a>0. Then one can
find a collection of balls { B;};, functions b; € W} and a Lipschitz function g such that

the following properties hold:

lg(x)| + |Vg(z)| < Ca forp—aex e M,
suppb; C By, ||bi][1 < Cap(By)ry, || b + [Vbi| || < CO&M(Bi)%>

(B < - / (F* + Nf)dp,

and ZXBi <K.

The constants C and K only depend on the constant in (D).

Proof. The proof follows the same steps as that of Proposition 3.3. We will only
mention the changes that occur due to the nonhomogeneous norm. Let f € M7,

77 <¢ <1and a > 0. The first change is that we consider the open set

Q={z: M,(f* + Nf)(a) > a}.

We define, as in the homogeneous case, the partition of unity y; corresponding to
the Whitney decomposition {B;}; of Q, the functions b; = (f — ¢;)x; with ¢ =
@ fBi fxidu, and g = f — > b;. In addition to the previous estimates (25) - (27)
for b; and Vb;, we need here to estimate [|b;||,.

We begin by showing that for z € €,

leil < Ca (42)

for every i € I,. Set ¢; = ’}/Xi)((éi).
Xi(B;) ~ u(B;), we see that we can choose v (independent of i) so that ¢; € 77(y)

and thus

From the properties of y;, in particular since

leil <771 fH(y) forall y € B;.
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Recall that the ball B; = C,B; has nonempty intersection with F. Taking yo € FNB;,
we get, by integrating the inequality above,

< (f i(f*)qdu)q <c (f(f*)qd/J); < CM,(F*)(w) < Car

B;

Combining this with (12), we have

It < ([ 1 =a) < (L 1) st + en(sat < conts
Bi Bi
For g, we need to prove that ||g||c < Ca. We have
9= flr+ Z CiXi- (43)

For the first term we have |f| < f* < M,(f*) at all Lebesgue points and thus
|flp| < a p-a.e. For the second term, thanks to the bounded overlap property and
(42), we get the desired estimate. O

Proposition 4.7. Let M be a complete Riemannian manifold satisfying (D). Let
f € M. Then for all 77 < ¢ <1, there is a sequence of (1,q") (q* = %) nonhomo-
geneous atoms {a;};, and a sequence of scalars {\;};, such that

=Y Na; i Wi, and Y N < Coll fllgn
j

Consequently, Mll C HSy 1o with || f]l st
B q*

< Cyll -

Proof. Again, we will only mention the additional properties that one should verify
in comparison with the proof of Proposition 3.4.

First let us see that (31) holds in the nonhomogeneous Sobolev space W. We
already showed convergence in the homogeneous I/Vl1 norm so we only need to verify
convergence in L;. By (24)

,ato

lg? — fll < S 110 < CZ/ILBg|f|dM < CK/Q | fldp — 0, (44)

as j — oo. Here we’ve used the properties of the X{ , the bounded overlap property of
the B/, the fact that f € Ly and that ()€; = 0 since My (f* + Nf) is finite p-a.e.
Taking now j — — oo, we write, by (43), (42), and the bounded overlap property

/ ] < / I+ / Sl < / M,(f*) + CKY|09] 0. (45)
Fi - (Mo (f+)<27)
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For the functions ¢/ = ¢! — ¢/, we have

1
P2

17Xl < C2u(BY)

since by Proposition 4.6, ||¢7||c < C27. This estimate also applies when we replace
07y by the moment-free “pre-atoms”

b= (f - d)xi Z(f A+ ZCMXZ

1 _ ZXJ+1 ka chJrl ]+1 ] ch lX]+1~

The first term, involving f, is flp, +1Xk which is bounded by 2/*! since |f| < f+ <
My (f*) p-a.e. For the second and third terms, we use (42) and the bounded overlap
property of the B/™". Finally, that

1 1+1\. j+1
[en.] XfH(BIJH) /Bl”l(f ¢ )X dﬂ 2
o
follows by arguing as in the proof of (42), since —X_,-ﬁ (B%“) can be considered as a
1 !

multiple of some ¢ € 71(x) for every = € B{H, due to the fact that ]V)d%\ < (ri)_l <
(r7™~" when B/ 0 B] # 0.
Thus we obtain the stronger L., estimate

1] < C2 (46)

from which we conclude, as ¢, is supported in the ball (Bl) = (1 + 2¢)Bj, that
1l < C2n(BY)*
The rest of the proof is exactly the same as that of Proposition 3.4. O

Now we can state the converse inclusion from Theorem 2.10:

Corollary 4.8. Let M be a complete Riemannian manifold satisfying (D). Then
Hl,max(M) C Hl,ato(M)

with
||fHH1,ato ~ ”f+||17

for any choice of t in the definition of Hy atoms, 1 <t < oo, with a constant inde-
pendent of t.
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Proof. Assuming f* € L; and letting
Q= {z: My(f)(x) > 27},

we follow the steps outlined in the proofs of Propositions 4.6 and 4.7, which use only
the maximal function f*, while ignoring the estimates on the gradients from the
proofs of Proposition 3.3 and 3.4, which are the only ones involving N f. From the
L bound (46) we are able to obtain atoms satisfying the conditions of Definition 2.9
with ¢t = 0o, hence for every other ¢ with uniform bounds. O]

Conclusion: Let M be a complete Riemannian manifold satisfying (D). Then

1. for all <q<l,

o _
M} C HS]

q*,ato"

2. If we moreover assume (P;), then

M} = HS]}

t,ato

for all ¢t > 1.

4.2 Atomic decomposition for the Sobolev space M}

For this we need to define new nonhomogeneous atomic spaces LS}, where the L is
used to indicate that the atoms will now be in L; but not necessarily in H;. Let us
define our atoms.

Definition 4.9. For 1 <t < oo, we say that a function a is an LS& -atom if

ato
1. a is supported in a ball B;

2. |Vall, < u(B)~7; and

3. |la|ly < min(1,r(B)).

We then say that f belongs to LS}, if there exists a sequence of LS} ,,,-atoms {a;};
such that f = 37, Naj in W, with 37 |Nj| < co. This space is equipped with the

norm
1fllLsz,., = inf > A,
J

where the infimum is taken over all such decompositions.
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Remark 4.10. As discussed previously, condition 3 in Definition 4.9 is a substitute
for the cancellation condition 3 in Definition 2.11. Assuming a Poincaré inequality
(P;), LS} ,,-atoms corresponding to small balls (with r(B) bounded above) can be
shown (see [11], Appendiz B) to be elements of Goldberg’s local Hardy space (defined
by restricting the supports of the test functions in Definition 2.8 to balls of radii r < R
for some fized R - see [29], Section I11.5.17), so that LS}, is a subset of the “localized”
space Hi joc-

ato

As in the homogeneous case, under the Poincaré inequality (Pi), LS} ., C M

Proposition 4.11. Let M be a complete Riemannian manifold satisfying (D) and
(Pr). Let 1 <t < oo anda be an LS} ,-atom. Then a € M{ with ||al[,n < Cy, the
constant C' depending only on t, the doubling constant and the constant appearing in
(P), and independent of a.

Consequently LS} ., C M} with

[ llar < Cill fllzsy

t,ato '

ato

Proof. The proof follows analogously to that of Proposition 3.1, noting that we can
use Remark 3.2 thanks to property 3 in Definition 4.9, and that this property also
implies every atom a is in L. O]

Now for the converse, that is, to prove that M| C LStl,atO, we again establish an
atomic decomposition for functions f € M{. In order to do that we must introduce
an equivalent maximal function f*, which is a variant of the one originally defined
by Calderén [6] and denoted by N(f,z) (here we are only defining it in the special
case ¢ = 1 and m = 1, where for x a Lebesgue point of f, the constant P(z,y) in
Calderon’s definition is equal to f(x), and we are allowing for the balls not to be

centered at x):

Definition 4.12. Let f € Ly 1,.(M). Suppose x is a Lebesgue point of f, i.e.

lim o [/ (y) = f(2)|dp(y) = 0.
We define .
P = sup — o 1) = fa)lduty).

Then f* is defined p-almost everywhere.

We now show the equivalence of f* and N f. As discussed in the Introduction, the
following Proposition was proved in [12] (see also [28|) in the Euclidean case:

28



Proposition 4.13. Let M be a complete Riemannian manifold satisfying (D). Then,
there exist constants Cy, Cy such that for all f € Ly o.(M)

CNf<fr<CONf
pointwise p-almost everywhere.

Proof. Let f € Ly)o. and = be a Lebesgue point of f, so that there exists a sequence
of balls B, = B(z,r,) with r, — 0 and fg, — f(x). Given a ball B containing z,
take n sufficiently large so that B, C B. Since x € B, there is a smallest £ > 1 such
that 28 B, = B(x,2%r,) D B, and for this k we have 2¥r, < 4r(B), so

k
= i, < 11 = Fom b+ 3 o, =

1(2*B,,) 1(2B,) |
IR ]ngnlf f2k3n|du+z i )]éjBn f — forp, du

k
< 20(2]3) Z 2/, N f(x)

J=1

< 160(2D)r(B)Nf(x).

Taking the limit as n — oo, we see that |fp — f(z)] < Cr(B)N f(z) so that

F 1) = F@duts) < f 170 = Faldu) + |z = F(@)] < CrBINSa).

Dividing by r(B) and taking the supremum over all balls B containing x, we conclude
that f*(x) < CN f(x).

For the converse, again take any Lebesgue point x and let B be a ball containing
x. Writing | f(y) — f5] < |f(y) — f(@)| + | fz f — f(z)], we have

F150) = Falduts) < 24 1) = F@)lduts) < 20(B)" ().

B

Taking the supremum over all balls B containing z, we deduce that N f(z) < 2f*(x).
[

Proposition 4.14 (Calderon-Zygmund decomposition) Let M be a complete Rie-
mannian manifold satisfying (D). Let f € M, 7 <q<1anda>0. Then one
can find a collection of balls { B;};, functions b; € I/Vl1 and a Lipschitz function g such
that the following properties hold:

f:9+zbi,
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lg(x)|+ |Vyg(z)| < Ca forpu—a.ex e M, (47)

suppb; C By, [[billy < Cau(Bi)ri, || b+ Vb |lg < Can(By)7, (48)
C

Sou(B) < 22 [+ Npdn (49)

and ZXBi < K. (50)

The constants C and K only depend on the constant in (D).

Proof. The proof follows the same steps as that of Propositions 3.3 and 4.6. Again
we will only mention the changes that occur. Let f € M, 71 <¢<land a>0.
By Proposition 4.13, we have f* € L; with norm equivalent to | N f||;. Thus if we
consider the open set
Q={z: My(|f[+ f)(zx) > a},

its Whitney decomposition {B;};, and the corresponding partition of unity {y;}:, we
get immediately (50) and (49) by the bounded overlap property and the boundedness
of the maximal function in L .

We again define b; = (f — ¢;)x; but this time we set ¢; = f(z;) for some z; € B;
chosen as follows. Recall that B; = 4B; contains some point y of F' = M \ Q so that

F U< M) < o (51)

as well as
F s My < an ()
Let Z
E; = {r € B; : v is a Lebesgue point of f and |f|?, and |f(z)| < 2a}.
We claim that o
p(E:) = (1 =27 u(B;).

Otherwise we would have u(B; \ E;) > 27%(B;) and so, since f and |f|? are locally
integrable and the set of points which are not their Lebesgue points has measure zero,

[, Uz oy n(B B) > atu()

contradicting (51).
Now we claim that for an appropriate constant ¢, (to be chosen independent of i
and «), there exists a point z; € E; with

[ () < ¢y (53)
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Again, suppose not. Then we have, by (52),

(cq) u(Es) < / (f*)0du < a'p(By).

E;

implying that p(E;) < c; ~4u(B;). Taking ¢, > (1 — 279)74 we get a contradiction.
Thanks to our ch01ce of x;, we now have

lci| = [ f(7:)] < 2

and

Il <€ [ 17(0) = f@ldut) < CutBrf* () < Ceyrion(B)

Moreover for ||b;||,, one has, by (51),

||b|rq<c(/ If—czlqdu>1<0</ If\qdu)lJrC?au( Bt <

Finally, for Vb;, we can estimate the L; norm by

Q=
Q
S

=
Sy
Q=

196 < 1CF = )Wl + 1Y )l
/ (@) — F()]|Vxa(a) [dpu(a / 1V fldp
< CuBY @)+ [ 1V Fldu
< Ceon(B) + | 19 fldp. (54)

showing (since |V f| in Ly by Proposition 2.6) that b; € W}, and the L, norm by
IVOillg < [I(f = ) Vxalllg + IV F)xallg
By ([ 1@ = eIV @lnt) ) + [ 19
< Cu(B) ()" + /INf|qdu

< Cleg) /\f )
< Ca'u(B),

where we used Propositions 2.6 and 4.13, and (52). Taking the 1/¢-th power on both
sides, we get (48).
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It remains to prove (47). First note that ||g||.c < Ca since
9= flp+> cxi

and for the first term, by the Lebesgue differentiation theorem, we have |flp| <
M, (f)Ir < a p-a.e., while for the second term, thanks to the bounded overlap prop-
erty and |¢;| < 2a, we get the desired estimate.

Now for the gradient, we write, as in (28),

Vg =1p(Vf) =Y (f = f(2:)) Vi

(2

Again we have, by Propositions 2.6 and 4.13, that 1p(|Vf]) < Clp(Nf) < Clp(f*) <
Ca p—a.e. Let

h = Z(f — f(z:)) Vi

We will show |h(x)| < Ca for all z € M. Note first that the sum defining A is locally
finite on €2 and vanishes on F. Then take x € €2 and a Whitney ball B, containing x.

As before, since Z Vxi(z) = 0, we can replace f(x) in the sum by any constant so

hix) = (flar) = () V(o).
iely
Recall that for all 7,k € I,, by the construction of the Whitney collection, the balls
B; and By have equivalent radii and B; C 7B;. Thus

Fen) — F()] < [frm, — F@n)| + frm — F(2) (55)
< ]{Bk = flen)ldu + ][Bk 1 — Fe)ldn

7
< Tr(f* () + f*(2) < Mrpeya,

by (53). Therefore we again get the estimate (30).
0

Proposition 4.15. Let M be a complete Riemannian manifold satisfying (D). Let

f € M. Then for all o7 < q < 1, there 1s a sequence of LS;*Vato-atoms {a;};

(qF = ;qu), as in Definition 4.9, and a sequence of scalars {\;};, such that
F=> Na; in Wl oand >IN < Cllfllag-
J

Consequently, M} C HS!

q*,ato with Hf“LS; S CquHMll

* ato
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Proof. Here as well we will only mention the additional properties that one should
verify in comparison with Proposition 3.4 and 4.7. We use the Calderén-Zygmund
decomposition (Proposition 4.14) above with (7 corresponding to o = 27, and denote
the resulting functions by ¢’ and bj recalling that for the definition of the constant

¢! we have ¢/ = f(x!) for a specially chosen point z7 € Bj
First let us see that ¢/ — f in W}. For the convergence in L; we just repeat (44)
and (45) from the nonhomogeneous case, replacing f* by |f|. For the convergence
in W}, we can estimate 3, | Vb!||; exactly as in (32), using (54) instead of (26), and
replacing N f by f* and M (N f) by M,(|f] + f*). This gives V¢ — V[ in L, as
j — o0. For the convergence of Vg’ to 0 as j — — oo, we imitate (33) and (34), using
(28) and (30) with f* and our new choice of ¢/.
We define the functions ¢/ = ¢! — ¢/ as in Proposition 3.4 but this time we just
use ' .
v = xi,
for the “pre-atoms”, since we no longer need to have the moment condition [ Ei =0
(see Remark 3.6). From the L., bounds (47) on ¢/ and V¢’ in Proposition 4.14, we

immediately get , ‘ )
16111 < C27pu(BY)

< C2u(Bi)Y7 . We need a similar estimate on [|¢7|V |
o Asin (36), write

1/q* .
: . C ) ; q
" (Bj B! du) <c (f (S ls =l + S uymlf — ™) du)
k k i l

Expanding |f—c7| = |f—fB]- —I—fB]- —cj +cj —C7| and using the bounded overlap property
of the balls, the Sobolev- Pomcare inequality (6), Proposition 4.13, and properties (53)
and (55) of the constants ¢/ = f(z7), we have for the integral of the first sum on the
right-hand-side:

NG 1/q* 1/q* |
(Ji (X115 -<l) dﬂ) SK<Bj|f—fBi|Q*du> + Ky —dll
1/q
L (S td-d)'a

k BINB]#0

and || [V&|x]

¢+ in order

1/q*

1/q
< CKT’% <][(Nf)q> + Krif*(xi) + C'Kri?j
Bj,

< CKrin.
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The analogous estimate holds for the integral of the second sum, in [, since as pointed
out previously, when B/ ™' N B} # () we have that /™" < ¢r?. This gives

VGl < 227 u(BL))T,

as desired. The rest of the proof follows in the same way as that of Propositions 3.4
and 4.7. [

Conclusion: Let M be a complete Riemannian manifold satisfying (D). Then

1. for all <q<l,

ey
M C LS}

qg*,ato"
2. If moreover we assume (P;), then

M} = LS}

t,ato

for all t > 1.

5 Comparison between M ! and Hardy-Sobolev spaces
defined in terms of derivatives

5.1 Using a maximal function definition

In the Euclidean case, the homogeneous Hardy-Sobolev space H S' consists of all
locally integrable functions f such that Vf € H;(R") (i.e. the weak partial derivatives
D;f = 88—;; belong to the real Hardy space H;(R™)). In [28], it was proved that this
space is nothing else than {f € L 1,.(R"): Nf € L;}, which also coincides with the
Sobolev space M} ([22]).

Does this theory extends to the case of Riemannian manifolds? If this is the case,
which hypotheses should one assume on the geometry of the manifold? We proved an
atomic characterization of ]\/[11 but we would like to clarify the relation with Hardy-
Sobolev spaces defined using maximal functions.

Definition 5.1. We define the (maximal) homogeneous Hardy-Sobolev space HSIIHaX
as follows:

HSp = {f € Lisoe(M) : (Vf)" € Ly}

where V f is the distributional gradient, as defined in (7), and the corresponding mazx-
imal function is defined, analogously to (10), by

(V)" (x) == sup

/ f (V. ®) + pdiv @) dy|
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where the supremum is taken over all pairs ¢ € Ti(x), ® € CJ(M,TM) such that
1

Pl <1 and ||div @[ < -
r
for the radius r of the same ball B containing x for which ¢ satisfies (11). We equip

this space with the semi-norm

1l = 1)l

Note that in case both ¢ and ® are smooth, the quantity (Vp, ®) + ¢odiv ®
represents the divergence of the product ¢®, so the definition coincides with that of
the maximal function M1 f given in [4] for the case of domains in R™, but here we
want to allow for the case of Lipschitz .

Proposition 5.2. Let [ € HSllmx. Then V f, initially defined by (7), is given by an
Ly function and satisfies

IVA<CVAT  p—ae

Consequently,
.1 .
HS,.. CcW!

with
1l < Cllf Ml gr -

Proof. We follow the ideas in the proof of Proposition 2.6. Let §2 be any open subset
of M and consider the total variation of u on €, defined by

[DfI(€) :=sup (V f, ®)],

where the supremum is taken over all vector fields ® € C§(Q2, TM) with || @]/ < 1.
For such a vector field ®, take r > 0 sufficiently small so that ||div @], < 7! and
dist(supp(®), M \ 2) > 12r. As in the proof of Proposition 2.6, take a collection of
balls B; = B(z;,r) with 6B; having bounded overlap (with a constant K independent
of r), covering M, and a Lipschitz partition of unity {¢;}; subordinate to {6B;};, with
0<¢; <1and |Vg;| <r~Ll Then for all x € B;, ¢;/u(B;) € Ti(x), so

/ (Vi ®) + pudiv ®Jdp| < (V) (2)u(By).

Hence

/ fli(Vi, @) + pidiv @]dpu| < /B (Vf)*(x)du.
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Summing up over 4 such that 6B; C €, by the choice of r we still get > p; = 1 on the
support of ®, hence » V¢, = 0, so using the bounded overlap of the balls we have

f div ‘I)dﬂ‘ < (Vyrdu < K [ (V) du < KNV L < oo
/ 2z J 1

The rest of the proof proceeds as in the proof of Proposition 2.6, replacing N f by
(VHT. O

Proposition 5.3. Let f € Ly)o.. Then at every point of M,
(V)T <Nf.
Consequently,
M} c HS,,,
with
1 lise,, < Cl Ml

Proof. Let f € Lijo. and z € M. Take p € Ti(z), ® € C}(M,TM) as in Defini-
tion 5.1. Then

/ ((Vp, ®) + pdiv ®)dp = 0

SO we can write
[ 1470+ v @) = | [(7 = (0, ®) + v B

1
< (B) /|f_fB’dM

< N f(x).

]

We would like to prove the reverse inclusion. However, this would require some
tools such as Lemma 6 in [22] or Lemma 10 in [4] (solving div ¥ = ¢ with ¥ having
compact support) which are particular to R™.

Another possible maximal function we can use, following the ideas in [21] (see
Section 4.1), is given by

Definition 5.4.
M (V [)(x) :==sup [V f,,|
J

with the “discrete convolution” f,. defined as in (8), corresponding to an enumeration
of the positive rationals {r;};, where for each j we have a covering of M by balls { B} };
of radius r;, and a partition of unity ¢! subordinate to this covering.
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We have already shown in the proof of Proposition 2.6 (see (9)) that

Lemma 5.5. Let f € Lyo.. Then at p-almost every point of M,

M (Vf) < Nf.

5.2 Derivatives of molecular Hardy spaces

As noted in the previous section, on a manifold, obtaining a decomposition with atoms
of compact support from a maximal function definition is not obvious. In [3|, the au-
thors considered instead Hardy spaces generated by molecules. We begin by recalling
their definition of Hyey1(A'T*M) (a special case with N = 1 of Hy  y(AT*M) in
Definition 6.1 of [3], where we have dropped the superscript 1 for convenience). If in
addition the heat kernel on M satisfies Gaussian upper bounds, this space coincides
with the space H'(AT*M), which also has a maximal function characterization (see
[3], Theorem 8.4).

A sequence of non-negative Lipschitz functions {xx}x is said to be (a partition of
unity) adapted to a ball B of radius 7 if supp xo C 4B, supp x C 2*2B\ 2871 B for
all k> 1,

Vil < C2787 (56)

and
ZX’C =1on M.
k

A 1-form a € L*(A'T*M) is called a 1-molecule if a = db for some b € Ly(M) and
there exists a ball B with radius r, and a partition of unity { x4}, adapted to B, such
that for all £ > 0

Ixkall 2 arean < 27 (u(2°B)) Y2 (57)

and
Ixkbll2 < 27%r(u(2°B)) 12,

Summing in k, this implies that ||a|| p2aran < 2(u(B)) Y2 and ||b| 12 < 2r(u(B))~Y2.
Moreover, there exists a constant C’, depending only on the doubling constant in (D),

such that
k+3

Z Xib

I=k-3

yssa s sbllo < < Ok (u(2"2B)) 2, (58)

2

Definition 5.6 ([3]). We say that f € Hyo1(AT*M) if there is a sequence {\;}; € (*
and a sequence of 1-molecules {a;}; such that

F=> XNa
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in Ly(AYT* M), with the norm defined by

AW e (22 mfZM k

Here the infimum is taken over all such decompositions. The space Hmol,l(/\lT*M) 18
a Banach space.

Proposition 5.7. Let M be a complete Riemannian manifold satisfying (D) and (P).
We then have

1

Huuol i (AT M) = d(H Sy 410 (M)). (59)
Moreover
90 a0y ~ 308 1Lty

Consequently, in this case we have an atomic decomposition for Hye 1 (AN'T*M) (this
was already proved in [3], after Theorem 8.4).

Remark 5.8. As pointed out in Remarks 3.2 and 3.6, we can define the atomic Hardy-
Sobolev space H.S;ato(M) by using (1, 2)-atoms satisfying condition 3" of Remarks 2.12
instead of condition 3 of Definition 2.11. As will be seen from the proof below, if we
restrict ourselves to this kind of atoms we do not require the hypothesis (Py) for (59).
Under the assumption (Py), we actually get the stronger conclusion

HmOl,l(/\lT*M) d(HS2 ato) - d(HSt ato) d(Mll)
forallt > 1.

Proof. Take f € HS;ato. There exists a sequence {\;}; € ¢! and (1,2)—atoms b;
such that f =3, \;b; in W}. This means > AjVb; converges in Ly to Vf, and by
the isometry between the vector fields and the 1-forms, we have df = > ;Ajdb; in
Li(AYT*M).

We claim that a; = db; are 1-molecules. Indeed, fix j, take B; to be the ball
containing the support of b and let {Xj }i be a partition of unity adapted to B,.
Then

1
IxXGasllz < lldbjlls = Vb2 < ;
! u(Bj)2
and by condition 3” of Remarks 2.12 (alternatively condition 3 of Definition 2.11 and
(Py)) we get

1
billa < |1bjll2 < rj———.
17052 < 116512 B
For k > 1, there is nothing to do since supp b; C B; and supp X? C 282B;\2"1B; C
(Bj)¢. Consequently, df € Humo1(A'T*M) with ||df |, ,(nrean) < >_; 1A Taking
the infimum over all such decompositions, we get ||df|| ., (nrar) < [ ]l sho
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Now for the converse, let g € Hyor 1 (AYT*M). Write
g = Z )\jaj = Z )\jdbj
J J

where Zj |Aj| < oo, for every j, a; is a 1-molecule associated to a ball B;, and the
convergence is in Ly. Let {Xf}k be the partition of unity adapted to B;. Then

9= N dbixf =Y Nd(Y bxi) = A Y dbix))
7 k 7 k 7 k

since the sum is locally finite and ), x¥ = 1.

We claim that for every j, k, ﬁf = 2%“*171)]-)(?, with v a constant to be determined,
satisfies properties 1,2 and 3” (see Definition 2.11 and Remarks 2.12) of a (1,2)-
homogeneous Hardy-Sobolev atom. Indeed, 531-“ is supported in the ball 2¥"2B; with

fk,rj - 2k+2
u(2B;)s T p(2H2B;):
for an appropriate choice of v depending only on the doubling constant in (D). Fur-
thermore, by (57), (56), and (58),

IVBF ||z = 2y [|d(bx ) Iz
< 2y ((lagxi 2 + 1bydxs2)
< 2527 (u(28By)) V2 + C27Fr ks an-1 5, b )
< (28212,

Here we again chose v conveniently, depending only on the doubling constant, and
used the fact that k£ > 0.

Since Y7 [Ajly 7120 < 4y YT N < oo, the sum f = 3TN D0, 720G
defines an element of HS ;ato, with the convergence being in W}. This means that in

L we have
df =d (Z Aj(bjxf)> =D N dbixt) =g
J.k J k

Therefore ¢ = df = d (zj,k Aj(bjxg?)), with [fll ;< 477'%, [Ay]. Taking the
infimum over all such decompositions of g, we see that

T

185]l2 < 271y

. -1
Inf [[fll 753, < 477 N9l tor s (17 00)-

Corollary 5.9. In the Fuclidean case, we then obtain
o1 (R, AY) = PR, AY) = (M) = d(H S, )
for allt > 1. (For details on HL(R™, A1), see [24]).
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