
GAGLIARDO-NIRENBERG INEQUALITIES ON MANIFOLDS

NADINE BADR

Abstract. We prove Gagliardo-Nirenberg inequalities on some classes of manifolds,
Lie groups and graphs.
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1. Introduction

Cohen-Meyer-Oru [5], Cohen-Devore-Petrushev-Xu [4], proved the following Gagliardo-
Nirenberg type inequality

(1.1) ‖f‖1∗ ≤ C‖ |∇f | ‖
n−1
n

1 ‖f‖
1
n

B
−(n−1)
∞,∞

for all f ∈ W 1
1 (Rn) (1∗ = n

n−1
). The proof of (1.1) is involved and based on wavelet

decompositions, weak type (1,1) estimates and interpolation results.
Using a simple method relying on weak type estimates and pseudo-Poincaré in-

equalities, Ledoux [14] obtained the following extension of (1.1). He proved that for
1 ≤ p < l <∞ and for every f ∈ W 1

p (Rn)

(1.2) ‖f‖l ≤ C‖ |∇f | ‖θp‖f‖1−θ

B
θ
θ−1
∞,∞

where θ = p
l

and C > 0 only depends on l, p and n.
In the same paper, he extended (1.2) to the case of Riemannian manifolds. If p = 2

he observed that (1.2) holds without any assumption on M . If p 6= 2 he assumed that
the Ricci curvature is non-negative and obtained (1.2) with C > 0 only depending on
l, p when 1 ≤ p ≤ 2 and on l, p and n when 2 < p <∞.
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He also proved that a similar inequality holds on Rn, Riemannian manifolds with

non-negative Ricci curvature, Lie groups and Cayley graphs, replacing the B
θ
θ−1
∞,∞ norm

by the M
θ
θ−1
∞ norm (see definitions below).

Note that these two versions of Gagliardo-Nirenberg inequalities extend the classical
Sobolev inequality in the Euclidean case:

(1.3) ‖f‖p∗ ≤ C‖ |∇f | ‖p
with 1

p∗
= 1

p
− 1

n
holds on Rn for every f ∈ W 1

p (Rn) and for every 1 ≤ p < n.

In the Riemannian case it is not generally true that (1.2) or (1.1) imply (1.3), without
additional assumptions on the manifold (cf. Proposition 3.2 below). On the other hand
we will now show examples of Riemannian manifolds where (1.3) holds independently
of (1.2). It is clear that (1.3) holds on a compact Riemannian n-manifold M . As
an example of complete non-compact Riemannian manifold satisfying (1.3), we can
consider a complete Riemannian n-manifold M with non-negative Ricci curvature. If
there exists v > 0 such that for all x ∈M , µ(B(x, 1)) ≥ v, then M satisfies (1.3). Here
µ(B(x, 1)) is the Riemannian volume of the open ball B(x, 1). For more general cases
where we have (1.3) for some p’s depending on the hypotheses, see [17]. Note that if
(1.3) holds for some 1 ≤ p < n, then it holds for all p ≤ q < n (see [17], Chapter 3).

We have also non-linear versions of Gagliardo-Nirenberg inequalities proved by Rivière-
Strzelecki [16], [19]. They got for every f ∈ C∞0 (Rn)

(1.4)

∫
Rn
|∇f |p+2 ≤ C‖f‖2

BMO

∫
Rn
|∇2f |2|∇f |p−2.

They applied this inequality and obtained a regularity property for solutions of non-
linear elliptic equations of type

−div(|∇u|p−2∇u) = G(x, u,∇u)

where G grows as |∇u|p.
Recently, Martin-Milman [15] developed a new symmetrization approach to obtain

the Gagliardo-Nirenberg inequalities (1.2) and, therefore the Sobolev inequalities (1.3)
in Rn. They also proved a variant of (1.4). The method of [15] to prove (1.2) is different
from that of Ledoux. It relies essentially on an interpolation result for Sobolev spaces
and pseudo-Poincaré inequalities in the Euclidean case.

In this paper, we prove analogous results on Riemannian manifolds, Lie groups and
graphs, with some additional hypotheses on these spaces. For this purpose, we will
adapt Martin and Milman’s method. The only difficulty is that interpolation results for
Sobolev spaces on metric measured spaces were only known in the euclidean case. We
overcome this problem using our interpolation theorems on Riemannian manifolds [3].
We use the characterization of the K-functional of interpolation of non-homogeneous
Sobolev spaces from [3] and prove in Theorem 4.1 below, a characterization of a vari-
ant of the K-functional for homogeneous Sobolev spaces. The statements in Loc.cit.
require doubling property and Poincaré type inequalities.

More precisely we obtain in the case of Riemannian manifolds:

Theorem 1.1. Let M be a complete non-compact Riemannian manifold satisfying (D)
and (Pq) for some 1 ≤ q <∞. Moreover, assume that M satisfies the pseudo-Poincaré
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inequalities (P ′q) and (P ′∞). Consider α < 0. Then, there exists C > 0 such that for

every f ∈ (W 1
q +W 1

∞) ∩Bα
∞,∞ with f ∗(∞) = 0 and |∇f |∗(∞) = 0, we have

(1.5) |f |q∗∗
1
q (s) ≤ C|∇f |q∗∗

|α|
q(1+|α|) (s)‖f‖

1
1+|α|
Bα∞,∞

.

Above and from now on, |f |q∗∗
1
q means (|f |q∗∗)

1
q . Recall that for every t > 0

f ∗(t) = inf {λ;µ({|f | > λ}) ≤ t};

f ∗(∞) = inf {λ;µ({|f | > λ}) <∞}

and

f ∗∗(t) =
1

t

∫ t

0

f ∗(s)ds.

Using this symmetrization result we prove

Theorem 1.2. Let M be a complete Riemannian manifold satisfying the hypotheses
of Theorem 1.1. Then (1.2) holds for all q ≤ p < l <∞.

Corollary 1.3. Let M be a Riemannian manifold with non-negative Ricci curvature.
Then (1.2) holds for all 1 ≤ p < l <∞.

This corollary is exactly what Ledoux proved [14]. We obtain further generalizations:

Corollary 1.4. Consider a complete Riemannian manifold M satisfying (D), (P1) and
assume that there exists C > 0 such that for every x, y ∈M and t > 0

(G) |∇xpt(x, y)| ≤ C√
tµ(B(y,

√
t))
.

Then inequality (1.2) holds for all 1 ≤ p < l <∞.

Note that a Lie group of polynomial growth satisfies the hypotheses of Corollary 1.4
(see [7]). Hence it verifies (1.2) for all 1 ≤ p < l <∞.
Another example of a space satisfying the hypotheses of Corollary 1.4 is given by tak-
ing a Galois covering manifold of a compact manifold whose deck transformation group
has polynomial growth (see [9]). We can also take the example of a Cayley graph of a
finitely generated group (see [6], [17]).

We also get the following Corollary:

Corollary 1.5. Let M be a complete Riemannian manifold satisfying (D) and (P2).
Then (1.2) holds for all 2 ≤ p < l <∞.

Note that (P ′2) is always satisfied. Hence, by Ledoux’s method, inequality (1.2) with
p = 2 needs no assumption on M (see [14]). So our results are only interesting when
p 6= 2.
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Local version: Let M be a complete Riemannian manifold satisfying a local doubling
property (Dloc) and a local Poincaré inequality (Pqloc) –we restrict our definitions to
small balls–. Moreover assume that M admits a local version of pseudo-Poincaré
inequalities (P ′qloc), (P ′∞loc): by (P ′rloc) we mean

‖f − et∆f‖r ≤ Ct
1
2 (‖f‖r + ‖ |∇f | ‖r) .

In this context, the following local version of (1.2) holds: for every q ≤ p < l <∞ and
f ∈ W 1

p

(1.6) ‖f‖l ≤ C (‖f‖p + ‖ |∇f | ‖p)θ ‖f‖1−θ

B
θ
θ−1
∞,∞

.

In the following theorem, we show a variant of Theorem 1.1 replacing the Besov
norm by the Morrey norm. In the Euclidean case, the Morrey space is strictly smaller
than the Besov space. Therefore, the following Theorem 1.6 (resp. Corollary 1.7) is
weaker than Theorem 1.1 (resp. Theorem 1.2). In contrast, on Riemannian manifolds,
the Besov and Morrey spaces are not comparable in general.

Theorem 1.6. Let M be a complete non-compact Riemannian manifold satisfying (D)
and (Pq) for some 1 ≤ q < ∞. Consider q ≤ p < ∞ and α < 0. Then, for every
f ∈ (W 1

q +W 1
∞) ∩Mα

∞ we have

|f |q∗∗
1
q (s) ≤ C|∇f |q∗∗

|α|
q(1+|α|) (s)‖f‖

1
1+|α|
Mα
∞
.

Corollary 1.7. Under the hypotheses of Theorem 1.6, let q0 = inf {q ∈ [1,∞[: (Pq) holds }
and consider q0 < p < l <∞1. Then, for every f ∈ W 1

p , we have

(1.7) ‖f‖l ≤ C‖ |∇f | ‖θp‖f‖1−θ

M
θ
θ−1
∞

.

Ledoux [14] showed that (1.7) holds on any unimodular Lie group equipped with a
left invariant Riemannian metric and the associated Haar measure. Once again, this is
due to the fact that his method uses essentially the pseudo-Poincaré inequalities (P ′′p ),
which hold on such a group for all 1 ≤ p ≤ ∞ (see [17]). With our method, we only
get the local version of (1.7), namely the analog of (1.6). However notice that we prove
(1.7) in its full strength for Lie groups of polynomial growth.

Let us compare our result with Ledoux’s one. Our hypotheses are stronger, we as-
sume in addition of the pseudo-Poincaré inequality –which is the only assumption of
Ledoux– (D) and (Pq) but recover most of his examples. Moreover we obtain Corollary
1.4 which gives us more examples as we have seen in the introduction. For instance, on
Lie groups, Ledoux only mentioned in his paper the Morrey version while Corollary 1.4
yield (1.2) on Lie groups with polynomial growth for every 1 ≤ p < l <∞. We get also
the interpolation of his inequality (1.2). Since it is not known if the pseudo-Poincaré
inequalities interpolate, his method gives (1.2) (resp. (1.7)) for the same exponent p of
pseudo-Poincaré inequality. With our method, we get (1.2) (resp. (1.7)) for every p ≥ q.

1if q0 = 1, we allow 1 ≤ p < l <∞
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We also give another symmetrization inequality which had been used in [15] to prove
Gagliardo-Nirenberg inequalities with a Triebel-Lizorkin condition.

Theorem 1.8. Let M be a complete non-compact Riemannian manifold satisfying (D)
and (Pq) for some 1 ≤ q <∞. Moreover, assume that M satisfies the pseudo-Poincaré
inequalities (P ′q) and (P ′∞). Consider α < 0. Then there is C > 0 such that for every

f ∈ W 1
q + W 1

∞ with f ∗(∞) = 0, |∇f |∗(∞) = 0 and satisfying (sup
t>0

t−
α
2 |Ptf(.)|) ∈

Lq + L∞:

(1.8) |f |q∗∗
1
q (s) ≤ C|∇f |q∗∗

|α|
q(1+|α|) (s)

[(
sup
t>0

t−
α
2 |Ptf(.)|

)q∗∗ 1
q

(s)

] 1
1+|α|

, s > 0.

We finish with the following non-linear Gagliardo-Nirenberg theorem:

Theorem 1.9. Let M be a complete non-compact Riemannian manifold satisfying (D)
and (Pq) for some 1 ≤ q <∞. Moreover, assume that M satisfies (P ′q) and (P ′∞). Let
p ≥ max(2, q). Then for every f ∈ C∞0 (M)∫

M

|∇f |p+1dµ ≤ C‖f‖B−1
∞,∞

∫
M

|∇2f |2|∇f |p−2dµ.

To the knowledge of the author this inequality is new in the case of manifolds.

The paper is organized as follows. In section 2, we give the definitions on a Rie-
mannian manifold of Besov and Morrey spaces, Sobolev spaces, doubling property,
Poincaré and pseudo-Poincaré inequalities. In section 3, we show how to obtain under
our hypotheses Ledoux’s inequality (1.2) and different Sobolev inequalities. Section 4
is devoted for the proof of the theorems.

Acknowledgements. I would like to thank my Ph.D advisor P. Auscher for his com-
ments and advice about the topic of this paper. I am also indebted to J. Mart́ın and
M. Milman for the useful discussions I had with them, especially concerning Theorem
4.1.

2. Preliminaries

Throughout this paper C will be a constant that may change from an inequality to
another and we will use u ∼ v to say that there exist two constants C1,C2 > 0 such
that C1u ≤ v ≤ C2u.

Let M be a complete non-compact Riemannian manifold. We write µ for the Rie-
mannian measure on M , ∇ for the Riemannian gradient, | · | for the length on the
tangent space (forgetting the subscript x for simplicity) and ‖ · ‖p for the norm on
Lp(M,µ), 1 ≤ p ≤ +∞. Let Pt = et∆, t ≥ 0, be the heat semigroup on M and pt the
heat kernel.

2.1. Besov and Morrey spaces. For α < 0, we introduce the Besov norm

‖f‖Bα∞,∞ = sup
t>0

t−
α
2 ‖Ptf‖∞ <∞
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for measurable functions f such that this makes sense and say f ∈ Bα
∞,∞ (we shall not

try here to give the most general definition of the Besov space).

Lemma 2.1. We have for every f ∈ Bα
∞,∞

(2.1) ‖f‖Bα∞,∞ ∼ sup
t>0

t−
α
2 ‖Pt(f − Ptf)‖∞.

Proof. It is clear that supt>0 t
−α

2 ‖Pt(f − Ptf)‖∞ ≤ (1 + 2
α
2 )‖f‖Bα∞,∞ . On the other

hand

t−
α
2 Ptf = t−

α
2 (Ptf − P2tf) + 2

α
2 (2t)−

α
2 P2tf.

By taking the supremun over all t > 0, we get

‖f‖Bα∞,∞ ≤ sup
t>0

t−
α
2 ‖Pt(f − Ptf)‖∞ + 2

α
2 ‖f‖Bα∞,∞ .

Thus, ‖f‖Bα∞,∞ ≤
1

1−2
α
2

supt>0 t
−α

2 ‖Pt(f − Ptf)‖∞. �

For α < 0, the Morrey space Mα
∞ is the space of locally integrable functions f for

which the Morrey norm

‖f‖Mα
∞ := sup

r>0, x∈M
r−α|fB(x,r)| <∞

where fB := −
∫
B
fdµ = 1

µ(B)

∫
B
fdµ.

2.2. Sobolev spaces on Riemannian manifolds.

Definition 2.2 ([2]). Let M be a C∞ Riemannian manifold of dimension n. Write E1
p

for the vector space of C∞ functions ϕ such that ϕ and |∇ϕ| ∈ Lp, 1 ≤ p < ∞. We
define the non-homogeneous Sobolev space W 1

p as the completion of E1
p for the norm

‖ϕ‖W 1
p

= ‖ϕ‖p + ‖ |∇ϕ| ‖p.

We denote W 1
∞ for the set of all bounded Lipschitz functions on M .

Proposition 2.3. ([2]) Let M be a complete Riemannian manifold. Then C∞0 is dense
in W 1

p for 1 ≤ p <∞.

Definition 2.4. Let M be a C∞ Riemannian manifold of dimension n. For 1 ≤ p ≤ ∞,

we define
.

E1
p to be the vector space of distributions ϕ with |∇ϕ| ∈ Lp, where ∇ϕ is the

distributional gradient of ϕ. It is well known that the elements of
.

E1
p are in Lp,loc. We

equip
.

E1
p with the semi norm

‖ϕ‖ .

E1
p

= ‖ |∇ϕ| ‖p.

Definition 2.5. We define the homogeneous Sobolev space
.

W 1
p as the quotient space

.

E1
p/R.

Remark 2.6. For all ϕ ∈
.

E1
p , ‖ϕ‖ .

W 1
p

= ‖ |∇ϕ| ‖p.
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2.3. Doubling property and Poincaré inequalities.

Definition 2.7 (Doubling property). Let (M,d, µ) be a Riemannian manifold. Denote
by B(x, r) the open ball of center x ∈M and radius r > 0. One says that M satisfies the
doubling property (D) if there exists a constant Cd > 0 such that for all x ∈ M, r > 0
we have

(D) µ(B(x, 2r)) ≤ Cdµ(B(x, r)).

Observe that if M satisfies (D) then

diam(M) <∞⇔ µ(M) <∞ (see [1]).

Definition 2.8 (Poincaré inequality). A complete Riemannian manifold M admits a
Poincaré inequality (Pq) for some 1 ≤ q <∞ if there exists a constant C such that for
all f ∈ C∞0 and for every ball B of M of radius r > 0, we have

(Pq)
(
−
∫
B

|f − fB|qdµ
) 1
q ≤ Cr

(
−
∫
B

|∇f |qdµ
) 1
q
.

Remark 2.9. Since C∞0 is dense in W 1
q , if M admits (Pq) for all f ∈ C∞0 then (Pq)

holds for all f ∈ W 1
q . In fact, by Theorem 1.3.4 in [11], M admits (Pq) for all f ∈ Ė1

q .

The following recent result from Keith-Zhong [12] improves the exponent of Poincaré
inequality:

Theorem 2.10. Let (X, d, µ) be a complete metric-measure space with µ locally dou-
bling and admitting a local Poincaré inequality (Pq), for some 1 < q <∞. Then there
exists ε > 0 such that (X, d, µ) admits (Pp) for every p > q − ε.

Definition 2.11 (Pseudo-Poincaré inequality for the heat semigroup). A Riemannian
manifold M admits a pseudo-Poincaré inequality for the heat semigroup (P ′q) for some
1 ≤ q <∞ if there exists a constant C such that for all f ∈ C∞0 and all t > 0, we have

(P ′q) ‖f − Ptf‖q ≤ Ct
1
2‖ |∇f | ‖q.

M admits a pseudo-Poincaré inequality (P ′∞) if there exists C > 0 such that for every
bounded Lipschitz function f we have

(P ′∞) ‖f − Ptf‖∞ ≤ Ct
1
2‖ |∇f | ‖∞.

Remark 2.12. Again by density of C∞0 in W 1
q , if M admits (P ′q) for some 1 ≤ q <∞

for all f ∈ C∞0 then M admits (P ′q) for all f ∈ W 1
q .

Let 2 < p ≤ ∞. Consider the following condition: there exists C > 0 such that for
every t > 0

(Gp) ‖ |∇et∆| ‖p→p ≤
C√
t
.

Lemma 2.13. ([8]) Let M be a complete Riemannian manifold M satisfying (D) and
the Gaussian heat kernel upper bound, that is, there exist C, c > 0 such that for every
x, y ∈M and t > 0

(2.2) pt(x, y) ≤ C

µ(B(y,
√
t))
e−c

d2(x,y)
t .
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Then (G) holds if and only if (G∞) holds.

Lemma 2.14. Let M be a complete Riemannian manifold. If the condition (Gp) holds
for some 1 < p ≤ ∞ then M admits a pseudo-Poincaré inequality (P ′p′), p′ being the

conjugate of p (1
p

+ 1
p′

= 1).

Proof. For f ∈ C∞0 , we have

f − et∆f = −
∫ t

0

∆es∆f ds.

Remark that (Gp) gives us that ‖∆es∆f‖p′ ≤ C√
s
‖ |∇f | ‖p′ . Indeed

‖∆es∆f‖p′ = sup
‖g‖p=1

∫
M

∆es∆f g dµ

= sup
‖g‖p=1

∫
M

f ∆es∆g dµ

= sup
‖g‖p=1

∫
M

∇f.∇es∆g dµ

≤ ‖ |∇f | ‖p′ sup
‖g‖p=1

‖ |∇es∆g| ‖p

≤ C√
s
‖ |∇f | ‖p′ .

Therefore

‖f − et∆f‖p′ ≤ C‖ |∇f | ‖p′
∫ t

0

1√
s
ds = C

√
t‖ |∇f | ‖p′

which finishes the proof of the lemma. �

Definition 2.15 (Pseudo-Poincaré inequality for averages). A complete Riemannian
manifold M admits a pseudo-Poincaré inequality for averages (P ′′q ) for some 1 ≤ q <∞
if there exists a constant C such that for all f ∈ C∞0 and for every ball B of M of
radius r > 0, we have

(P ′′q ) ‖f − fB(.,r)‖q ≤ Cr‖ |∇f | ‖q.

Remark 2.16. (Lemma 5.3.2 in [17]) If M is a complete Riemannian manifold satis-
fying (D) and (Pq) for some 1 ≤ q < ∞, then it satisfies (P ′′q ). Hence (P ′′q ) holds for

all f ∈
.

E1
q .

3. Ledoux’s and Sobolev inequalities

Some comments about the proofs of Theorem 1.2, Corollary 1.3, 1.4 and
1.5:

• Ledoux’s inequality (1.2) in Theorem 1.2 follows from Theorem 1.1. We refer
to [15] for details.
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• For the proof of Corollary 1.3, remark that Riemannian manifolds with non-
negative Ricci curvature satisfy (D) (with Cd = 2n) , (P1). They also satisfy
(P ′p) for all 1 ≤ p ≤ ∞, where the constant C is numerical for 1 ≤ p ≤ 2 and
only depends on n for 2 < p ≤ ∞ (see [14]).
• In the proof of Corollary 1.4, the fact that M satisfies (D) and admits (P1),

hence (P2), gives the Gaussian heat kernel upper bound (2.2). Since (G) holds,
Lemma 2.13 asserts that (G∞) holds too. Applying Lemma 2.14 it comes that
M admits a pseudo-Poincaré inequality (P ′1). We claim that (P ′∞) holds on M .
Indeed, (2.2) yields

‖f − et∆f‖∞ ≤ sup
x∈M

∫
M

|f(x)− f(y)|pt(x, y)dµ(y)

≤ C‖ |∇f | ‖∞ sup
x∈M

1

µ(B(x,
√
t))

∫
M

d(x, y)e−c
d2(x,y)

t dµ(y)

≤ C
√
t‖ |∇f | ‖∞ sup

x∈M

1

µ(B(x,
√
t))

∫
M

e−c
′ d2(x,y)

t dµ(y)

≤ C
√
t‖ |∇f | ‖∞ sup

x∈M

1

µ(B(x,
√
t))
µ(B(x,

√
t))

= C
√
t‖ |∇f | ‖∞

where the last estimate is a straightforward consequence of (D).

Remark 3.1. Under the hypotheses of Corollary 1.4, Theorem 1.6 and Theorem
1.9 also hold.

• Finally for Corollary 1.5, we know that (G2) always holds on M . Then (P ′2)
holds by Lemma 2.14. Moreover (D) and (P2) yield (P ′∞) as we have just seen
in the previous point.

3.1. The classical Sobolev inequality.

Proposition 3.2. Consider a complete non-compact Riemannian manifold satisfying
the hypotheses of Theorem 1.1 and assume that 1 ≤ q < ν with ν > 0. From (1.2)

and under the heat kernel bound ‖Pt‖q→∞ ≤ Ct−
ν
2q , one recovers the classical Sobolev

inequality
‖f‖q∗ ≤ C‖ |∇f | ‖q

with 1
q∗

= 1
q
− 1

ν
. Consequently, we get

‖f‖p∗ ≤ C‖ |∇f | ‖p
with 1

p∗
= 1

p
− 1

ν
for q ≤ p < ν.

Proof. Recall that ‖f‖Bα∞,∞ ∼ supt>0 t
−α

2 ‖Pt(f − Ptf)‖∞. The pseudo-Poincaré in-

equality (P ′q), (1.2) and the heat kernel bound ‖Pt‖q→∞ ≤ Ct−
ν
2q yield

‖f‖q∗ ≤ C‖ |∇f | ‖θq
(

sup
t>0

t−
1
2‖f − Ptf‖q

)1−θ

≤ C‖ |∇f | ‖q.

Thus we get (1.3) with p = q < ν and 1
q∗

= 1
q
− 1

ν
. �
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3.2. Sobolev inequalities for Lorentz spaces. For 1 ≤ p ≤ ∞, 0 ≤ r <∞ we note
L(p, r) the Lorentz space of functions f such that

‖f‖L(p,r) =

(∫ ∞
0

(f ∗∗(t)t
1
p )r

dt

t

) 1
r

<∞

and

‖f‖L(p,∞) = sup
t
t

1
pf ∗(t) <∞.

Consider a complete non-compact Riemannian manifold M satisfying (D) and (Pq)
for some 1 ≤ q <∞. Moreover, assume that the following global growth condition

(3.1) µ(B) ≥ Crσ

holds for every ball B ⊂ M of radius r > 0 and for some σ > q (Remark that σ ≥ n).
Using Remark 4 in [10], we get

(3.2) f ∗∗(t)− f ∗(t) ≤ Ct
1
σ |∇f |q∗∗

1
q (t)

for every f ∈
.

E1
q . We can write (3.2) as

(3.3) f ∗∗(t)− f ∗(t) ≤
[
Ct

1
σ |∇f |q∗∗

1
q (t)
]1−θ

(f ∗∗(t)− f ∗(t))θ, 0 ≤ θ ≤ 1.

Take 1
r

= 1−θ
p∗ + θ

l
, 1
m

= 1−θ
m0

+ θ
m1

with 0 ≤ θ ≤ 1, σ ≥ p > q, m0 ≥ q and 1
p∗

= 1
p
− 1

σ
.

Then from (3.3) and Hölder’s inequality, we obtain the following Gagliardo-Nirenberg
inequality for Lorentz spaces

(3.4) ‖f‖L(r,m) ≤ C‖ |∇f | ‖1−θ
L(p,m0)‖f‖

θ
L(l,m1).

We used also the fact that for 1 < p ≤ ∞ and 1 ≤ r ≤ ∞

‖f‖L(p,r) ∼
[∫ ∞

0

(
t

1
pf ∗(t)

)r dt
t

] 1
r

to obtain the term ‖ |∇f | ‖L(p,m0) (see [18], Chapter 5, Theorem 3.21).
If we take θ = 0 and m0 = m = p, r = p∗, (3.4) becomes

(3.5) ‖f‖L(p∗,p) ≤ C‖ |∇f | ‖p.

Noting that p∗ > p, hence ‖f‖L(p∗,p∗) ≤ C‖f‖L(p∗,p), (3.5) yields (1.3) with 1
p∗

= 1
p
− 1

σ

and q < p ≤ σ. Using Theorem 2.10, we get (1.3) for every q0 < p ≤ σ where
q0 = inf {q ∈ [1,∞[; (Pq) holds } . If q0 = 1, we allow p = 1.

Remark 3.3. 1- As we mentioned in the introduction, a Lie group of polynomial growth
satisfies (D), (P1). Moreover, for n ∈ [d,D] we have µ(B) ≥ crn for any ball B of
radius r > 0 –d being the local dimension and D the dimension at infinity–. Therefore
this subsection applies on such a group.
2-It has been proven [17] that under (D), (P ′′q ) and (3.1) with σ > q, the Sobolev
inequality (1.3) holds for all q ≤ p < σ. Since (D) and (Pq) yield (P ′′q ), we recover this
result under our hypotheses. Besides, we are able to treat the limiting case p = σ.
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4. Proof of Theorem 1.1, 1.6, 1.8 and 1.9

The main tool to prove theorem 1.1 and 1.6 is the following characterization of a
variant of the K-functional of real interpolation for the homogeneous Sobolev norm.

Theorem 4.1. Let M be a complete Riemannian manifold satisfying (D) and (Pq) for
some 1 ≤ q < ∞. For f ∈ W 1

q + W 1
∞, consider the functional of interpolation K ′

defined as follows:

K ′(f, t) = K ′(f, t,
.

W 1
q ,

.

W 1
∞) = inf

f=h+g
h∈W 1

q , g∈W 1
∞

(‖ |∇h| ‖q + t‖ |∇g| ‖∞) .

Let f ∈ W 1
q +W 1

∞ such that f ∗(∞) = 0 and |∇f |∗(∞) = 0. We have

(4.1) K ′(f, t
1
q ) ∼ t

1
q (|∇f |q∗∗)

1
q (t)

where the implicit constants do not depend on f and t.

Proof. Obviously

t
1
q (|∇f |q∗∗)

1
q (t) ≤ K ′(f, t

1
q )

for all f ∈ W 1
q + W 1

∞. We used the fact that K(g, t
1
q , Lq, L∞) ∼ t

1
q |g|q∗∗

1
q (t) for every

g and every t > 0. For the converse estimation, we distinguish three cases:

1. Let f ∈ C∞0 . For t > 0, we consider the Calderón-Zygmund decomposition

given by Proposition 5.5 in [3] with α(t) = (M(|∇f |q))∗
1
q (t) ∼ (|∇f |q∗∗)

1
q (t).

We can write then f = b + g with ‖ |∇b| ‖q ≤ Cα(t)t
1
q and g Lipschitz with

‖ |∇g| ‖∞ ≤ Cα(t) (see also the proof of Theorem 1.4 in [3]). Notice that since
f ∈ C∞0 one has in addition b ∈ Lq and g ∈ L∞. Consequently, b ∈ W 1

q and g

is in W 1
∞. Therefore, we get (4.1).

2. Let f ∈ W 1
q . There exists a sequence (fn)n such that for all n, fn ∈ C∞0 and

‖f − fn‖W 1
q
→ 0. Since |∇fn|q → |∇f |q in L1, it follows that |∇fn|q∗∗(t) →

|∇f |q∗∗(t) for all t > 0. We have seen in item 1. that for every n there is

gn ∈ W 1
∞ such that ‖ |∇(fn− gn)| ‖q + t

1
q ‖ |∇gn| ‖∞ ≤ Ct

1
q (|∇fn|q∗∗)

1
q (t). Then

‖ |∇(f − gn)| ‖q + t
1
q ‖ |∇gn| ‖∞ ≤ ‖ |∇(f − fn)| ‖q +

(
‖ |∇(fn − gn)| ‖q + t

1
q ‖ |∇gn| ‖∞

)
≤ εn + Ct

1
q (|∇fn|q∗∗)

1
q (t)

where εn → 0 when n→∞. We let n→∞ to obtain (4.1).
3. Let f ∈ W 1

q + W 1
∞ such that f ∗(∞) = 0 and |∇f |∗(∞) = 0. Fix t > 0 and

p0 ∈M . Consider ϕ ∈ C∞0 (R) satisfying ϕ ≥ 0, ϕ(α) = 1 if α < 1 and ϕ(α) = 0

if α > 2. Then put fn(x) = f(x)ϕ(d(x,p0)
n

). Elementary calculations establish

that fn lies in W 1
q , hence K ′(fn, t

1
q ) ≤ Ct

1
q |∇fn|q∗∗

1
q (t). It is shown in [3] that

K(f, t
1
q ,W 1

q ,W
1
∞) ∼

(∫ t

0

|f |q∗(s)ds
) 1

q

+

(∫ t

0

|∇f |q∗(s)ds
) 1

q

.
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We recall that K(f, t
1
q ,W 1

q ,W
1
∞) := inf

f=h+g;
h∈W 1

q , g∈W 1
∞

(‖h‖W 1
q

+ t‖g‖W 1
∞). All these

ingredients yield

K ′(f, t
1
q ) ≤ K ′(f − fn, t

1
q ) +K ′(fn, t

1
q )

≤ K(f − fn, t,W 1
q ,W

1
∞) +K ′(fn, t)

≤ C

(∫ t

0

|f − fn|q∗(s)ds
) 1

q

+ C

(∫ t

0

|∇f −∇fn|q∗(s)ds
) 1

q

+ C

(∫ t

0

|∇fn|q∗(s)ds
) 1

q

.(4.2)

Now we invoke the following theorem from [13] page 67-68 stated there in the
Euclidean case. As the proof is the same, we state it in the more general case:

Theorem 4.2. Let M be a measured space. Consider a sequence of measurable
functions (ψn)n and g on M such that µ{|g| > λ} < ∞ for all λ > 0 with
|ψn(x)| ≤ |g(x)|. If ψn(x)→ ψ(x) µ− a.e. then (ψ − ψn)∗(t)→ 0 ∀t > 0.

We apply this theorem three times:
a. with ψn = |f − fn|q, ψ = 0 and g = 2qf q. Using the Lebesgue dominated

convergence theorem we obtain
∫ t

0
|f − fn|q∗(s)ds→ 0.

b. with ψn = |∇f − ∇fn|q, ψ = 0 and g = C(|∇f |q + |f |q), where C only
depends on q, since

∇fn = ∇f11B(p0,n) +

(
1

n
fϕ′(

d(x, p0)

n
)∇(d(x, p0)) +∇fϕ(

d(x, p0)

n
)

)
11B(p0,n)c .

So again by the Lebesgue dominated convergence theorem we get
∫ t

0
|∇f−

∇fn|q∗(s)ds→ 0.
c. with ψn = |∇fn|q, ψ = |∇f |q and g = C(|∇f |q + |f |q), C only depending

on q, so we get
∫ t

0
|∇fn|q∗(s)ds→

∫ t
0
|∇f |q∗(s)ds.

Passing to the limit in (4.2) yields K ′(f, t
1
q ) ≤ Ct

1
q |∇f |q∗∗

1
q (t) and finishes the proof.

�

Proof of Theorem 1.1. Let t > 0, f ∈ W 1
q +W 1

∞ such that f ∗(∞) = 0 and |∇f |∗(∞) =
0. As in [15], proof of Theorem 1.1, (i), it is enough to prove that

(4.3) |f − Ptf |q∗∗
1
q (s) ≤ Ct

1
2 |∇f |q∗∗

1
q (s).

The main tool will be the pseudo-Poincaré inequalities (P ′q), (P ′∞) and Theorem 4.1.

Let f ∈ W 1
q +W 1

∞ such that f ∗(∞) = 0 and |∇f |∗(∞) = 0. Assume that f = h+ g

with h ∈ W 1
q , g ∈ W 1

∞. We write

f − Ptf = (h− Pth) + (g − Ptg).

Let s > 0. The pseudo-Poincaré inequalities (P ′q) and (P ′∞) yield

‖h− Pth‖q + s
1
q ‖g − Ptg‖∞ ≤ Ct

1
2 (‖ |∇h| ‖q + s

1
q ‖ |∇g| ‖∞).
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Since

K(f, s
1
q , Lq, L∞) ∼

(∫ s

0

(f ∗(u))qdu
) 1
q

= s
1
q |f |q∗∗

1
q (s)

we obtain

s
1
q |f − Ptf |q∗∗

1
q (s) ∼ inf

f−Ptf=h′+g′

h′∈Lq , g′∈L∞

(‖h′‖q + s
1
q ‖g′‖∞)

≤ inf
f=h+g

h∈W 1
q , g∈W 1

∞

(‖h− Pth‖q + s
1
q ‖g − Ptg‖∞)

≤ Ct
1
2 inf

f=h+g
h∈W 1

q , g∈W 1
∞

(‖ |∇h| ‖q + s
1
q ‖ |∇g| ‖∞)

= Ct
1
2K ′(f, s

1
q ).

Applying Theorem 4.1, we obtain the desired inequality (4.3). �

Proof of Theorem 1.6. The proof of this theorem is similar to that of Theorem 1.1. Here
the key ingredients are the pseudo-Poincaré inequality for averages (P ′′q ) that holds

for all f ∈ Ė1
q . This pseudo-Poincaré inequality follows from (D) and the Poincaré

inequality (Pq). We also make use of Theorem 4.1. �

Proof of Theorem 1.8. The proof goes as in [15], proof of Theorem 1.1, (iii). �

Proof of Theorem 1.9. Same proof as that of Theorem 4 in [15] noting that |g|∗ = |g|q∗
1
q

and |g|∗ ≤ |g|∗∗. �

Remark 4.3. Let M be a complete Riemannian manifold satisfying (D) and (Pq) for
some 1 ≤ q < ∞. Then Theorem 1.9 holds replacing the Besov norm B−1

∞,∞ by the

Morrey norm M−1
∞ . This can be proved using Theorem 1.6.
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