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Abstract. We hereby study the interpolation property of Sobolev spaces of order
1 denoted by W 1

p,V , arising from Schrödinger operators with positive potential. We
show that for 1 ≤ p1 < p < p2 < q0 with p > s0, W 1

p,V is a real interpolation
space between W 1

p1,V and W 1
p2,V on some classes of manifolds and Lie groups. The

constants s0, q0 depend on our hypotheses.
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1. Introduction

In [3], the Schrödinger operator −∆ + V on Rn with V ∈ A∞, the Muckenhoupt
class (see [18]), is studied and the question whether the spaces defined by the norm

(∗) ‖f‖p + ‖ |∇f | ‖p + ‖V
1
2f‖p or ‖ |∇f | ‖p + ‖V

1
2f‖p

interpolate is posed. In fact, it is shown that

‖ |∇f | ‖p + ‖V
1
2f‖p ∼ ‖(−∆ + V )

1
2f‖p
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whenever 1 < p < ∞ and p ≤ 2q, f ∈ C∞0 (Rn), where q > 1 is a reverse Hölder
exponent of V . Hence the question of interpolation can be solved a posteriori using
functional calculus and interpolation of Lp spaces. However, it is reasonable to expect
a direct proof of the interpolation properties of the norms in (∗) that is not only valid
on Rn but also on other geometric settings.

Here we provide such an argument with p lying in an interval depending on the
Reverse Hölder exponent of V by estimating the K-functional of real interpolation.
The particular case V = 1 is treated in [7] (also V = 0), the general case requires
involved use of properties of Muckenhoupt weights. The method is actually valid on
some Lie groups and even some Riemannian manifolds in which we place ourselves.
Let us consider the following statements:

Definition 1.1. Let M be a Riemannian manifold, V ∈ A∞. Consider for 1 ≤ p <∞,
the vector space E1

p,V of C∞ functions f on M such that f, |∇f | and V f ∈ Lp(M).

We define the Sobolev space W 1
p,V (M) = W 1

p,V as the completion of E1
p,V for the norm

‖f‖W 1
p,V

= ‖f‖p + ‖ |∇f | ‖p + ‖V f‖p.

Definition 1.2. We denote by W 1
∞,V (M) = W 1

∞,V the space of all bounded Lipschitz
functions f on M with ‖V f‖∞ <∞.

We have the following interpolation theorem for the non-homogeneous Sobolev
spaces W 1

p,V :

Theorem 1.3. Let M be a complete Riemannian manifold satisfying a local doubling
property (Dloc). Let V ∈ RHqloc for some 1 < q ≤ ∞. Assume that M admits a local
Poincaré inequality (Psloc) for some 1 ≤ s < q. Then for 1 ≤ r ≤ s < p < q, W 1

p,V is

a real interpolation space between W 1
r,V and W 1

q,V .

Definition 1.4. Let M be a Riemannian manifold, V ∈ A∞. Consider for 1 ≤ p <∞,
the vector space Ẇ 1

p,V of distributions f such that |∇f | and V f ∈ Lp(M). It is well

known that the elements of Ẇ 1
p,V are in Lp,loc. We equip Ẇ 1

p,V with the semi-norm

‖f‖Ẇ 1
p,V

= ‖ |∇f | ‖p + ‖V f‖p.

In fact, this expression is a norm since V ∈ A∞ yields V > 0 µ− a.e.
Definition 1.5. We denote Ẇ 1

∞,V (M) = Ẇ 1
∞,V the space of all Lipschitz functions f

on M with ‖V f‖∞ <∞.

For the homogeneous Sobolev spaces Ẇ 1
p,V , we have

Theorem 1.6. Let M be a complete Riemannian manifold satisfying (D). Let V ∈
RHq for some 1 < q ≤ ∞ and assume that M admits a Poincaré inequality (Ps) for

some 1 ≤ s < q. Then, for 1 ≤ r ≤ s < p < q, Ẇ 1
p,V is a real interpolation space

between Ẇ 1
r,V and Ẇ 1

q,V .

It is known that if V ∈ RHq then V + 1 ∈ RHq with comparable constants. Hence
part of Theorem 1.3 can be seen as a corollary of Theorem 1.6. But the fact that
V + 1 is bounded away from 0 also allows local assumptions in Theorem 1.3, which is
why we distinguish in this way the non-homogeneous and the homogeneous case.

The proof of Theorem 1.3 and Theorem 1.6 is done by estimating the K-functional
of interpolation. We were not able to obtain a characterization of the K-functional.
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However, this suffices for our needs. When q = ∞ (for example if V is a positive
polynomial on Rn) and r = s, then there is a characterization. The key tools to
estimate the K-functional will be a Calderón-Zygmund decomposition for Sobolev
functions and the Fefferman-Phong inequality (see section 3).

Some comments on Theorems 1.3 and 1.6. One can not improve the condition s < p
in these theorems even in the case V = 1 or V = 0 (see [2]).
These interpolation theorems are new even in the Euclidian case. On Rn, this result
was only known in the particular case V = 1 (see [17], [9], [12]).
We apply them in our forthcoming paper with B. Ben Ali [8] devoted to the study
of the Lp boundedness of the Riesz tranform associated to Schrödinger operators and
its inverse on Riemannian manifolds and Lie groups. Although the two papers have
some similar techniques, the objective is different in each.

We end this introduction with a plan of the paper. In section 2, we review the
notions of doubling property, Poincaré inequality, Reverse Hölder classes as well as
the real K interpolation method. At the end of this section, we summarize some
properties for the Sobolev spaces defined above under some additional hypotheses on
M and V . Section 3 is devoted to give the main tools: the Fefferman-Phong inequality
and a Calderón-Zygmund decomposition adapted to our Sobolev spaces. In section
4, we estimate the K-functional of real interpolation for non-homogeneous Sobolev
spaces in two steps: first of all for the global case and secondly for the local case.
We interpolate and get Theorem 1.3 in section 5. Section 6 concerns the proof of
Theorem 1.6. Finally, in section 7, we apply our interpolation result on Lie groups
with an appropriate definition of W 1

p,V .

Acknowledgements. I would like to thank my Ph.D advisor P. Auscher for the useful
discussions on the topic of this paper.

2. Preliminaries

Throughout this paper we write 11E for the characteristic function of a set E and
Ec for the complement of E. For a ball B in a metric space, λB denotes the ball
co-centered with B and with radius λ times that of B. Finally, C will be a constant
that may change from an inequality to another and we will use u ∼ v to say that there
exist two constants C1, C2 > 0 such that C1u ≤ v ≤ C2u. Let M denote a complete
non-compact Riemannian manifold. We write µ for the Riemannian measure on M ,
∇ for the Riemannian gradient, | · | for the length on the tangent space (forgetting
the subscript x for simplicity) and ‖ · ‖p for the norm on Lp(M,µ), 1 ≤ p ≤ +∞.

2.1. The doubling property and Poincaré inequality.

Definition 2.1. Let (M,d, µ) be a Riemannian manifold. Denote by B(x, r) the open
ball of center x ∈ M and radius r > 0. One says that M satisfies the local doubling
property (Dloc) if there exist constants r0 > 0, 0 < C = C(r0) < ∞, such that for all
x ∈M, 0 < r < r0 we have

(Dloc) µ(B(x, 2r)) ≤ Cµ(B(x, r)).
3



Furthermore, M satisfies a global doubling property or simply doubling property (D)
if one can take r0 =∞. We also say that µ is a locally (resp. globally) doubling Borel
measure.

Observe that if M satisfies (D) then

diam(M) <∞⇔ µ(M) <∞ ([1]).

Theorem 2.2 (Maximal theorem). ([13]) Let M be a Riemannian manifold satisfying
(D). Denote by M the uncentered Hardy-Littlewood maximal function over open balls
of M defined by

Mf(x) = sup
B:x∈B

|f |B

where fE := −
∫
E

fdµ :=
1

µ(E)

∫
E

fdµ. Then

1. µ({x : Mf(x) > λ}) ≤ C
λ

∫
M
|f |dµ for every λ > 0;

2. ‖Mf‖p ≤ Cp‖f‖p, for 1 < p ≤ ∞.

2.2. Poincaré inequality.

Definition 2.3 (Poincaré inequality on M). Let M be a complete Riemannian man-
ifold, 1 ≤ s < ∞. We say that M admits a local Poincaré inequality (Psloc) if
there exist constants r1 > 0, C = C(r1) > 0 such that, for every function f ∈ C∞0 ,
and every ball B of M of radius 0 < r < r1, we have

(Psloc) −
∫
B

|f − fB|sdµ ≤ Crs −
∫
B

|∇f |sdµ.

M admits a global Poincaré inequality (Ps) if we can take r1 =∞ in this definition.

Remark 2.4. By density of C∞0 in W 1
s , if (Psloc) holds for every function f ∈ C∞0 ,

then it holds for every f ∈ W 1
s .

Let us recall some known facts about Poincaré inequality with varying s. It is known
that (Psloc) implies (Pploc) when p ≥ s (see [21]). Thus, if the set of s such that (Psloc)
holds is not empty, then it is an interval unbounded on the right. A recent result from
Keith-Zhong [24] asserts that this interval is open in [1,+∞[ in the following sense:

Theorem 2.5. Let (X, d, µ) be a complete metric-measure space with µ locally dou-
bling and admitting a local Poincaré inequality (Psloc), for some 1 < s < ∞. Then
there exists ε > 0 such that (X, d, µ) admits (Pploc) for every p > s − ε (see [24] and
[7], section 4).

2.3. Reverse Hölder classes.

Definition 2.6. Let M be a Riemannian manifold. A weight w is a non-negative
locally integrable function on M . We say that w ∈ Ap for 1 < p < ∞ if there is a
constant C such that for every ball B ⊂M(

−
∫
B

wdµ

)(
−
∫
B

w
1

1−pdµ

)p−1

≤ C.

For p = 1, w ∈ A1 if there is a constant C such that for every ball B ⊂M

−
∫
B

wdµ ≤ Cw(y) for µ− a.e. y ∈ B.
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We pose A∞ =
⋃

1≤p<∞Ap.

Definition 2.7. Let M be a Riemannian manifold. The reverse Hölder classes are
defined in the following way: a weight w ∈ RHq, 1 < q <∞, if

1. wdµ is a doubling measure;
2. there exists a constant C such that for every ball B ⊂M

(2.1)

(
−
∫
B

wqdµ

) 1
q

≤ C −
∫
B

wdµ.

The endpoint q = ∞ is given by the condition: w ∈ RH∞ whenever, wdµ is
doubling and for any ball B,

(2.2) w(x) ≤ C −
∫
B

w for µ− a.e. x ∈ B.

We say that w ∈ RHqloc for some 1 < q < ∞ (resp. q = ∞) if wdµ is locally
doubling and there exists r2 > 0 such that (2.1) (resp. (2.2)) holds for all balls B of
radius 0 < r < r2.
The smallest C is called the RHq (resp. RHqloc) constant of w.

On Rn, the condition wdµ doubling is superfluous. It could be the same on a
Riemannian manifold.

Proposition 2.8. ([28], [18])

1. RH∞ ⊂ RHq ⊂ RHp for 1 < p ≤ q ≤ ∞.
2. If w ∈ RHq, 1 < q <∞, then there exists q < p <∞ such that w ∈ RHp.
3. A∞ =

⋃
1<q≤∞RHq.

Proof. These properties are standard, see for instance [28], [18]. �

Proposition 2.9. (see section 11 in [3], [23]) Let V be a non-negative measurable
function. Then the following properties are equivalent:

1. V ∈ A∞.
2. For all r ∈]0, 1[, V r ∈ RH 1

r
.

3. There exists r ∈]0, 1[, V r ∈ RH 1
r
.

Remark 2.10. Propositions 2.8 and 2.9 still hold in the local case, that is, when the
weights are considered in a local reverse Hölder class RHqloc for some 1 < q ≤ ∞.

2.4. The K method of real interpolation. The reader is referred to [9], [10] for
details on the development of this theory. Here we only recall the essentials to be used
in the sequel.

Let A0, A1 be two normed vector spaces embedded in a topological Hausdorff vector
space V , and define for a ∈ A0 + A1 and t > 0,

K(a, t, A0, A1) = inf
a=a0+a1

(‖a0‖A0 + t‖a1‖A1).

For 0 < θ < 1, 1 ≤ q ≤ ∞, we denote by (A0, A1)θ,q the interpolation space between
A0 and A1:

(A0, A1)θ,q =

{
a ∈ A0 + A1 : ‖a‖θ,q =

(∫ ∞
0

(t−θK(a, t, A0, A1))q
dt

t

) 1
q

<∞

}
.
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It is an exact interpolation space of exponent θ between A0 and A1, see [10] Chapter
II.

Definition 2.11. Let f be a measurable function on a measure space (X,µ). We
denote by f ∗ its decreasing rearrangement function: for every t > 0,

f ∗(t) = inf {λ : µ({x : |f(x)| > λ}) ≤ t} .

We denote by f ∗∗ the maximal decreasing rearrangement of f : for every t > 0,

f ∗∗(t) =
1

t

∫ t

0

f ∗(s)ds.

It is known that (Mf)∗ ∼ f ∗∗ and µ({x : |f(x)| > f ∗(t)}) ≤ t for all t > 0. We
refer to [9], [10], [11] for other properties of f ∗ and f ∗∗.

To end with this subsection let us quote the following theorem ([22]):

Theorem 2.12. Let (X,µ) be a measure space where µ is a non-atomic positive
measure. Take 0 < p0 < p1 <∞. Then

K(f, t, Lp0 , Lp1) ∼
(∫ tα

0

(f ∗(u))p0du

) 1
p0

+ t

(∫ ∞
tα

(f ∗(u))p1du

) 1
p1

,

where 1
α

= 1
p0
− 1

p1
.

2.5. Sobolev spaces associated to a weight V . For the definition of the non-
homogeneous Sobolev spaces W 1

p,V and the homogeneous one Ẇ 1
p,V see the introduc-

tion. We begin showing that W 1
∞,V and Ẇ 1

p,V are Banach spaces.

Proposition 2.13. W 1
∞,V equipped with the norm

‖f‖W 1
∞,V

= ‖f‖∞ + ‖ |∇f | ‖∞ + ‖V f‖∞

is a Banach space.

Proof. Let (fn)n be a Cauchy sequence in W 1
∞,V . Then it is a Cauchy sequence in W 1

∞
and converges to f in W 1

∞. Hence V fn → V f µ− a.e. On the other hand, V fn → g
in L∞, then µ− a.e. The uniqueness of the limit gives us g = V f . �

Proposition 2.14. Let M be a complete Riemannian manifold satisfying (D) and
admitting a Poincaré inequality (Ps) for some 1 ≤ s < ∞ and that V ∈ A∞. Then,
for s ≤ p ≤ ∞, Ẇ 1

p,V equipped with the norm

‖f‖Ẇ 1
p,V

= ‖ |∇f | ‖p + ‖V f‖p

is a Banach space.

Proof. Let (fn)n be a Cauchy sequence in Ẇ 1
p,V . There exist a sequence of functions

(gn)n and a sequence of scalar (cn)n with gn = fn − cn converging to a function g in
Lp,loc and ∇gn converging to ∇g in Lp (see [19]). Moreover, since (V fn)n is a Cauchy
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sequence in Lp, it converges to a function h µ − a.e. Lemma 3.1 in section 3 below
yields ∫

B

(|∇(fn − fm)|s + |V (fn − fm)|s) dµ ≥ C(B, V )

∫
B

|fn − fm|sdµ

for all ball B of M . Thus, (fn)n is a Cauchy sequence in Ls,loc. Since (fn − cn) is
also Cauchy in Ls,loc, the sequence of constants (cn)n is Cauchy in Ls,loc and therefore
converges to a locally constant function c. By connexity of M , c is actually constant
on M . Take f := g + c. We have gn + c = fn − cn + c → f in Lp,loc. It follows that
fn → f in Lp,loc and so V fn → V f µ − a.e. The uniqueness of the limit gives us

h = V f . Hence, we conclude that f ∈ Ẇ 1
p,V and fn → f in Ẇ 1

p,V which finishes the
proof. �

In the following proposition we characterize the W 1
p,V . We have

Proposition 2.15. Let M be a complete Riemannian manifold and let V ∈ RHqloc

for some 1 < q <∞. Consider, for 1 ≤ p ≤ q,

H1
p,V (M) = H1

p,V = {f ∈ Lp : |∇f | and V f ∈ Lp}

and equip it with the same norm as W 1
p,V . Then C∞0 is dense in H1

p,V and hence

W 1
p,V = H1

p,V .

Proof. See the Appendix. �

Therefore, under the hypotheses of Proposition 2.15, W 1
p,V is the set of distributions

f ∈ Lp such that |∇f | and V f belong to Lp.

3. Principal tools

We shall use the following form of Fefferman-Phong inequality. The proof is com-
pletely analogous to the one in Rn ( see [26], [3]):

Lemma 3.1. (Fefferman-Phong inequality). Let M be a complete Riemannian man-
ifold satisfying (D). Let w ∈ A∞ and 1 ≤ p < ∞. We assume that M admits also
a Poincaré inequality (Pp). Then there is a constant C > 0 depending only on the
A∞ constant of w, p and the constants in (D), (Pp), such that for all ball B of radius
R > 0 and u ∈ W 1

p,loc∫
B

(|∇u|p + w|u|p)dµ ≥ C min(R−p, wB)

∫
B

|u|pdµ.

Proof. Since M admits a (Pp) Poincaré inequality, we have∫
B

|∇u|pdµ ≥ C

Rpµ(B)

∫
B

∫
B

|u(x)− u(y)|pdµ(x)dµ(y).

This and ∫
B

w|u|pdµ =
1

µ(B)

∫
B

∫
B

w(x)|u(x)|pdµ(x)dµ(y)

lead easily to ∫
B

(|∇u|p + w|u|p)dµ ≥ [min(CR−p, w)]B

∫
B

|u|pdµ.
7



Now we use that w ∈ A∞: there exists ε > 0, independent of B, such that E =
{x ∈ B : w(x) > εwB} satisfies µ(E) > 1

2
µ(B). Indeed, since w ∈ A∞ then there

exists 1 ≤ p <∞ such that w ∈ Ap. Therefore,

µ(B \ E)

µ(B)
≤ C

(
w(B \ E)

w(B)

) 1
p

≤ Cε
1
p .

We take ε > 0 such that Cε
1
p < 1

2
. We obtain then

[min(CR−p, w)]B ≥
1

2
min(CR−p, εwB) ≥ C ′min(R−p, wB).

This proves the desired inequality and finishes the proof. �

We proceed to establish two versions of a Calderón-Zygmund decomposition. De-
note Trf = |f |r + |∇f |r + |V f |r for 1 ≤ r <∞.

Proposition 3.2. Let M be a complete non-compact Riemannian manifold satisfying
(D). Let V ∈ RHq, for some 1 < q < ∞ and assume that M admits a Poincaré
inequality (Ps) for some 1 ≤ s < q. Let f ∈ W 1

p,V , s ≤ p < q, and α > 0. Then one

can find a collection of balls (Bi), functions g ∈ W 1
q,V and bi ∈ W 1

s,V with the following
properties

(3.1) f = g +
∑
i

bi

(3.2)

∫
S
iBi

Tqg dµ ≤ Cαqµ(
⋃
i

Bi)

(3.3) supp bi ⊂ Bi,

∫
Bi

Tsbi dµ ≤ Cαsµ(Bi)

(3.4)
∑
i

µ(Bi) ≤
C

αp

∫
M

Tpf dµ

(3.5)
∑
i

11Bi ≤ N

where N, C depend only on the constants in (D), (Ps), p and the RHq constant of V .

Proof. Let f ∈ W 1
p,V , α > 0. Consider Ω = {x ∈M :MTsf(x) > αs}. If Ω = ∅, then

set
g = f, bi = 0 for all i

so that (3.2) is satisfied thanks to the Lebesgue differentiation theorem. Otherwise,
the maximal theorem –Theorem 2.2– and p ≥ s yield

(3.6) µ(Ω) ≤ C

αp

∫
M

Tpf dµ <∞.

In particular Ω 6= M as µ(M) = ∞. Let F be the complement of Ω. Since Ω is an
open set distinct from M , let (Bi) be a Whitney decomposition of Ω ([14]). That
is, the balls Bi are pairwise disjoint and there exist two constants C2 > C1 > 1,
depending only on the metric, such that

1. Ω =
⋃
iBi with Bi = C1Bi and the balls Bi have the bounded overlap property;
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2. ri = r(Bi) = 1
2
d(xi, F ) and xi is the center of Bi;

3. each ball Bi = C2Bi intersects F (C2 = 4C1 works).

For x ∈ Ω, denote Ix = {i : x ∈ Bi}. By the bounded overlap property of the balls Bi,
we have that ]Ix ≤ N . Fixing j ∈ Ix and using the properties of the Bi’s, we easily
see that 1

3
ri ≤ rj ≤ 3ri for all i ∈ Ix. In particular, Bi ⊂ 7Bj for all i ∈ Ix.

Condition (3.5) is nothing but the bounded overlap property of the Bi’s and (3.4)
follows from (3.5) and (3.6). Note that V ∈ RHq implies V q ∈ A∞ because there
exists ε > 0 such that V ∈ RHq+ε and hence V q ∈ RH1+ ε

q
. Proposition 2.9 shows

then that V s ∈ RH q
s
. Applying Lemma 3.1, one gets

(3.7)

∫
Bi

(|∇f |s + |V f |s)dµ ≥ C min(V s
Bi
, r−si )

∫
Bi

|f |sdµ.

We declare Bi of type 1 if V s
Bi
≥ r−si and of type 2 if V s

Bi
< r−si . One should read V s

Bi

as (V s)Bi but this is also equivalent to (VBi)
s since V ∈ RHq ⊂ RHs.

Let us now define the functions bi. For this, we construct (χi)i a partition of unity
of Ω subordinated to the covering (Bi). Each χi is a Lipschitz function supported in

Bi with ‖ |∇χi| ‖∞ ≤
C

ri
, for instance χi(x) = ψ(

C1d(xi, x)

ri
)
(∑

k

ψ(
C1d(xk, x)

rk
)
)−1

,

where ψ is a smooth function, ψ = 1 on [0, 1], ψ = 0 on [1+C1

2
,+∞[ and 0 ≤ ψ ≤ 1.

Set

bi =

{
fχi if Bi of type 1,

(f − fBi)χi ifBi of type 2.

Let us estimate
∫
Bi
Tsbi dµ. We distinguish two cases:

1. If Bi is of type 2, then∫
Bi

|bi|sdµ =

∫
Bi

|(f − fBi)χi|sdµ

≤ C

(∫
Bi

|f |sdµ+

∫
Bi

|fBi |sdµ
)

≤ C

∫
Bi

|f |sdµ

≤ C

∫
Bi

|f |sdµ

≤ Cαsµ(Bi)

≤ Cαsµ(Bi)

where we used that Bi∩F 6= ∅ and the property (D). The Poincaré inequality
(Ps) gives us ∫

Bi

|∇bi|sdµ ≤ C

∫
Bi

|∇f |sdµ

≤ CMTsf(y)µ(Bi)

≤ Cαsµ(Bi)

9



as y can be chosen in F ∩Bi. Finally,∫
Bi

|V bi|sdµ =

∫
Bi

|V (f − fBi)χi|sdµ

≤ C

∫
Bi

|V f |sdµ+ C

∫
Bi

|V fBi |sdµ

≤ C(|V f |s)Biµ(Bi) + C(V s)Bi(|f |s)Biµ(Bi)

≤ Cαsµ(Bi) + C (|∇f |s + |V f |s)Bi µ(Bi)

≤ Cαsµ(Bi).

We used that Bi ∩ F 6= ∅, Jensen’s inequality and (3.7), noting that Bi is of
type 2.

2. If Bi is of type 1, then∫
Bi

Tsbi dµ ≤ C

∫
Bi

Tsf dµ+ Cr−si

∫
Bi

|f |sdµ

≤ C

∫
Bi

Tsf dµ

≤ Cαsµ(Bi)

where we used that Bi ∩ F 6= ∅ and that Bi is of type 1.

Set now g = f −
∑

i bi, where the sum is over balls of both types and is locally
finite by (3.5). The function g is defined almost everywhere on M , g = f on F
and g =

∑
2fBiχi on Ω where

∑
k means that we are summing over balls of type

k. Observe that g is a locally integrable function on M . Indeed, let ϕ ∈ L∞ with
compact support. Since d(x, F ) ≥ ri for x ∈ supp bi, we obtain∫ ∑

i

|bi| |ϕ| dµ ≤
(∫ ∑

i

|bi|
ri
dµ
)

sup
x∈M

(
d(x, F )|ϕ(x)|

)
.

If Bi is of type 2, then ∫
|bi|
ri
dµ =

∫
Bi

|f − fBi |
ri

χi dµ

≤
(
µ(Bi)

) 1
s′
(∫

Bi

|∇f |sdµ
) 1
s

≤ Cαµ(Bi).

We used the Hölder inequality, (Ps) and that Bi ∩ F 6= ∅, s′ being the conjugate of s.
If Bi is of type 1, then∫

|bi|
ri
dµ ≤ µ(Bi)

1
s′

(∫
Bi

|bi|s

rsi
dµ

) 1
s

≤ µ(Bi)
1
s′ r−si

(∫
Bi

|f |sdµ
) 1

s

≤ Cµ(Bi)
1
s′

(∫
Bi

(|∇f |s + |V f |s)dµ
) 1

s

10



≤ Cαµ(Bi).

Hence

∫ ∑
i

|bi||ϕ|dµ ≤ Cαµ(Ω) sup
x∈M

(
d(x, F )|ϕ(x)|

)
. Since f ∈ L1,loc, we conclude

that g ∈ L1,loc. (Note that since b ∈ L1 in our case, we can say directly that g ∈ L1,loc.
However, for the homogeneous case –section 5– we need this observation to conclude
that g ∈ L1,loc.)

It remains to prove (3.2). Note that
∑
i

χi(x) = 1 for all x ∈ Ω. A computation of

the sum
∑

i∇bi leads us to

∇g = 11F (∇f)−
∑

1f∇χi −
∑

2 (f − fBi) ∇χi.

Set hk =
∑

k (f − fBi) ∇χi and h = h1 + h2. Then

∇g = (∇f)11F −
∑

1f∇χi − (h− h1) = (∇f)11F −
∑

1fBi∇χi − h.

By definition of F and the differentiation theorem, |∇g| is bounded by α almost
everywhere on F . By already seen arguments for type 1 balls, |fBi | ≤ Cαri. Therefore,
|
∑

1fBi∇χi| ≤ C
∑

1 11Biα ≤ CNα. It remains to control ‖h‖∞. For this, note first
that h vanishes on F and the sum defining h is locally finite on Ω. Then fix x ∈ Ω.
Observe that

∑
i∇χi(x) = 0 and by definition of Ix, the sum reduces i ∈ Ix. Hence,

for all j ∈ Ix,∑
i

(f(x)− fBi)∇χi(x) =
∑
i∈Ix

(f(x)− fBi)∇χi(x) =
∑
i∈Ix

(fBj − fBi)∇χi(x).

We claim that |fBi − fBj | ≤ crjα. Indeed, since Bi ⊂ 7Bj, we get

|fBi − f7Bj | ≤
1

µ(Bi)

∫
Bi

|f − f7Bj |dµ

≤ C

µ(Bj)

∫
7Bj

|f − f7Bj |dµ

≤ Crj(−
∫

7Bj

|∇f |qdµ)
1
q

≤ Crjα(3.8)

where we used Hölder inequality, (D), (Pq) and that Bi ∩ F 6= ∅. Analogously,
|f7Bj − fBj | ≤ Crjα. Thus

|h(x)| = |
∑
i∈Ix

(fBj − fBi)∇χi(x)|

≤ C
∑
i∈Ix

|fBj − fBi |r−1
i

≤ CNα.

Let us now estimate
∫

Ω
Tqg dµ. We have∫

Ω

|g|qdµ =

∫
M

|(
∑

2fBiχi)|qdµ

≤ C
∑

2|fBi |qµ(Bi)
11



≤ CNαqµ(Ω).

We used the estimate

(|f |Bi)s ≤ (|f |s)Bi ≤ (MTsf)(y) ≤ αs

as y can be chosen in F ∩Bi. For |∇g|, we have∫
Ω

|∇g|qdµ =

∫
Ω

|h2|qdµ

≤ Cαqµ(Ω).

Finally, since by Proposition 2.9 V s ∈ RH q
s
, it comes that∫

Ω

V q|g|qdµ ≤
∑

2

∫
Bi

V q|fBi |qdµ

≤ C
∑

2(V s
Bi
|fBi |s)

q
sµ(Bi).

By construction of the type 2 balls and by (3.7) we have V s
Bi
|fBi |s ≤ V s

Bi
(|f |s)Bi ≤

C(|∇f |s + |V f |s)Bi ≤ Cαs. Therefore,
∫

Ω
V q|g|qdµ ≤ C

∑
2αqµ(Bi) ≤ NCαqµ(Ω).

To finish the proof, we have to verify that g ∈ W 1
q,V . For that, we just have to

control
∫
F
Tqg dµ. As g = f on F , this readily follows from∫

F

Tqfdµ =

∫
F

(|f |q + |∇f |q + |V f |q)dµ

≤
∫
F

(|f |p|f |q−p + |∇f |p|∇f |q−p + |V f |p|V f |q−p)dµ

≤ αq−p‖f‖p
W 1
p,V
.

�

Remark 3.3. 1-It is a straightforward consequence from (3.3) that bi ∈ W 1
r,V for all

1 ≤ r ≤ s with ‖bi‖W 1
r,V
≤ Cαµ(Bi)

1
r .

2-The estimate
∫
F
Tqg dµ above is too crude to be used in the interpolation argument.

Note that (3.2) only involves control of Tqg on Ω =
⋃
iBi. Compare with (3.10) in

the next argument when q =∞.

Proposition 3.4. Let M be a complete non-compact Riemannian manifold satisfying
(D). Let V ∈ RH∞ and assume that M admits a Poincaré inequality (Ps) for some
1 ≤ s <∞. Let f ∈ W 1

p,V , s ≤ p <∞, and α > 0. Then one can find a collection of
balls (Bi), functions bi and a Lipschitz function g such that the following properties
hold:

(3.9) f = g +
∑
i

bi

(3.10) ‖g‖W 1
∞,V
≤ Cα

(3.11) supp bi ⊂ Bi, ∀ 1 ≤ r ≤ s

∫
Bi

Trbi dµ ≤ Cαrµ(Bi)

12



(3.12)
∑
i

µ(Bi) ≤
C

αp

∫
Tpf dµ

(3.13)
∑
i

χBi ≤ N

where C and N only depend on the constants in (D), (Ps), p and the RH∞ constant
of V .

Proof. The only difference between the proof of this proposition and that of Propo-
sition 3.2 is the estimate (3.10). Indeed, as we have seen in the proof of Proposition
3.2, we have |∇g| ≤ Cα almost everywhere. By definition of F and the differentiation
theorem, (|g| + |V g|) is bounded by α almost everywhere on F . We have also seen
that for all i, |f |Bi ≤ α.

Fix x ∈ Ω, then

|g(x)| = |
∑
i∈Ix

fBi |

≤
∑
i∈Ix

|fBi|

≤ Nα.

It remains to estimate |V g|(x). We have

|V g|(x) ≤
∑

2
i:x∈BiV (x)|fBi|

≤ C
∑

2
i:x∈Bi(VBi)|fBi |

≤ C
∑

2
i:x∈Bi ((V s)Bi(|f |s)Bi)

1
s

≤ C
∑

2
i:x∈Bi(|∇f |

s + |V f |s)
1
s
Bi

≤ NCα

where we used the definition of RH∞ and Jensen’s inequality as s ≥ 1. We also used
(3.7) and the bounded overlap property of the Bi’s. �

4. Estimation of the K-functional in the non-homogeneous case

Denote for 1 ≤ r <∞, Trf = |f |r + |∇f |r + |V f |r, Tr∗f = |f |r∗ + |∇f |r∗ + |V f |r∗,
Tr∗∗f = |f |r∗∗ + |∇f |r∗∗ + |V f |r∗∗. We have tTr∗∗f(t) =

∫ t
0
Tr∗f(u)du for all t > 0.

Theorem 4.1. Under the same hypotheses as in Theorem 1.3, with V ∈ RH∞loc and
1 ≤ r ≤ s <∞:

1. there exists C1 > 0 such that for every f ∈ W 1
r,V +W 1

∞,V and t > 0

K(f, t
1
r ,W 1

r,V ,W
1
∞,V ) ≥ C1

(∫ t

0

Tr∗f(u)du

) 1
r

∼ (tTr∗∗f(t))
1
r ;

2. for s ≤ p <∞, there is C2 > 0 such that for every f ∈ W 1
p,V and t > 0

K(f, t
1
r ,W 1

r,V ,W
1
∞,V ) ≤ C2t

1
r (Ts∗∗f(t))

1
s .

13



In the particular case when r = s, we obtain the upper bound of K for every f ∈
W 1
s,V +W 1

∞,V and therefore get a true characterization of K.

Proof. We refer to [7] for an analogous proof. �

Theorem 4.2. We consider the same hypotheses as in Theorem 1.3 with V ∈ RHqloc

for some 1 < q <∞. Then

1. there exists C1 such that for every f ∈ W 1
r,V +W 1

q,V and t > 0

K(f, t,W 1
r,V ,W

1
q,V ) ≥ C1

(
t

q
q−r (Tr∗∗f)

1
r (t

qr
q−r ) + t

(∫ ∞
t
qr
q−r

Tr∗f(u)du

) 1
r

)
;

2. for s ≤ p < q, there is C2 such that for every f ∈ W 1
p,V and t > 0

K(f, t,W 1
r,V ,W

1
q,V ) ≤ C2

(
t

q
q−r (Ts∗∗f)

1
s (t

qr
q−r ) + t

(∫ ∞
t
qr
q−r

(MTsf)∗
q
s (u)du

) 1
q

)
.

Proof. In a first step, we prove this theorem in the global case. This will help to
understand the proof of the more general local case.

4.1. The global case. Let M be a complete Riemannian manifold satisfying (D).
Let V ∈ RHq for some 1 < q < ∞ and assume that M admits a Poincaré inequality
(Ps) for some 1 ≤ s < q. The principal tool to prove Theorem 4.2 in this case will be
the Calderón-Zygmund decomposition of Proposition 3.2.

We prove the left inequality by applying Theorem 2.12 with p0 = r and p1 = q
which gives for all f ∈ Lr + Lq:

K(f, t, Lr, Lq) ∼

∫ t
qr
q−r

0

f ∗r(u)du

 1
r

+ t

(∫ ∞
t
qr
q−r

f ∗q(u)du

) 1
q

.

Moreover, we have

K(f, t,W 1
r,V ,W

1
q,V ) ≥ K(f, t, Lr, Lq) +K(|∇f |, t, Lr, Lq) +K(V f, t, Lr, Lq)

since the operator

(I, ∇, V ) : W 1
l,V → Ll(M ; C× TM × C)

is bounded for every 1 ≤ l ≤ ∞.
Hence, we conclude that

K(f, t,W 1
r,V ,W

1
q,V ) ≥ C

∫ t
qr
q−r

0

Tr∗f(u)du

 1
r

+ Ct

(∫ ∞
t
qr
q−r

Tq∗f(u)du

) 1
q

.

We now prove item 2. Let f ∈ W 1
p,V , s ≤ p < q and t > 0. We consider the

Calderón-Zygmund decomposition of f given by Proposition 3.2 with α = α(t) =

(MTsf)∗
1
s (t

qr
q−r ). Thus f can be written as f = b + g with b =

∑
i

bi where (bi)i, g

satisfy the properties of the proposition. For the Lr norm of b, we have

‖b‖rr ≤
∫
M

(
∑
i

|bi|)rdµ

14



≤ N
∑
i

∫
Bi

|bi|rdµ

≤ Cαr(t)
∑
i

µ(Bi)

≤ NCαr(t)µ(Ωt).

This follows from the fact that
∑
i

χBi ≤ N and Ωt = Ω =
⋃
i

Bi. Similarly, we

obtain ‖ |∇b| ‖rr ≤ Cαr(t)µ(Ωt) and ‖V b‖rr ≤ Cαr(t)µ(Ωt). For g, we have ‖g‖W 1
q,V
≤

Cα(t)µ(Ωt)
1
q +
(∫

Ft
Tqfdµ

) 1
q
, where Ft = F in the Proposition 3.2 with this choice of

α.
Moreover, since (Mf)∗ ∼ f ∗∗ and (f + g)∗∗ ≤ f ∗∗ + g∗∗, we obtain

α(t) = (MTsf)∗
1
s (t

qr
q−r ) ≤ C(Ts∗∗f)

1
s (t

qr
q−r ).

Notice that for every t > 0, µ(Ωt) ≤ t
qr
q−r . It comes that

(4.1) K(f, t,W 1
r,V ,W

1
q,V ) ≤ Ct

q
q−r (Ts∗∗f)

1
s (t

qr
q−r ) + Ct

(∫
Ft

Tqfdµ

) 1
q

.

Let us estimate
∫
Ft
Tqfdµ. Consider Et a measurable set such that

Ωt ⊂ Et ⊂
{
x :MTsf(x) ≥ (MTsf)∗(t

qr
q−r )

}
and µ(Et) = t

qr
q−r . Remark that

∫
Et

(MTsf)ldµ =
∫ t qrq−r

0
(MTsf)∗l(u)du for l ≥ 1 (see

[27], Chapter V, Lemma 3.17). Denote Gt := Et \ Ωt. Then∫
Ft

Tqfdµ =

∫
Ect

Tqfdµ+

∫
Gt

Tqfdµ

≤ C

∫ ∞
t
qr
q−r

(MTsf)∗
q
s (u)du+ Cµ(Gt)(Ts∗∗f)

q
s (t

qr
q−r )

≤ C

∫ ∞
t
qr
q−r

(MTsf)∗
q
s (u)du+ Cµ(Et)(Ts∗∗f)

q
s (t

qr
q−r )

= C

∫ ∞
t
qr
q−r

(MTsf)∗
q
s (u)du+ Ct

qr
q−r (Ts∗∗f)

q
s (t

qr
q−r ).(4.2)

Combining (4.1) and (4.2), we deduce that

K(f, t,W 1
r,V ,W

1
q,V ) ≤ Ct

q
q−r (Ts∗∗f)

1
s (t

qr
q−r ) + Ct

(∫ ∞
t
qr
q−r

(MTsf)∗
q
s (u)du

) 1
q

which finishes the proof in that case.

4.2. The local case. Let M be a complete non-compact Riemannian manifold sat-
isfying a local doubling property (Dloc). Consider V ∈ RHqloc for some 1 < q < ∞
and assume that M admits a local Poincaré inequality (Psloc) for some 1 ≤ s < q.
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Denote by ME the Hardy-Littlewood maximal operator relative to a measurable
subset E of M , that is, for x ∈ E and every f locally integrable function on M :

MEf(x) = sup
B:x∈B

1

µ(B ∩ E)

∫
B∩E
|f |dµ

where B ranges over all open balls of M containing x and centered in E. We say
that a measurable subset E of M has the relative doubling property if there exists a
constant CE such that for all x ∈ E and r > 0 we have

µ(B(x, 2r) ∩ E) ≤ CEµ(B(x, r) ∩ E).

This is equivalent to saying that the metric measure space (E, d/E, µ/E) has the dou-
bling property. On such a setME is of weak type (1, 1) and bounded on Lp(E, µ), 1 <
p ≤ ∞.

We now prove Theorem 4.2 in the local case. To fix ideas, we assume r0 = 5, r1 = 8,
r2 = 2. The lower bound of K in item 1. is trivial (same proof as for the global case).

It remains to prove the upper bound. For all t > 0, take α = α(t) = (MTsf)∗
1
s (t

qr
q−r ).

Consider
Ω = {x ∈M :MTsf(x) > αs(t)} .

We have µ(Ω) ≤ t
qr
q−r . If Ω = M , then∫

M

Trf dµ =

∫
Ω

Trf dµ

≤ C

∫ µ(Ω)

0

Tr∗f(l)dl

≤ C

∫ t
qr
q−r

0

Tr∗f(l)dl

≤ Ct
qr
q−rTr∗∗f(t

qr
q−r )

Therefore, since r ≤ s

K(f, t,W 1
r,V ,W

1
q,V ) ≤ Ct

q
q−r (Ts∗∗f)

1
s (t

qr
q−r ).

We thus obtain item 2. in this case.
Now assume Ω 6= M . Pick a countable set {xj}j∈J ⊂M, such that M =

⋃
j∈J
B(xj,

1
2
)

and for all x ∈M , x does not belong to more than N1 balls Bj := B(xj, 1). Consider
a C∞ partition of unity (ϕj)j∈J subordinated to the balls 1

2
Bj such that 0 ≤ ϕj ≤ 1,

supp ϕj ⊂ Bj and ‖ |∇ϕj| ‖∞ ≤ C uniformly with respect to j. Consider f ∈ W 1
p,V ,

s ≤ p < q. Let fj = fϕj so that f =
∑

j∈J fj. We have for j ∈ J , fj, V fj ∈ Lp and

∇fj = f∇ϕj + ∇fϕj ∈ Lp. Hence fj ∈ W 1
p (Bj). The balls Bj satisfy the relative

doubling property with the constant independent of the balls Bj. This follows from
the next lemma quoted from [4], p.947.

Lemma 4.3. Let M be a complete Riemannian manifold satisfying (Dloc). Then the
balls Bj above, equipped with the induced distance and measure, satisfy the relative
doubling property (D), with the doubling constant that may be chosen independently
of j. More precisely, there exists C ≥ 0 such that for all j ∈ J
(4.3) µ(B(x, 2R) ∩Bj) ≤ C µ(B(x,R) ∩Bj) ∀x ∈ Bj, R > 0,
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and

(4.4) µ(B(x,R)) ≤ Cµ(B(x,R) ∩Bj) ∀x ∈ Bj, 0 < R ≤ 2.

Let us return to the proof of the theorem. For any x ∈ Bj we have

MBjTsfj(x) = sup
B:x∈B,R(B)≤2

1

µ(Bj ∩B)

∫
Bj∩B

Tsfjdµ

≤ sup
B:x∈B, R(B)≤2

C
µ(B)

µ(Bj ∩B)

1

µ(B)

∫
B

Tsfdµ

≤ CMTsf(x).(4.5)

where we used (4.4) of Lemma 4.3. Consider now

Ωj =
{
x ∈ Bj :MBjTsfj(x) > Cαs(t)

}
where C is the constant in (4.5). The set Ωj is an open subset of Bj, then of M , and
Ωj ⊂ Ω for all j ∈ J . For the fj’s, and for all t > 0, we have a Calderón-Zygmund
decomposition similar to the one done in Proposition 3.2: there exist bjk, gj supported
in Bj, and balls (Bjk)k of M , contained in Ωj, such that

(4.6) fj = gj +
∑
k

bjk

(4.7)

∫
Ωj

Tqgj dµ ≤ Cαq(t)µ(Ωj)

(4.8) supp bjk ⊂ Bjk, ∀1 ≤ r ≤ s

∫
Bjk

Trbjk dµ ≤ Cαr(t)µ(Bjk)

(4.9)
∑
k

µ(Bjk) ≤ Cα−p(t)

∫
Bj
Tpfj dµ

(4.10)
∑
k

χBjk ≤ N

with C and N depending only on q, p and the constant C(r0), C(r1), C(r2) in (Dloc)
and (Psloc) and the RHqloc condition of V , which is independent of Bj.
The proof of this decomposition is the same as in the Proposition 3.2. We take for all
j ∈ J , a Whitney decomposition (Bjk)k of Ωj 6= M . We use the doubling property for
balls whose radii do not exceed 3 < r0 and the Poincaré inequality for balls whose radii
do not exceed 7 < r1 and the RHqloc property of V for balls whose radii do not exceed
1 < r2. By the above decomposition, we can write f =

∑
j∈J

∑
k

bjk +
∑
j∈J

gj = b+ g. Let

us now estimate ‖b‖W 1
r,V

and ‖g‖W 1
q,V

.

‖b‖rr ≤ N1N
∑
j

∑
k

‖bjk‖rr

≤ Cαr(t)
∑
j

∑
k

(µ(Bjk))
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≤ NCαr(t)
(∑

j

µ(Ωj)
)

≤ N1Cα
r(t)µ(Ω).

We used the bounded overlap property of the (Ωj)j∈J ’s and that of the (Bjk)k’s for all

j ∈ J . It follows that ‖b‖r ≤ Cα(t)µ(Ω)
1
r . Similarly we get ‖ |∇b| ‖r ≤ Cα(t)µ(Ω)

1
r

and ‖V b‖r ≤ Cα(t)µ(Ω)
1
r .

For g we have ∫
Ω

|g|qdµ ≤ N
∑
j

∫
Ωj

|gj|qdµ

≤ NCαq(t)
∑
j

µ(Ωj)

≤ N1NCα
q(t)µ(Ω).

Analogously,
∫

Ω
|∇g|qdµ ≤ Cαq(t)µ(Ω) and

∫
Ω
|V g|qdµ ≤ Cαq(t)µ(Ω). Noting that

g ∈ W 1
q,V –same argument as in the proof of the global case–, it follows that

K(f, t,W 1
r,V ,W

1
q,V ) ≤ ‖b‖W 1

r,V
+ t‖g‖W 1

q,V

≤ Cα(t)µ(Ω)
1
r + Ctα(t)µ(Ω)

1
q + t

(∫
Ft

Tqfdµ

) 1
q

≤ Ct
q
q−r (Ts∗∗f)

1
s (t

qr
q−r ) + t

(∫ ∞
t
qr
q−r

(MTsf)∗
q
s (u)du

) 1
q

.

Thus, we get the desired estimation for f ∈ W 1
p,V . �

5. Interpolation of non-homogeneous Sobolev spaces

Proof of Theorem 1.3. The proof of the case when V ∈ RH∞loc is the same as the
one in section 4 in [7]. Consider now V ∈ RHqloc for some 1 < q < ∞. For 1 ≤ r ≤
s < p < q, we define the interpolation space W 1

p,r,q,V (M) = W 1
p,r,q,V between W 1

r,V and

W 1
q,V by

W 1
p,r,q,V = (W 1

r,V ,W
1
q,V ) q(p−r)

p(q−r) ,p
.

We claim that W 1
p,r,q,V = W 1

p,V with equivalent norms. Indeed, let f ∈ W 1
p,r,q,V . We

have

‖f‖ q(p−r)
p(q−r) ,p

=

{∫ ∞
0

(
t
q(r−p)
p(q−r)K(f, t,W 1

r,V ,W
1
q,V )
)p dt

t

} 1
p

≥
{∫ ∞

0

(
t
q(r−p)
p(q−r) t

q
q−r (Tr∗∗f)

1
r (t

qr
q−r )

)p dt
t

} 1
p

=

{∫ ∞
0

t
qr
q−r−1(Tr∗∗f)

p
r (t

qr
q−r )dt

} 1
p

=

{∫ ∞
0

(Tr∗∗f)
p
r (t)dt

} 1
p
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≥ ‖f r∗∗‖
1
r
p
r

+ ‖ |∇f |r∗∗‖
1
r
p
r

+ ‖ |V f |r∗∗‖
1
r
p
r

∼ ‖f r‖
1
r
p
r

+ ‖ |∇f |r‖
1
r
p
r

+ ‖ |V f |r‖
1
r
p
r

= ‖f‖W 1
p,V

where we used that for l > 1, ‖f ∗∗‖l ∼ ‖f‖l. Therefore W 1
p,r,q,V ⊂ W 1

p,V , with
‖f‖ q(p−r)

p(q−r) ,p
≥ C‖f‖W 1

p,V
.

On the other hand, let f ∈ W 1
p,V . By the Calderón-Zygmund decomposition of

Proposition 3.2, f ∈ W 1
r,V +W 1

q,V . Next,

‖f‖ q(p−r)
p(q−r) ,p

≤ C

{∫ ∞
0

(
t
q(r−p)
p(q−r) t

q
q−r (Ts∗∗f)

1
s (t

qr
q−r )

)p dt
t

} 1
p

+ C

{∫ ∞
0

(
t
q(r−p)
p(q−r) t

(∫ ∞
t
qr
q−r

(MTsf)∗
q
s (u)du

) 1
q

)p

dt

t

} 1
p

= I + II.

Using the same computation as above, we conclude that

I ≤ C

{∫ ∞
0

(Ts∗∗f)
p
s (t)dt

} 1
p

≤ C‖f‖W 1
p,V
.

It remains to estimate II. We have

II ≤ C

{∫ ∞
0

t
q(r−p)
q−r tp

(∫ ∞
t
qr
q−r

(MTsf)∗
q
s (u)du

) p
q dt

t

} 1
p

≤ C

{∫ ∞
0

t−
p
q

(∫ ∞
t

(
u(MTsf)∗

q
s (u)

) du
u

) p
q

dt

} 1
p

≤ C

{∫ ∞
0

t−
p
q

(∫ ∞
t

(
u(MTsf)∗

q
s (u)

) p
q du

u

)
dt

} 1
p

≤ C

1− p
q

{∫ ∞
0

t−
p
q (t(t

p
q
−1(MTsf)∗

p
s (t)))dt

} 1
p

= C‖(MTsf)∗‖
1
s
p
s

≤ C‖MTsf‖
1
s
p
s

≤ C‖Tsf‖
1
s
p
s

≤ C‖f‖W 1
p,V
.

We used the monotonicity of (MTsf)∗ together with p
q
< 1, the following Hardy

inequality ∫ ∞
0

[∫ ∞
t

g(u)du

]
tl−1dt ≤

(
1

l

)∫ ∞
0

[ug(u)]ul−1du
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for l = 1− p
q
> 0, the fact that ‖g∗‖l ∼ ‖g‖l for all l ≥ 1 and Theorem 2.2. Therefore,

W 1
p,V ⊂ W 1

p,r,q,V with ‖f‖ q(p−r)
p(q−r) ,p

≤ C‖f‖W 1
p,V

. �

LetAV = {q ∈]1,∞] : V ∈ RHqloc} and q0 = supAV , BM = {s ∈ [1, q0[: (Psloc) holds }
and s0 = inf BM .

Corollary 5.1. For all p, p1, p2 such that 1 ≤ p1 < p < p2 < q0 with p > s0, W 1
p,V is

a real interpolation space between W 1
p1,V

and W 1
p2,V

.

Proof. Since p2 < q0, item 1. of Proposition 2.8 gives us that V ∈ RHp2loc. There-
fore, Theorem 1.3 yields the corollary. (We could prove this corollary also using the
reiteration theorem.)

�

6. Interpolation of homogeneous Sobolev spaces

Denote for 1 ≤ r < ∞, Ṫrf = |∇f |r + |V f |r, Ṫr∗f = |∇f |r∗ + |V f |r∗ and Ṫr∗∗f =
|∇f |r∗∗ + |V f |r∗∗. For the estimation of the functional K for homogeneous Sobolev
spaces we have the corresponding results:

Theorem 6.1. Under the hypotheses of Theorem 1.6 with q <∞:

1. there exists C1 such that for every f ∈ Ẇ 1
r,V + Ẇ 1

q,V and t > 0

K(f, t, Ẇ 1
r,V , Ẇ

1
q,V ) ≥ C1


∫ t

qr
q−r

0

Ṫr∗f(u)du

 1
r

+ t

(∫ ∞
t
qr
q−r

Ṫq∗f(u)du

) 1
q

 ;

2. for s ≤ p < q, there exists C2 such that for every f ∈ Ẇ 1
p,V and t > 0

K(f, t, Ẇ 1
r,V , Ẇ

1
q,V ) ≤ C2


∫ t

qr
q−r

0

Ṫs∗f(u)du

 1
s

+ t

(∫ ∞
t
qr
q−r

(
MṪsf

)∗ q
s

(u)du

) 1
q

 .

Theorem 6.2. Under the hypotheses of Theorem 1.6 with V ∈ RH∞:

1. there exists C1 such that for every f ∈ ˙W 1
r,V + Ẇ 1

∞,V and t > 0

K(f, t
1
r , Ẇ 1

r,V , Ẇ
1
∞,V ) ≥ C1t

1
r (Ṫr∗∗f)

1
r (t);

2. for s ≤ p <∞, there exists C2 such that for every f ∈ Ẇ 1
p,V and every t > 0

K(f, t
1
r , Ẇ 1

r,V , Ẇ
1
∞,V ) ≤ C2t

1
r (Ṫs∗∗f)

1
s (t).

Before we prove Theorems 6.1, 6.2 and 1.6, we give two versions of a Calderón-
Zygmund decomposition.

Proposition 6.3. Let M be a complete non-compact Riemannian manifold satisfying
(D). Let 1 ≤ q < ∞ and V ∈ RHq. Assume that M admits a Poincaré inequality

(Ps) for some 1 ≤ s < q. Let s ≤ p < q and consider f ∈ Ẇ 1
p,V and α > 0. Then

there exist a collection of balls (Bi)i, functions bi ∈ Ẇ 1
r,V for 1 ≤ r ≤ s and a function

g ∈ Ẇ 1
q,V such that the following properties hold:

(6.1) f = g +
∑
i

bi
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(6.2)

∫
S
iBi

Ṫqg dµ ≤ C αqµ(
⋃
i

Bi)

(6.3) supp bi ⊂ Bi and ∀1 ≤ r ≤ s

∫
Bi

Ṫrbi dµ ≤ Cαrµ(Bi)

(6.4)
∑
i

µ(Bi) ≤ Cα−p
∫
Ṫpf dµ

(6.5)
∑
i

χBi ≤ N

with C and N depending only on q, s and the constants in (D), (Ps) and the RHq

condition.

Proposition 6.4. Let M be a complete non-compact Riemannian manifold satisfying
(D). Consider V ∈ RH∞. Assume that M admits a Poincaré inequality (Ps) for
some 1 ≤ s <∞. Let s ≤ p <∞, f ∈ Ẇ 1

p,V and α > 0. Then there exist a collection
of balls (Bi)i, functions bi and a function g such that the following properties hold :

(6.6) f = g +
∑
i

bi

(6.7) Ṫ1g ≤ Cα µ− a.e.

(6.8) supp bi ⊂ Bi and ∀1 ≤ r ≤ s

∫
Bi

Ṫrbidµ ≤ Cαrµ(Bi)

(6.9)
∑
i

µ(Bi) ≤ Cα−p
∫
Ṫpf dµ

(6.10)
∑
i

χBi ≤ N

with C and N depending only on q, p and the constant in (D), (Ps) and the RH∞
condition.

The proof of these two decompositions goes as in the case of non-homogeneous

Sobolev spaces, but taking Ω =
{
x ∈M :MṪsf(x) > αs

}
as ‖f‖p is not under con-

trol. We note that in the non-homogeneous case, we used that f ∈ Lp only to control
b ∈ Lr and g ∈ L∞ when V ∈ RH∞ and

∫
Ω
|g|qdµ when V ∈ RHq and q <∞.

Proof of Theorem 6.1 and 6.2. We refer to [7] for the proof of Theorem 6.2. The proof
of item 1. of Theorem 6.1 is the same as in the non-homogeneous case. Let us turn

to inequality 2. Consider f ∈ Ẇ 1
p,V , t > 0 and α(t) = (MṪsf)∗

1
s (t

qr
q−r ). By the

Calderón-Zygmund decomposition with α = α(t), f can be written f = b + g with

‖b‖Ẇ 1
r,V
≤ Cα(t)µ(Ω)

1
r and

∫
Ω
Ṫqgdµ ≤ Cαq(t)µ(Ω). Since we have µ(Ω) ≤ t

qr
q−r , we

get then as in the non-homogeneous case

K(f, t, Ẇ 1
r,V , Ẇ

1
q,V ) ≤ Ct

q
q−r (Ṫs∗∗f)

1
s (t

qr
q−r ) + Ct

(∫ ∞
t
qr
q−r

(MṪsf)∗
q
s (u)du

) 1
q

.
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Proof of Theorem 1.6. We refer to [7] when q = ∞. When q < ∞, the proof follows
directly from Theorem 6.1. Indeed, item 1. of Theorem 6.1 gives us that

(Ẇ 1
r,V , Ẇ

1
q,V ) q(p−r)

p(q−r) ,p
⊂ Ẇ 1

p,V

with ‖f‖Ẇ 1
p,V
≤ C‖f‖ q(p−r)

p(q−r) ,p
, while item 2. gives us as in section 5 for non-homogeneous

Sobolev spaces, that

Ẇ 1
p,V ⊂ (Ẇ 1

r,V , Ẇ
1
q,V ) q(p−r)

p(q−r) ,p

with ‖f‖ q(p−r)
p(q−r) ,p

≤ C‖f‖Ẇ 1
p,V

. �

Let AV = {q ∈]1,∞] : V ∈ RHq} and q0 = supAV , BM = {s ∈ [1, q0[: (Ps) holds }
and s0 = inf BM .

Corollary 6.5. For all p, p1, p2 such that 1 ≤ p1 < p < p2 < q0 with p > s0, Ẇ 1
p,V is

a real interpolation space between Ẇ 1
p1,V

and Ẇ 1
p2,V

.

7. Interpolation of Sobolev spaces on Lie Groups

Consider G a connected Lie group. Assume that G is unimodular and let dµ be a
fixed Haar measure on G. Let X1, ..., Xk be a family of left invariant vector fields such
that the Xi’s satisfy a Hörmander condition. In this case, the Carnot-Carathéodory
metric ρ is a distance, and G equipped with the distance ρ is complete and defines
the same topology as the topology of G as manifold (see [15] page 1148). It is known
that G has an exponential growth or polynomial growth. In the first case, G satisfies
the local doubling property (Dloc) and admits a local Poincaré inequality (P1loc). In
the second case, it admits the global doubling property (D) and a global Poincaré
inequality (P1) (see [15], [20], [25], [29] for more details).

Definition 7.1 (Sobolev spaces W 1
p,V ). For 1 ≤ p <∞ and for a weight V ∈ A∞, we

define the Sobolev space W 1
p,V as the completion of C∞ functions for the norm:

‖u‖W 1
p,V

= ‖f‖p + ‖ |Xf | ‖p + ‖V f‖p

where |Xf | =
(∑k

i=1 |Xif |2
) 1

2
.

Definition 7.2. We denote by W 1
∞,V the space of all bounded Lipschitz functions f

on G such that ‖V f‖∞ <∞ which is a Banach space.

Proposition 7.3. Let V ∈ RHqloc for some 1 ≤ q <∞. Consider, for 1 ≤ p < q,

H1
p,V = {f ∈ Lp : |∇f | and V f ∈ Lp}

and equip it with the same norm as W 1
p,V . Then as in Proposition 2.15 in the case of

Riemannian manifolds, C∞0 is dense in H1
p,V and hence W 1

p,V = H1
p,V .
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Interpolation of W 1
p,V : Let V ∈ RHqloc for some 1 < q ≤ ∞. To interpolate the

W 1
pi,V

, we distinguish between the polynomial and the exponential growth cases. If G
has polynomial growth and V ∈ RHq, then we are in the global case. Otherwise, we
are in the local case. In the two cases, we obtain the following theorem:

Theorem 7.4. Let G be a connected Lie group as in the beginning of this section
and assume that V ∈ RHqloc with 1 < q ≤ ∞. Denote T1f = |f | + |Xf | + |V f |,
Tr∗f = |f |r∗ + |Xf |r∗ + |V f |r∗ for 1 ≤ r <∞.

a. If q <∞, then
1. there exists C1 > 0 such that for every f ∈ W 1

1,V +W 1
q,V and t > 0

K(f, t,W 1
1,V ,W

1
q,V ) ≥ C1


∫ t

q
q−1

0

T1∗f(u)du

 1
s

+ t

(∫ ∞
t
q
q−1

Tq∗f(u)du

) 1
q

 ;

2. for 1 ≤ p < ∞, there exists C2 > 0 such that for every f ∈ W 1
p,V and

t > 0,

K(f, t,W 1
1,V ,W

1
q,V ) ≤ C2


∫ t

q
q−1

0

T1∗f(u)du+ t

(∫ ∞
t
q
q−1

(MT1f)∗q(u)du

) 1
q

 .

b. If q =∞, then for every f ∈ W 1
1,V +W 1

∞,V and t > 0

K(f, t,W 1
1,V ,W

1
∞,V ) ∼

∫ t

0

T1∗f(u)du.

Theorem 7.5. Let G be as above, V ∈ RHqloc, for some 1 < q ≤ ∞. Then, for
1 ≤ p1 < p < p2 < q0, W 1

p,V is a real interpolation space between W 1
p1,V

and W 1
p2,V

where q0 = sup {q ∈]1,∞] : V ∈ RHqloc}.

Proof. Combine Theorem 7.4 and the reiteration theorem. �

Remark 7.6. For V ∈ A∞, define the homogeneous Sobolev spaces Ẇ 1
p,V as the vector

space of distributions f such that Xf and V f ∈ Lp and equip this space with the norm

‖f‖Ẇ 1
p,V

= ‖ |Xf | ‖p + ‖V f‖p

and Ẇ 1
∞,V as the space of all Lipschitz functions f on G with ‖V f‖∞ < ∞. Theses

spaces are Banach spaces. If G has polynomial growth, we obtain interpolation results
analog to those of section 6.

Examples: For examples of spaces on which our interpolation result applies see
section 11 of [7].
Examples of RHq weights in Rn for q < ∞ are the power weights |x|−α with −∞ <
α < n

q
and positive polynomials for q =∞. We give another example of RHq weights

on a Riemannian manifold M : consider f, g ∈ L1(M), 1 ≤ r < ∞ and 1 < s ≤ ∞,

then V (x) = (Mf(x))−(r−1) ∈ RH∞ and W (x) = (Mg(x))
1
s ∈ RHq for all q < s (

q = s if s =∞) and hence V + W ∈ RHq for all q < s ( q = s if s =∞) (see [5], [6]
for details).
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8. Appendix

Proof of Proposition 2.15: We follow the method of Davies [16]. Let L(f) =
L0(f) + L1(f) + L2(f) :=

∫
M
|f |pdµ +

∫
M
|∇f |pdµ +

∫
M
|V f |pdµ. We will prove the

proposition in three steps:

1. Let f ∈ H1
p,V . Fix p0 ∈ M and let ϕ ∈ C∞0 (R) satisfies ϕ ≥ 0, ϕ(α) = 1 if

α < 1 and ϕ(α) = 0 if α > 2. Then put fn(x) = f(x)ϕ(d(x,p0)
n

). Elementary
calculations establish that fn lies in H1

p,V . Moreover,

L(f − fn) =

∫
M

|f(x){1− ϕ(
d(x, p0)

n
)}|pdµ(x)

+

∫
M

|∇f(x){1− ϕ(
d(x, p0)

n
)} − n−1f(x)ϕ′(

d(x, p0)

n
)∇(d(x, p0))|pdµ(x)

+

∫
M

|V (x)f(x)(1− ϕ(
d(x, p0)

n
))|pdµ(x)

≤
∫
M

|f(x){1− ϕ(
d(x, p0)

n
)}|pdµ(x)

+ 2p−1

∫
M

|∇f(x){1− ϕ(
d(x, p0)

n
)}|pdµ(x) + 2p−1n−p

∫
M

|f(x)|p|ϕ′(d(x, p0)

n
)|pdµ(x)

+

∫
M

V p(x)|f(x)|p|1− ϕ(
d(x, p0)

n
)|pdµ(x).

This converges to zero as n → ∞ by the dominated convergence theorem.
Thus, the set of functions f ∈ H1

p,V with compact support is dense in H1
p,V .

2. Let f ∈ H1
p,V with compact support. Let n > 0 and Fn : R→ R be a smooth

increasing function such that

Fn(s) =


s if − n ≤ s ≤ n,

n+ 1 if s ≥ n+ 2,

−n− 1 if s ≤ −n− 2

and 0 ≤ F ′n(s) ≤ 1 for all s ∈ R. If we put fn(x) := Fn(f(x)) then |fn(x)| ≤
|f(x)| and limn→∞ fn(x) = f(x) for all x ∈ M . The dominated convergence
theorem yields

lim
n→∞

L0(f − fn) = lim
n→∞

∫
M

|f − fn|pdµ = 0

and

lim
n→∞

L2(f − fn) = lim
n→∞

∫
M

V p|f − fn|pdµ = 0.

Also

lim
n→∞

L1(f − fn) = lim
n→∞

∫
M

|∇f − F ′n(f(x))∇f |pdµ(x)

= lim
n→∞

∫
M

|1− F ′n(f(x))|p|∇f(x)|pdµ(x)

= 0.
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Therefore, the set of bounded functions f ∈ H1
p,V with compact support is

dense in H1
p,V .

3. Let now f ∈ H1
p,V be bounded and with compact support. Consider locally

finite coverings of M , (Uk)k, (Vk)k with Uk ⊂ Vk, Vk being endowed with a
real coordinate chart ψk. Let (ϕk)k be a partition of unity subordinated to
the covering (Uk)k, that is, for all k, ϕk is a C∞ function supported in Uk,
0 ≤ ϕk ≤ 1 and

∑∞
k=1 ϕk = 1. There exists a finite subset I of N such that

f =
∑

k∈I fϕk :=
∑

k∈I fk. Take ε > 0. The functions gk = fk ◦ ψ−1
k –which

belong to W 1
p (Rn) since f and |∇f | ∈ Lploc– can be approximated by smooth

functions wk with compact support (standard approximation by convolution).
The wk are defined as wk = gk ∗αk where αk ∈ C∞0 (Rn) is a standard mollifier,
suppwk ⊂ ψk(Vk) and ‖gk − wk‖W 1

p
≤ ε

2k
. Define

hk(x) =

{
wk ◦ ψk(x) if x ∈ Vk,
0 otherwise.

Thus supphk ⊂ Vk and

‖fk − hk‖p =

(∫
Vk

|fk − hk|pdµ
) 1

p

= ‖gk − wk‖p ≤
ε

2k
.

‖ |∇(fk − hk)|‖p =

(∫
Vk

|∇(fk − hk)|pdµ
) 1

p

= ‖ |∇(gk − wk)| ‖p ≤
ε

2k
.

Hence, the series
∑

k∈I(fk − hk) is convergent in W 1
p . Moreover,

∑
k∈I(fk −

hk) = f − hε where hε =
∑

k∈I hk, and ‖f − hε‖W 1
p
≤
∑

k∈I ‖fk − hk‖W 1
p
≤ ε.

If lε := |f − hε|p then limε→0 ‖lε‖1 = 0 and there exists a compact set K which
contains the support of every lε. We have ‖hε‖∞ ≤ ]I‖f‖∞ for all ε > 0.
Indeed,∑

k∈I

|hk(x)| =
∑
k∈I

∫
Rn
|gk(y)|αk(ψk(x)− y)dy

=

∫
Rn

∑
k∈I

|fϕk(ψ−1
k (y))|αk(ψk(x)− y)dy

≤ ‖f‖∞
∫

Rn

∑
k∈I

ϕk(ψ
−1
k (y))αk(ψk(x)− y)dy

≤ ‖f‖∞
∑
k∈I

∫
ψk(Uk)

ϕk(ψ
−1
k (y))αk(ψk(x)− y)dy

≤ ‖f‖∞
∑
k∈I

∫
Rn
αk(z)dz

≤ ]I‖f‖∞.

It follows that ‖lε‖∞ ≤ 2p−1(1 + ]I)‖f‖p∞ = C‖f‖p∞ (C being independent of ε
it depends just on f) for all ε > 0. We claim that these facts suffice to deduce
that limε→0

∫
M
lεV

pdµ = 0, that is

lim
ε→0

L2(f − lε) = 0.
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Therefore C∞0 is dense in H1
p,V .

4. It remains to prove the above claim. Thanks to Proposition 2.8, V ∈ RHploc

and there exists r > p such that V ∈ RHrloc. Therefore V p ∈ Lt,loc where
t = r

p
> 1. Hence, by Hölder inequality we get

0 ≤
∫
M

lεV
pdµ =

∫
K

lεV
pdµ

≤ ‖lε‖Lt′ (K) ‖V p‖Lt(K)

≤ C‖f‖
p
r∞ε

1
t′

for all ε > 0, t′ being the conjugate exponent of t. The proof of Proposition
2.15 is therefore complete.
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