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Algorithm for Computing Bernstein–Sato Ideals
Associated with a Polynomial Mapping

ROUCHDI BAHLOUL†

Département de Mathématiques, Université d’Angers, 2 bd Lavoisier, 49045 Angers,
France

Let f1, . . . , fp be polynomials in n variables with coefficients in a field K. We associate
with these polynomials a number of functional equations and related ideals B, Bj and

BΣ of K[s1, . . . , sp] called Bernstein–Sato ideals. Using standard basis techniques, our

aim is to present an algorithm for computing generators of Bj and BΣ.
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1. Introduction

Let n, p be two strictly positive integers, and let f1(x), . . . , fp(x) ∈ K[x] := K[x1, . . . , xn]
be p polynomials of n variables with coefficients in a field K of characteristic zero. Denote
by An = K[x1, . . . , xn]〈∂x1 , . . . , ∂xn

〉 the Weyl algebra with n variables and let s1, . . . , sp

be new variables.
Denote by L = K[x][f−1

1 , . . . , f−1
p , s1, . . . , sp] · fs the free module generated by the

symbol fs where fs is a notation for fs1
1 · · · fsp

p . L has a natural An[s]-module structure
where An[s] := An[s1, . . . , sp]. We have, for instance:

∂xi(g(x, s)f
s−m) =

(
∂g

∂xi
f−m +

p∑
j=1

g(x, s)(sj −mj)
∂fj

∂xi
f−1

j f−m

)
fs

where g(x, s) ∈ K[x][s] and m ∈ Np.
Consider the following ideals of K[s], called Bernstein–Sato ideals:

• B = {b(s) ∈ K[s] / b(s)fs ∈ An[s]fs+1},
• Bj = {b(s) ∈ K[s] / b(s)fs ∈ An[s]fjf

s} for j ∈ {1, . . . , p},
• BΣ = {b(s) ∈ K[s] / b(s)fs ∈

∑p
j=1 An[s]fjf

s},

where fs+1 := fs1+1
1 · · · fsp+1

p .
Note that, in the local analytic case, these ideals have been studied by C. Sabbah

(see Sabbah, 1987) who showed that they are not zero. In the algebraic case studied
here, B 6= 0 can be obtained by a method similar to that used when p = 1 (see Bernstein,
1972 and Björk, 1979). We take the notations of Maynadier (see Maynadier, 1996 and
Maynadier, 1997).
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Our aim, in this paper, is to present an explicit algorithm for computing the ideals Bj

and BΣ (i.e. an algorithm that gives generators of these ideals).
In Oaku and Takayama (1999), T. Oaku and N. Takayama solved the problem for B
using the relation:

B = (Annfs + An[s]f1 · · · fp) ∩K[s]

by a computation of Annfs the annihilator of fs in An[s]. The ideal Annfs is obtained as
the intersection of the ideal I (the annihilator of fs in An+p = An[t1, . . . , tp] 〈∂t1 , . . . , ∂tp

〉,
see Section 4 of this paper, for instance) and the subring An[−∂t1t1, . . . ,−∂tp

tp]. This
intersection is obtained by a Groebner basis computation in 2n+ 4p variables.
The relations:

Bj = (Annfs + An[s]fj) ∩K[s],
BΣ = (Annfs + An[s]f1 + · · ·+ An[s]fp) ∩K[s]

show that our initial problem is completely resolved using this method.
On the other hand, in the case p = 1, those three kinds of ideals are equal and another
algorithm to compute B has been proposed by Oaku (in Oaku, 1997). In this paper, Oaku
works with a filtration, called the V -filtration, which gives what we call the V -order, and
with these objects he computes a V -standard basis of the ideal I of An+1 = An[t]〈∂t〉, the
annihilator of fs in An+1, after which he obtains generators of an ideal of An[s] denoted
ψ(I) and with an elimination algorithm, he finally obtains a system of generators of the
ideal B.

In this paper, we try to generalize this algorithm. In our case, where p ≥ 2, we have
to deal with p filtrations V1, . . . , Vp or equivalently with a multifiltration V . For each
ideal J = Bj ,BΣ, we have the ≺J -order which allows us to compute a ≺J -standard
basis of I in An+p but the difficulty in our case is the following: to compute ψJ(I) (the
analogue of Oaku’s ψ(I)) we have to find generators of I which are adapted to the ideal
J (for instance, V -regular for BΣ, Bj-good for Bj , etc.) and for this reason, we use an
homogenization technique (see Section 6) which makes a number of undesirable divisions
impossible. After this homogenization, the rest of the algorithm is similar to Oaku’s.
Note that with this method, Groebner basis computations are done in (at most) 2n+ 3p
variables.

In Section 2, we recall how to compute a standard basis with respect to an order which
is not a well-order. Section 3 introduces the V - multifiltration in An+p and all the ob-
jects which are linked with it, and all the usual elementary properties of these objects.
In Section 4, following Malgrange (see Malgrange, 1975), we introduce I the annihilator
of fs in An+p and we establish the link between functional equations and this ideal. In
Section 5, we introduce the three Bernstein–Sato ideals that we are interested in, and
following Oaku, we also introduce the ideals ψB, ψBj

and ψBΣ of An[s] and we show the
link between these ideals and the Bernstein–Sato ones. In Section 6, we give the algo-
rithms for computing Bj and BΣ (in fact ψBj and ψBΣ), after having described and used
the homogenization techniques which are specific to these algorithms. We end off this
section with some examples. One has been calculated by hand and the rest using KAN
(see Takayama, 1991).
In this paper, ideal means left ideal.
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2. Standard Basis with Respect to a Non-well Order

In this section, we will recall the process of building a standard basis as in Castro and
Narváez (1997). This is classical except for the fact that we add parameters u1, . . . , uq, as
developed later, in view of frequent applications, especially in Section 6.5. Note that in
the case of a polynomial ring and a well-order, this process has been treated in Buchberger
(1970).

We are going to work in An[u] = An[u1, . . . , uq], with q ∈ N. It is a usual polyno-
mial ring in which ui commutes with the other variables. This section is, nevertheless,
worthwhile even if q = 0, where we work in An. Let ≺ be a total order of N2n+q which
is compatible with the structure of An, i.e.:

exp≺(1) ≺ exp≺(xi∂xi) = exp≺(∂xixi)

and we suppose this order to be compatible with sums while not necessarily being a
well-order.
We recall that for P ∈ An[u] written:

P =
∑

pα,β,γx
α∂β

xu
γ with pα,β,γ ∈ K, (α, β, γ) ∈ N2n+q.

We define:

• the privileged exponent of P :

exp≺(P ) = {max≺(α, β, γ)/pα,β,γ 6= 0}

• the privileged monomial of P :

mp≺(P ) = pexp≺(P )(x, ∂x, u)exp≺(P )

• the Newton diagram of P :

ND(P ) = {(α, β, γ) ∈ N2n+q/pα,β,γ 6= 0}.

Let I be an ideal of An[u]. We suppose that we know a finite system of generators of I.
The purpose of this section is to give an algorithm to compute a ≺-standard basis of I
and, more precisely, we are going to prove:

Proposition 2.1. There exists P1, . . . , Pm ∈ I such that for each P ∈ I there exists
W1, . . . ,Wm ∈ An[u] such that:

• P = W1P1 + · · ·+WmPm,
• ∀j = 1, . . . ,m exp≺(WjPj) � exp≺(P ) if Wj 6= 0.

To construct such operators, we are going to introduce a new variable z and work in
An[u]〈z〉 as in Castro and Narváez (1997).
Let An[u]〈z〉 be the K-algebra generated by xi, ∂xi , ui, z with the following relations:

• ∀i = 1, . . . , q, ui commutes with the other variables,
• z commutes with the other variables,
• ∀i, j [xi, xj ] = [∂xi

, ∂xj
] = 0,

• ∀i, j [∂xi
, xj ] = δijz

2, where δij = 1 if i = j and δij = 0 if i 6= j.
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On N2n+q+1, we define the order ≺h by:

(α, β, γ, i) ≺h (α′, β′, γ′, i′) ⇐⇒

 |α|+ |β|+ |γ|+ i < |α′|+ |β′|+ |γ′|+ i′

or (|α|+ |β|+ |γ|+ i = |α′|+ |β′|+ |γ′|+ i′

and (α, β, γ) ≺ (α′, β′, γ′)).

We note that ≺h is an order compatible with sums and a well-order.
For P ∈ An[u], let us write

P =
∑

aα,β,γx
α∂β

xu
γ .

We denote ordT (P ) = max{|α|+ |β|+ |γ|/aα,β,γ 6= 0}. We define h(P ) ∈ An[u]〈z〉 by:

h(P ) =
∑

aα,β,γx
α∂β

xu
γzordT (P )−|α|−|β|−|γ|.

Thanks to the relations in An[u]〈z〉, we have:

∀P,Q ∈ An[u], h(PQ) = h(P )h(Q).

We define the ideal h(I) ⊆ An[u]〈z〉 by the following:
Let Q1, . . . , Qr be generators of I , we define

h(I) =
r∑

i=1

An[u]〈z〉 · h(Qi).

Assertion 1. We can compute a ≺h-standard basis H1(z), . . . ,Hm(z) of h(I) (in the
sense of 2.1) consisting of T -homogeneous operators (see remark).

Remark. H ∈ An[u]〈z〉 is said to be T -homogeneous with a total order ordT (H) = d if
it is written:

H =
∑

α,β,γ

aα,β,γx
α∂β

xu
γzd−|α|−|β|−|γ|.

In order to prove Assertion 1, we just have to note that ≺h is a well-order and that
divisions in An[u]〈z〉 preserve homogeneity. Then the Hj constructed from the h(Qi)
(by division of semisyzygies, see Lejeune-Jalabert, 1985 for the commutative case; see
also Castro and Granger, 1997) will be homogeneous.

Assertion 2. The system H1(1), . . . ,Hm(1) gives the Pj of Proposition 2.1.
Let us prove Assertion 2.
Let P ∈ I, there exists B1, . . . , Br ∈ An[u] such that P =

∑
BiQi. There exists

k, k1, . . . , kr ∈ N such that

zkh(P ) = zk1h(B1Q1) + · · ·+ zkrh(BrQr).

We have h(BiQi) = h(Bi)h(Qi) then zkh(P ) ∈ h(I). Let us divide zkh(P ) by the Hj(z),
we have:

• zkh(P ) =
∑
Uj(z)Hj(z),

• ∀j exp≺h(zkh(P )) �h exp≺h(UjHj) if Uj 6= 0,
• ∀j Uj is T -homogeneous.

Denote (α, β, γ, i) = exp≺h(zkh(P )) and (αj , βj , γj , ij) = exp≺h(UjHj). Since all the
terms in the sum are T -homogeneous (with order equal to k + ordT (P )), we have
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(α, β, γ) � (αj , βj , γj). And also because of homogeneity we have (α, β, γ) = exp≺h(P )
and (αj , βj , γj) = exp≺h(Uj(1)Hj(1)).
So P =

∑
Uj(1)Hj(1) with exp≺(P ) � exp≺(Uj(1)Hj(1)).

Assertion 2 is proved and so is Proposition 2.1.

3. V-multifiltration

Definition 3.1. Let P ∈ An+p, P 6= 0, P can be written in only one way as follows:

P =
∑

aµ,νt
µ∂ν

t with µ, ν ∈ Np, aµ,ν ∈ An.

We define:

• for j = 1, . . . , p, the Vj-order of P

ordVj (P ) = max{νj − µj / aµ,ν 6= 0}.
• the V -order of P

ordV (P ) = (ordV1(P ), . . . , ordVp(P )).
• for j = 1, . . . , p, the Vj-principal symbol of P

σVj (P ) =
∑

νj−µj=ordVj (P )

aµ,νt
µ∂ν

t .

• for m ∈ Zp, the V -partial symbol of order m of P

σV
m(P ) =

∑
ν−µ=m

aµ,νt
µ∂ν

t .

• the V -principal symbol of P

σV (P ) = σV
ordV (P )(P ).

For m ∈ Zp, we denote

Vm(An+p) = {P ∈ An+p / ∀j = 1, . . . , p ordVj (P ) ≤ mj}.

Remark 3.2. We may have σV (P ) = 0 without having P = 0. For instance, if p = 2
and P = t1 + t2, σV (P ) = 0.

As usual, we have the following properties:

Lemma 3.3. Let P,Q ∈ An+p, P,Q 6= 0, we have:

• ordV (PQ) = ordV (P ) + ordV (Q),
• σV (PQ) = σV (P )σV (Q),
• σVj (PQ) = σVj (P )σVj (Q).

4. Bernstein–Sato Equations and Malgrange Point of View

Consider
L = K[x][f−1

1 , . . . , f−1
p , s] · fs

the free module generated by the symbol fs where fs := fs1
1 · · · fsp

p .
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L has an An[s]-module structure. Thus, for instance, we have:

∂xi
(g(x, s)fs−m) =

(
∂g

∂xi
f−m +

p∑
j=1

g(x, s)(sj −mj)
∂fj

∂xi
f−1

j f−m

)
fs

where g(x, s) ∈ K[x][s] and m ∈ Np.
Now let us introduce an An+p-module structure on L:
if j = 1, . . . , p and g(s) ∈ K[x][f−1, s], we define:

tj · (g(s)fs) = g(s1, . . . , sj + 1, . . . , sp)fjf
s,

∂tj · (g(s)fs) = −sjg(s1, . . . , sj − 1, . . . , sp)f−1
j fs.

We can easily check that (∂tj · tj) · (g(s)fs) = (tj · ∂tj + 1) · (g(s)fs).
We have the following relations:

(i) −∂tj
tj(g(s)fs) = sjg(s)fs if g(s) ∈ K[x][f−1, s],

(ii) (tj − fj(x)) · fs = 0 ∀j = 1, . . . , p,
(iii)

(
∂xi +

∑
j

∂fj

∂xi
∂tj

)
· fs = 0 ∀i = 1, . . . , n.

We have the inclusions:

An[s]fs ⊆ An+pf
s ⊆ L

Note that the first inclusion comes from (i).
As in Lemma 4.1 of Malgrange (1975), we have:

Lemma 4.1. Let

I =
p∑

j=1

An+p

(
tj − fj(x)

)
+

n∑
i=1

An+p

(
∂xi

+
p∑

j=1

∂fj

∂xi
∂tj

)
.

Then I is maximal in An+p.

Proof. Let φ : Kn+p −→ Kn+p defined by

φ(x1, . . . , xn, t1, . . . , tp) = (x1, . . . , xn, t1 − f1(x), . . . , tp − fp(x)).

φ is bijective and induces an isomorphism φ∗ on the ring An+p. The image of I is

φ∗(I) =
p∑

j=1

An+ptj +
n∑

i=1

An+p∂xi
.

Moreover, it is easy to see that:

I maximal is equivalent to φ∗(I) maximal.

We suppose, in the rest of the proof, that I =
∑

An+ptj +
∑

An+p∂xi
.

Let P ∈ An+p r I, denote I ′ = I + An+pP . We shall prove that I ′ = An+p. Write

P =
∑

aαβγδx
α∂β

t t
γ∂δ

x with α, δ ∈ Nn, β, γ ∈ Np, aαβγδ ∈ K,

then

P ∈
∑

aαβ00x
α∂β

t + I.
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Thus we can assume that P is of the following form:

P =
∑

aαβx
α∂β

t =
∑

aβ(x)∂β
t .

Let µ(P ) = max{|β|, aβ 6= 0}. We shall prove by induction on µ(P ) that there exists
a(x) ∈ K[x] ∩ I ′, a(x) 6= 0.
If µ(P ) = 0 then the assertion is true. Assume that µ(P ) > 0.
Write

P = Q+ aβ′∂
β′

t with |β′| = µ(P ).
Let j be such that β′j 6= 0 and denote by C = [P, tj ] the commutator of P and tj .
Then on one hand C ∈ I ′ and C 6= 0, and on the other hand µ(C) < µ(P ). We then apply
the induction hypothesis. At this point, we have proved the existence of a(x) ∈ K[x],
a(x) 6= 0 in I ′.
For such an a, consider ν(a) = max{degx1

(a), . . . ,degxn
(a)}, and let us show by induction

on ν(a) that 1 ∈ I ′.
If ν(a) = 0 then 1 ∈ I ′.
Assume ν(a) > 0 and let i such that degxi

(a) = ν(a), then

∂a

∂xi
= [a, ∂xi

] ∈ I ′ and degxi

(
∂a

∂xi

)
< degxi

(a).

After a finite number of steps we obtain the existence of b(x) ∈ I ′, b(x) 6= 0 with
ν(b) < ν(a). We then apply the induction hypothesis which gives 1 ∈ I ′. 2

Lemma 4.2. I is the annihilator of fs in An+p.

Proof. Denote by I ′ = {P ∈ An+p/P · fs = 0} the annihilator of fs in An+p.
Using relations (ii) and (iii), we have I ⊆ I ′; moreover I ′ 6= An+p because 1 /∈ I ′. Then
by the previous lemma I = I ′. 2

As a consequence, we have:

Corollary 4.3. Let P (s) ∈ An[s]. We have:

P (s) · fs = 0 in L ⇐⇒ P (−∂t1t1, . . . ,−∂tp
tp) ∈ I.

Proof. By relation (i) we have: P (s)fs = P (−∂tt)fs, and the previous lemma ends the
proof. 2

5. Bernstein–Sato Ideals

Definition 5.1. Consider the ideals of K[s] = K[s1, . . . , sp]:

• B = {b(s) ∈ K[s] / b(s)fs ∈ An[s]fs+1},
• Bj = {b(s) ∈ K[s] / b(s)fs ∈ An[s]fjf

s} for j = 1, . . . , p,
• BΣ = {b(s) ∈ K[s] / b(s)fs ∈

∑p
j=1 An[s]fjf

s},

with fs+1 := fs1+1
1 · · · fsp+1

p .
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We have the inclusions:
B ⊆ Bj ⊆ BΣ.

Our purpose is to give an algorithm for computing BΣ and Bj .

Definition 5.2. Let P ∈ An+p such that ordV = (m1, . . . ,mp). We define ψ(P )(s) ∈
An[s1, . . . , sp] by the following:

ψ(P )(−∂t1t1, . . . ,−∂tp
tp) = σV (S1, . . . , SpP )

with

Sj =

{
t
mj

j if mj > 0
∂
−mj

tj
if mj ≤ 0.

We define the following ideals of An[s] (we still denote by I the annihilator of fs in
An+p) by:

• ψB(I) = {ψ(P ) / P ∈ I, ordV (P ) = 0, ∀j ordVj (P − σV (P )) < 0} ∪ (0),
• ψBΣ(I) = {ψ(P ) / P ∈ I, ordV (P ) = 0} ∪ (0),
• ψBj (I) = {ψ(P ) / P ∈ I, ordV (P ) = 0, ordVj (P − σV (P ) < 0} ∪ (0).

Lemma 5.3. Let b(s) ∈ K[s], we have:

(a) b(s) ∈ B ⇐⇒ b(−∂tt) ∈ I + V0(An+p)t1 · · · tp,
(b) b(s) ∈ Bj ⇐⇒ b(−∂tt) ∈ I + V0(An+p)tj,
(c) b(s) ∈ BΣ ⇐⇒ b(−∂tt) ∈ I +

∑
V0(An+p)tj.

Proof. We shall now prove Assertion (b), the other assertions can be proved in a similar
way.
b(s) ∈ Bj is equivalent to the existence of P (s) ∈ An[s] such that b(s)fs = P (s)fjf

s,
or (b(s) − P (s)fj).fs = 0, then by Corollary 4.3, b(−∂tt) − P (−∂tt)fj ∈ I, and using
relation (ii) of Section 4, we obtain:

b(s) ∈ Bj ⇐⇒ b(−∂tt)− P (−∂tt)tj ∈ I (1)

thus the direct implication is proved.
Conversely, suppose that there exists Q ∈ V0(An+p) such that b(−∂tt)−Q.tj ∈ I. Since
Q ∈ V0(An+p), we can write it as:

Q =
∑

m∈Np

Qm(−∂tt)tm

with Qm(−∂tt) ∈ An[−∂tt]. Using relation (ii) of Section 4, we obtain:

Qtj ∈ I +

∑Qm(−∂tt)fm︸ ︷︷ ︸
P (−∂tt)

 tj .

Hence b(−∂tt)− P (−∂tt)tj ∈ I. Using equation (1), we end the proof. 2
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As a consequence, we have:

Proposition 5.4. We still denote by I the annihilator of fs in An+p.

(a) ψB(I) ∩K[s] = B,
(b) ψBj

(I) ∩K[s] = Bj,
(c) ψBΣ(I) ∩K[s] = BΣ.

Proof. We only prove Assertion (b) (the other assertions being similar).
Let b(s) ∈ ψBj (I)∩K[s]. Then there exists Q ∈ I with ordV (Q) = 0 such that ordVj (Q−
σV (Q)) < 0 and such that b(s) = ψ(Q)(s), or b(−∂tt) = σV (Q). Write

Q− σV (Q) = Q′tj with Q′ ∈ V0(An+p).

We have b(−∂tt) +Q′tj ∈ I. Then by the previous lemma, b(s) ∈ Bj .
Let b(s) ∈ Bj . Then by the previous lemma, there exists Q ∈ I and Q′ ∈ V0(An+p) such
that

b(−∂tt) = Q−Q′tj .

Thus we see that ordV (Q) = (0, . . . , 0) and b(s) = ψ(Q)(s), i.e. b(s) ∈ ψBj (I) ∩K[s]. 2

Remark 5.5. If we can compute generators of ψBj (I) then we will easily compute gen-
erators of Bj . Actually, if we compute a standard basis G1, . . . , Gq with respect to an
order which eliminates the variables xi and ∂xi

then {G1, . . . , Gq}∩K[s] will generate Bj

on K[s]. The same remark can be applied to ψBΣ(I) and BΣ. Thus, in the next section,
we will compute ψBΣ(I) and ψBj

(I).

6. Computation of BΣ and Bj

In this section, we present the main result of this paper. As we saw in Proposition 5.4
and in Remark 5.5, it is enough to compute ψBΣ(I) and ψBj (I) to obtain BΣ and Bj .
The way we will compute ψBΣ(I) and ψBj (I) is the following:

• we introduce new variables y1, . . . , yp which commute with An+p,
• given an ideal J of An+p[yj1 , . . . , yjk

] and j ∈ {1, . . . , p} \ {j1, . . . , jk}, we define
hVj (J) ideal of An+p[yj1 , . . . , yjk

, yj ].
Given generators of J , we show how to find generators of hVj (J),

• we define an ideal h(I) of An+p[y2, . . . , yp] as h(I) = hV2(hV3(· · ·hVp(I) · · · )) (see
Definition 6.7). It is an ideal obtained by p− 1 homogenizations starting from I ⊂
An+p. In fact we construct hVp(I) ⊂ An+p[yp], then hVp−1(hVp(I)) ⊂ An+p[yp−1],
etc.,

• by definition, we can compute generators (finite in number) of h(I),
• we introduce a multigraduation on An+p[y2, . . . , yp] given by a multiform H =

(H2, . . . ,Hp). For G ∈ An+p[y2, . . . , yp], we have a notion of being
H-multihomogeneous. An ideal J of An+p[y2, . . . , yp] is said to be H-multihomo-
geneous if it can be generated by H-multihomogeneous elements,

• for an element of An+p (or An+p[y2, . . . , yp]) we introduce a notion of V -regularity
(resp. Vj-goodness),
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• we introduce an order ≺BΣ (resp. ≺Bj ) which is used to detect if an element is
V -regular (resp. Vj-good) or not (see Propositions 6.16 and 6.22). If G ∈ An+p

[y2, . . . , yp] is H-multihomogeneous, then thanks to Proposition 6.16 (resp. 6.22)
and Lemma 6.11 we can express the fact that G is V -regular (resp. Bj-good) or not
by a property of non-divisibility by yj (see Corollary 6.17),

• Lemma 6.12 shows that h(I) is H-multihomogeneous. A consequence is that there
exists a standard basis of h(I) with respect to ≺BΣ (resp. ≺Bj

) made of H-multi-
homogeneous elements,

• finally, Proposition 6.19 (resp. 6.23) shows that a standard basis of h(I) with respect
to ≺BΣ (resp. ≺Bj

) gives a system of generators of ψBΣ(I) (resp. ψBj
(I)), by keeping

only the V -regular (resp Vj-good) elements.

6.1. homogenizations

Let y1, . . . , yp be p new variables. Let k ∈ {0, . . . , p− 1}.
If k ∈ {1, . . . , p− 1}, let {j1, . . . , jk} be a part of {1, . . . , p} of cardinal equal to k.
If k = 0 then we set An+p[yj1 , . . . , yjk

] = An+p and {j1, . . . , jk} = ∅.
Let j ∈ {1, . . . , p}r {j1, . . . , jk}.

Definition 6.1. Let P ∈ An+p[yj1 , . . . , yjk
], and denote mj = ordVj (P ). We define

hVj (P ) ∈ An+p[yj1 , . . . , yjk
, yj ] in the following way:

let us write
P =

∑
aµνt

µ∂ν
t µ, ν ∈ Np, aµν ∈ An[y1, . . . , yjk

].

Set:
hVj (P ) =

∑
aµνt

µ∂ν
t y

mj−(νj−µj)
j .

Lemma 6.2. For each P,Q ∈ An+p[yj1 , . . . , yjk
],

hVj (PQ) = hVj (P )hVj (Q).

Proof. The proof is based on the following:
If Vj(tµ∂ν

t ) = m and Vj(tµ
′
∂ν′

t ) = m′ then:

• Vj(tµ∂ν
t t

µ′∂ν′

t ) = m+m′,
• tµ∂ν

t t
µ′∂ν′

t =
∑
cµ′′,ν′′t

µ′′∂ν′′

t

with Vj(tµ
′′
∂ν′′

t ) = m+m′ if cµ′′,ν′′ 6= 0.

This follows from the Leibniz rule:

∂k
tj
· a =

k∑
i=0

(
k

i

)
∂ia

∂tj
∂k−i

tj
.

In fact we can say that Vj-homogeneity is preserved by products. 2

Lemma 6.3. Let P, P1, . . . , Pd ∈ An+p[yj1 , . . . , yjk
] be such that P = P1 + · · ·+ Pd with

∀i ordVj (Pi) ≤ ordVj (P ), then there exists l1, . . . , ld ∈ N such that:

hVj (P ) = yl1
j h

Vj (P1) + · · ·+ yld
j h

Vj (Pd).

In fact li = ordVj (P )− ordVj (Pi).
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Definition 6.4. Let J be an ideal of An+p[yj1 , . . . , yjk
]. We define hVj (J) as the ideal

of An+p[yj1 , . . . , yjk
, yj ] generated by {hVj (P ) / P ∈ J}.

Proposition 6.5. Let J be an ideal of An+p[yj1 , . . . , yjk
]. There exists P1, . . . , Pq ∈ J

such that for each P ∈ J there exists C1, . . . , Cq ∈ An+p[yj1 , . . . , yjk
] such that:

P =
∑

CiPi with ordVj (CiPi) ≤ ordVj (P ) if Ci 6= 0.

Moreover, we can obtain these Pi in an algorithmic way if we know a finite system of
generators of J .

Proof. We just apply Proposition 2.1 to the order ≺Vj defined on N2n+2p+k by the
following:
(α, β, µ, ν, η) ≺Vj

(α′, β′, µ′, ν′, η′)

⇐⇒
{

νj − µj < ν′j − µ′j
or (νj − µj = ν′j − µ′j and (α, β, µ, ν, η) ≺ (α′, β′, µ′, ν′, η′))

where ≺ is a total well-order compatible with sums, the parameters of Proposition 2.1
being yj1 , . . . , yjk

here.2

Corollary 6.6. Let J be an ideal of An+p[yj1 , . . . , yjk
] and let P1, . . . , Pq ∈ J be as in

Proposition 6.5, then hVj (J) is generated by hVj (P1), . . . , hVj (Pq).

Proof. Let P ∈ J . By Proposition 6.5, there exists C1, . . . , Cq ∈ An+p[yj1 , . . . , yjk
] such

that:
P =

∑
CiPi with ordVj (CiPi) ≤ ordVj (P ) if Ci 6= 0.

By Lemma 6.2 and Lemma 6.3, we have:

hVj (P ) = yl1
j h

Vj (C1)hVj (P1) + · · ·+ y
lq
j h

Vj (Cq)hVj (Pq).2

6.2. the homogenized ideal h(I)

From now on, y denotes (y2, . . . , yp).

Definition 6.7. We still denote by I the annihilator of fs in An+p. We define by a
descending induction an ideal h(I) by:

• hp+1(I) = I,
• hk(I) = hVk(hk+1(I)),
• h(I) = h2(I).

We can write:
h(I) = hV2(hV3(· · ·hVp(I) · · · )).

This is an ideal of An+p[y] = An+p[y2, . . . , yp].
Similarly, for P ∈ An+p we define h(P ) ∈ An+p[y] by:

h(P ) = hV2(hV3(· · ·hVp(P ) · · · )).
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For example, for p = 3, we have:

hV3(I) =

{∑
j

Ej(y3)hV3(Qj)/Qj ∈ I, Ej(y3) ∈ An+p[y3]

}

hV2(hV3(I)) =

{∑
i

Fi(y2, y3)hV2

(∑
j

Ei,j(y3)hV3(Qi,j)

)}
with Qi,j ∈ I, Ei,j ∈ An+p[y3], Fi(y2, y3) ∈ An+p[y2, y3].
It is easy to see that for P ∈ I we have h(P ) ∈ h(I). Lemma 6.12 says that, conversely,
h(I) is generated by such elements, which is not completely direct.

Remark 6.8. Following Proposition 6.5 and Corollary 6.6, we can obtain in an algorith-
mic way generators (finite in number) of h(I).

Definition 6.9.

• For j = 2, . . . , p, we define the linear form Hj on N2n+2p+p−1 by:

Hj(α, β, µ, ν, η) = ηj + νj − µj .

We denote by H the multiform (H2, . . . ,Hp).
• Let G = G(y) ∈ An+p[y]. Write:

G =
∑

aµ,ν,ηt
µ∂ν

t y
η µ, ν ∈ Np, η ∈ Np−1, aµ,ν,η ∈ An.

— We define σHj

dj
(G) the partial Hj-symbol of G with order equal to dj ∈ Z by :

σ
Hj

dj
(G) =

∑
ηj+νj−µj=dj

aµ,ν,ηt
µ∂ν

t y
η.

— G is said to be Hj-homogeneous with ordHj (G) = dj if G = σ
Hj

dj
(G).

— G is said to be H-homogeneous (or H-multihomogeneous) with ordH(G) = d =
(d2, . . . , dp) if for each j = 2, . . . , p, G is Hj-homogeneous of order equal to dj .
We define σH

d (G) the H-symbol with order equal to d = (d2, . . . , dp) of G by:

σH
d (G) =

∑
∀j,ηj+νj−µj=dj

aµ,ν,ηt
µ∂ν

t y
η.

We have:

σH
d (G) = σH2

d2
(· · ·σHp

dp
(G) · · · ).

Note that the operations σHj

dj
commute with each other.

This yields the four following results:

Lemma 6.10. We take the notations of Definition 6.4:
let J be an ideal of An+p[yj1 , . . . , yjk

], let G ∈ hVj (J). Then for each m ∈ Z, we have
σ

Hj
m (G) ∈ hVj (J).
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Proof. By definition of hVj (J), there exists P1, . . . , Pe ∈ J and R1, . . . , Re ∈
An+p[yj1 , . . . , yjk

, yj ] such that G =
∑

iRih
Vj (Pi). Since σHj

m (G) =
∑

i σ
Hj
m (Rih

Vj (Pi)),
we can assume that G = RhVj (P ) with P ∈ J . Write R =

∑
l∈Z σ

Hj

l (R), we have:

RhVj (P ) =
∑

l

σ
Hj

l (R)hVj (P ).

By the same calculation as in 6.2, we can prove that σHj

l (R)hVj (P ) is Hj-homogeneous
with ordHj equal to l + ordHj (hVj (P )) = l + ordVj (P ) so we have:

σHj
m (RhVj (P )) = σ

Hj

m−ordVj (P )
(R)hVj (P )

which ends the proof. 2

Lemma 6.11. For each G ∈ An+p[y] H-homogeneous, there exists l = (l2, . . . , lp) ∈
Np−1 such that G = ylh(G(1, . . . , 1)).

Lemma 6.12. h(I) is the ideal of An+p[y2, . . . , yp] generated by the set {h(P )/P ∈
I, P 6= 0}.

Proof. First, it is clear that for each P in I, h(P ) is in h(I).
Conversely, let G ∈ h(I). Since G =

∑
k∈Zp−1 σH

k (G), we are reduced to prove that
each σH

k (G) is in the ideal generated by {h(P )/P ∈ I}. In fact we shall prove that for
each k = (k2, . . . , kp) ∈ Zp−1, there exists l = (l2, . . . , lp) ∈ Np−1 and Q ∈ I such that
σH

k (G) = ylh(Q), which will prove the lemma. The proof will be constructed by induction
on r the number of homogenizations (the claim in step r of this induction being the
following: hp+1−r(I) is generated by all the hVp+1−r (. . . hVp(P ) . . . ) with P ∈ I).

• If r = 1:
in this case, we have h(I) = hVp(I), H = Hp, k ∈ Z. By 6.10 we have σH

k (G) ∈ h(I),
so σH

k (G)|yp=1 ∈ I. As in Lemma 6.11, there exists l ∈ N such that σH
k (G) =

yl
ph

Vp(σH
k (G)|yp=1). This proves the result for r = 1.

• The induction step:
in order to avoid too many notations, we will assume that the result is true for
r = p − 2 and we will prove it for r = p − 1 (i.e. we only make the last step of
the induction which is completely similar to the rth step). Let us assume the result
true for hV3(· · ·hVp(I)).
We have:

σH
k (G) = σH′

k′ (σH2
k2

(G)) where H ′ = (H3, . . . ,Hp) and k′ = (k3, . . . , kp).

Denote G′ = σH2
k2

(G)|y2=1
then using 6.10, we have G′ ∈ hV3(· · ·hVp(I) · · · ), more-

over there exists l′2 ∈ N such that σH2
k2

(G) = y
l′2
2 h

V2(G′). Thus we have:

σH
k (G) = σH′

k′ (yl′2
2 h

V2(G′))

= y
l′2
2 σ

H′

k′ (hV2(G′)).

Assertion. ∃l′′2 ∈ Z such that σH′

k′ (hV2(G′)) = y
l′′2
2 h

V2(σH′

k′ (G′)).
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Let G′′ be such that G′ = σH′

k′ (G′) +G′′ then we have:

hV2(G′) = y
l′′2
2 h

V2(σH′

k′ (G′)) + y
l′′′2
2 hV2(G′′)

with l′′2 = 0 or l′′′2 = 0, after which, σH′

k′ (hV2(G′)) = y
l′′2
2 h

V2(σH′

k′ (G′)).
Let l2 = l′2 + l′′2 , we have:

σH
k (G) = yl2

2 h
V2(σH′

k′ (G′)).

We apply the induction hypothesis:

σH′

k′ (G′) = yl3
3 · · · ylp

p h
V3(· · ·hVp(Q) · · · ) with Q ∈ I.

Finally we have

σH
k (G) = ylh(Q) with l = (l2, . . . , lp) and Q ∈ I. 2

Corollary 6.13. For each G ∈ h(I), we have G|y=(1,...,1) ∈ I.

Another consequence of Lemma 6.12 is that h(I) is multihomogeneous: if we compute
a standard basis of h(I) with respect to some order, then we will be able to construct an-
other standard basis whose elements will beH-homogeneous. Let us denote by G1, . . . , Gq

such a basis, then {σH
k (Gi)/k ∈ Zp−1, i = 1, . . . , q} will be another standard basis.

In fact we shall see that, in our case, only q elements of this system will be useful.

6.3. computation of BΣ

From now on, we denote by V + the linear form on N2p:

V +(µ, ν) = ν2 − µ2 + · · ·+ νp − µp.

We naturally extend V + on N2n+2p+p−1.

Definition 6.14. Let G(y) ∈ An+p[y]. Then we say that G(y) (or G(1)) is V -regular if
σV (G(1)) 6= 0.

Definition 6.15. On N2n+2p+p−1 we define the following order:

(α, β, µ, ν, η) ≺BΣ (α′, β′, µ′, ν′, η′)

⇐⇒


ν1 − µ1 < ν′1 − µ′1

or
(

= and V +(µ, ν) < V +(µ′, ν′)
)

or
(

= and = and |η| < |η′|
)

or
(

= and = and = and (α, β, µ, ν, η) ≺ (α′, β′, µ′, ν′, η′)
)

where ≺ is a total well-order compatible with sums.

Proposition 6.16. Let P ∈ An+p,

P is V -regular ⇐⇒ mp≺BΣ
(h(P )) has no yj in its factorization,

where mp≺BΣ
(h(P )) is the privileged monomial of h(P ) with respect to the order ≺BΣ .
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Proof. Denote γ = exp≺BΣ
(P ). We have:

mp≺BΣ
(h(P )) has no factors yj ⇐⇒ ∀j = 2, . . . , p Vj(γ) = ordVj (P ).

Assume that ∀j = 2, . . . , p Vj(γ) = ordVj (P ). By the definition of ≺BΣ , we also have
V1(γ) = ordV1(P ), hence γ ∈ ND(σV (P )) and then σV (P ) 6= 0, i.e. P is V -regular.
Conversely, assume that P is V -regular. Then let γ0 ∈ ND(σV (P )). By the definition of
≺BΣ , we have V1(γ0) = V1(γ). Then, by the same definition, we have:

V2(γ) + · · ·+ Vp(γ) = V +(γ) ≥ V +(γ0) = ordV2(P ) + · · ·+ ordVp(P ),

but, since ∀j = 2, . . . , p Vj(γ) ≤ ordVj (P ) we have

∀j = 2, . . . , p Vj(γ) = ordVj (P )

and then mp≺BΣ
(h(P )) has no yj in its factorization. 2

Corollary 6.17. Let G = G(y) ∈ An+p[y] such that G is H-homogeneous then:

mp≺BΣ
(G) has no yj in its factorization =⇒ G is V -regular.

Proof. This is a direct consequence of Lemma 6.11, Corollary 6.13 and Propo-
sition 6.16. 2

Computation of BΣ

We first give a lemma:

Lemma 6.18. Let q, P ∈ An+p with q a monomial, such that ordV (qP ) = (0, . . . , 0).
Then σV (qP ) ∈ An[−∂tt]ψ(P )(−∂tt).

Proof. We have:

(i) tkj ∂
k
tj
∈ K[−∂tj

tj ],

(ii) tkc(−∂tt) ∈ K[−∂tt]tk with c(x) ∈ K[x].

We prove (i) by an induction on k (for k = 0, (i) is true):

tk∂k
t = tk∂t∂

k−1
t

= (∂tt
k − ktk−1)∂k−1

t

= (∂tt− k)tk−1∂k−1
t .

Hence (i) is true by the induction hypothesis.
For (ii), we note that it is enough to prove the result for c(x) = x:

tk∂tt = (∂tt
k + ktk−1)t

= (∂tt+ k)tk.

Using these relations, it is easy to see that q ∈ An[−∂tt]S1 · · ·Sp (see the notations of
Definition 5.2). Thus:

σV (qP ) ∈ An[−∂tt]σV (S1 · · ·SpP )(−∂tt). 2
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Let G1(y), . . . , Gq(y), . . . , Gq+r(y) be a ≺BΣ -standard basis of h(I) (in the sense of
Proposition 2.1) such that G1, . . . , Gq are V -regular and not the next ones. By
Lemma 6.12, h(I) is H-homogeneous so that for each Gi from this basis and each
k ∈ Zp−1, we have σH

k (Gi) ∈ h(I).
For each i = 1, . . . , q + r, let ki ∈ Zp−1 such that

exp≺BΣ
(Gi) = exp≺BΣ

(σH
ki

(Gi))

and let Hi(y) = σH
ki

(Gi), Hi is H-homogeneous. We shall prove that:

Proposition 6.19. ψBΣ(I) is generated by ψ(H1(1)), . . . , ψ(Hq(1)).

Note that ∀i, ψ(Hi(1)) ∈ ψBΣ(I) by Corollary 6.13

Proof. Let P ∈ I, P 6= 0, be V -regular and such that ordV (P ) = (0, . . . , 0). We have
h(P ) ∈ h(I), and therefore:

∃j0 ∈ {1, . . . , q + r} / exp≺BΣ
(h(P )) ∈ exp(Hj0) + N2(n+p)+p−1.

By Proposition 6.16 (applied to P ) and Corollary 6.17 (applied to H1, . . . ,Hq+r), we
have necessarily j0 ∈ {1, . . . , q}. Let mj0 be the monomial such that

mp≺BΣ
(h(P )) = mj0mp≺BΣ

(Hj0).

Necessarily mj0 and mp≺BΣ
(Hj0) have no yj in their factorization.

We set P̃1 = h(P )−mj0Hj0 , we have P̃1 ∈ h(I).
If σV

(0,...,0)(P̃1) = 0 then we stop the process.
If σV

(0,...,0)(P̃1) 6= 0 then:

• P̃1 is H-homogenous,
• P̃1 = ymh(P̃1|y=(1,...,1)) with m ∈ Np−1,
• ∀j = 2, . . . , p, ordVj (P̃1) = 0,
• it follows that m = (0, . . . , 0) and P̃1 = h(P̃1|y=(1,...,1)) is V -regular,
• in this case, we can apply the process with P replaced by P̃1|y=(1,...,1).

We continue the process:

P̃k+1 = P̃k −mjk
Hjk

with ∀k, jk ∈ {1, . . . , q},
and we stop the process as soon as σV

(0,...,0)(P̃s+1) = 0, i.e. when all the monomials of
σV (P ) are eliminated. Note that the restriction of ≺BΣ to {(α, β, µ, ν, η) ∈ N2n+2p+p−1/
∀j = 1, . . . , p νj − µj = 0} is a well-order and that for all k < s

exp≺BΣ
(σV

(0,...,0)(P̃k+1)) = exp≺BΣ
(P̃k+1) ≺BΣ exp≺BΣ

(P̃k) = exp≺BΣ
(σV

(0,...,0)(P̃k)).

Thus we obtain:

h(P ) =
s∑

k=0

mjk
Hjk

+ P̃s+1
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with 
∀k, jk ∈ {1, . . . , q}
∀k, ordV (mjk

Hjk
) = (0, . . . , 0)

σV
(0,...,0)(P̃s+1) = 0.

Finally

σV
(0,...,0)(P ) =

s∑
k=0

σV
(0,...,0)(mjk

(1)Hjk
(1))

and by Lemma 6.18, ∀k, σV
(0,...,0)(mjk

Hjk
(1)) ∈ An[−∂tt]ψ(Hjk

(1))(−∂tt). Hence

ψ(P ) ∈
q∑

i=0

An[s]ψ(Hi(1))(s). 2

We then find a finite system of generators of ψBΣ , and by Remark 5.5 we can compute BΣ.

6.4. computation of Bj

Since we can permute f1 and fj , we can assume that j = 1. Thus we shall compute
B1.

Definition 6.20. Let G(y) ∈ An+p[y]. We say that G(y) (or G(1)) is B1-good if we
have the following condition:

ordV1(G(1)− σV (G(1))) < ordV1(G(1)).

Definition 6.21. On N2n+2p+p−1 we define the following order:

(α, β, µ, ν, η) ≺B1 (α′, β′, µ′, ν′, η′)

⇐⇒


ν1 − µ1 < ν′1 − µ′1

or
(

= and V +(µ′, ν′) < V +(µ, ν)
)

or
(

= and = and |η| < |η′|
)

or
(

= and = and = and (α, β, µ, ν, η) ≺ (α′, β′, µ′, ν′, η′)
)

where ≺ is a total well-order compatible with sums.

Proposition 6.22. Let P ∈ An+p,

P is B1-good ⇐⇒ mp≺B1
(h(P )) has no yj in its factorization.

Proof. Denote γ = exp≺B1
(P ). As in Proposition 6.16, we have:

mp≺B1
(h(P )) has no factors yj ⇐⇒ ∀j = 2, . . . , p Vj(γ) = ordVj (P ).

Assume that P is not B1-good, i.e. there exists γ′ ∈ ND(P ) r ND(σV (P )) such that
V1(γ′) = ordV1(P ) then V +(γ) ≤ V +(γ′) < ordV2(P ) + · · ·+ ordVp(P ) and then mp≺B1

(h(P )) has a yj in its factorization.
Conversely, assume that P is B1-good, then σV (P ) = σV1(P ). But, by the definition of
≺B1 , γ ∈ ND(σV1(P )). Then γ ∈ ND(σV (P )) and then Vj(γ) = ordVj (P ) ∀j = 2, . . . , p,
i.e. mp≺B1

(h(P )) has no factors yj . 2
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Computation of B1

Let G1(y), . . . , Gq(y), . . . , Gq+r(y) a ≺B1-standard basis of h(I) (in the sense of Propo-
sition 2.1) such that G1, . . . , Gq are B1-good and not the next ones.
For each i = 1, . . . , q + r, let ki ∈ Zp−1 such that

exp≺B1
(Gi) = exp≺B1

(σH
ki

(Gi))

and let Hi(y) = σH
ki

(Gi): Hi is H-homogeneous, and we can prove in the same way as
for ψBΣ(I) that:

Proposition 6.23. ψB1(I) is generated by ψ(H1(1)), . . . , ψ(Hq(1)).

As before, we can obtain generators of B1 using Remark 5.5.

6.5. examples

1. Let f1 ∈ K[x1, . . . , xm], f2 ∈ K[xm+1, . . . , xn], with m < n. Let b1 and b2 be the
Bernstein polynomials associated, respectively, with f1 and f2. Then we can show
that:

B1 = K[s1, s2]b1(s1) and BΣ = K[s1, s2](b1(s1), b2(s2)).

2. An example treated by hand.
Let f1(x1, x2) = x1 + x2

2 and f2(x1, x2) = x1.
The ideal I of A4 is generated by: P1 = t1−x1−x2

2, P2 = t2−x1, P3 = ∂x1 +∂t1 +∂t2

and P4 = ∂x2 + 2x2∂t1 .
Using semisyzygies, we can see that P1, P2, P3, P4 is already a V2-standard basis of
I. To make these calculations we decided that mp≺V2

(P1) = −x2
2 and mp≺V2

(P4) =
∂x2 . Thus h(I) = hV2(I) is generated by Q1 = h(P1), Q2 = h(P2), Q3 = h(P3),
Q4 = h(P4).
By a number of divisions of semisyzygies, we obtain the following elements of h(I):
Q5 = x2∂x2 + 2t2∂t2 + 2t1∂t1 + 2y2t2∂x1 + 2,
Q6 = 2x2∂t2 + 2x2∂x1y2 − ∂x2y2,
Q7 = 4t1∂2

t1 + 4t2∂t2∂t1 + 6∂t1 − 4∂x1t2∂t2 − 4t2y2∂2
x1
− ∂2

x2
,

Q8 = 4t1∂t1∂t2 +4t2∂2
t2 +6∂t2 +6∂x1y2+∂2

x2
y2+8t2∂t2∂x1y2+4t1∂t1∂x1y2+4t2∂2

x1
y2
2 .

These divisions are made with respect to the order ≺BΣ . Remember that, for two
multi-indices ω and ω′, we first compare V1(ω) and V1(ω′) then V2(ω) and V2(ω′)
and then we compare ω and ω′ using a well-order ≺. Here we decided that ≺ is
a lexical order such that exp≺(x2) � exp≺(t1) � ζ where ζ = max≺{exp≺(ξ)/ξ ∈
{x1, ∂x1 , ∂x2 , t2, ∂t1 , ∂t2 , y2}}. In fact, the computation of a ≺BΣ -standard basis of
h(I) is not complete, but at this point we can see that Q7 and Q8 are V -regular
and we have:
ψ(Q7) = (s1 + 1)(2s1 + 2s2 + 3) and ψ(Q8) = (s2 + 1)(2s1 + 2s2 + 3).
Let E be the ideal of K[s1, s2] generated by ψ(Q7) and ψ(Q8). We have the inclusion
E ⊂ BΣ. We also prove that BΣ ⊂ K[s1, s2](s1 + 1, s2 + 1) (by taking s1 = −1,
s2 = −1 in a functional equation).

Proposition 6.24. We have BΣ = E.



Computation of Bernstein–Sato Ideals 661

Proof. If the inclusion E ⊂ BΣ is not an equality, then we can construct an
element b(s1, s2) in BΣ such that for all c ∈ Z \ 4, (2s1 + 2s2 + c) does not divide
b. Using an argument of Maynadier (see Maynadier, 1996), it would follow that

(s1 + 1)(s2 + 1)Πd1,d2∈N,d1+d2≤l−1b(s1 + d1, s2 + d2) where l ∈ N

is in B. But, according to Maynadier, B is principal and generated by (s1 +1)(s2 +
1)(2s1 + 2s2 + 3)(2s1 + 2s2 + 5). Contradiction. 2

3. The next examples have been made using the software KAN (see Takayama, 1991).
The results for B come from Maynadier (1996).
(f1, f2)(x1, x2) = (x1, x1 + x2

2)

• BΣ = 〈(s1 + 1)(2s1 + 2s2 + 3), (s2 + 1)(2s1 + 2s2 + 3)〉
• B1 = 〈(s1 + 1)(2s1 + 2s2 + 3)〉
• B2 = 〈(s2 + 1)(2s1 + 2s2 + 3)〉
• B = 〈(s1 + 1)(s2 + 1)(2s1 + 2s2 + 3)(2s1 + 2s2 + 5)〉

4. (f1, f2)(x1, x2) = (x1, x1 + x3
2)

• BΣ = 〈(s1+1)(3s1+3s2+4)(3s1+3s2+5), (s2+1)(3s1+3s2+4)(3s1+3s2+5)〉
• B1 = 〈(s1 + 1)(3s1 + 3s2 + 4)(3s1 + 3s2 + 5)〉
• B2 = 〈(s2 + 1)(3s1 + 3s2 + 4)(3s1 + 3s2 + 5)〉
• B = 〈(s1 +1)(s2 +1)(3s1 +3s2 +4)(3s1 +3s2 +5)(3s1 +3s2 +7)(3s1 +3s2 +8)〉

5. (f1, f2)(x1, x2) = (x1, x
2
1 + x3

2)

• BΣ = 〈(s1+1)(3s1+6s2+5)(3s1+6s2+7), (s2+1)(3s1+6s2+5)(3s1+6s2+7)〉
• B1 = 〈(s1 + 1)(3s1 + 6s2 + 5)(3s1 + 6s2 + 7)〉
• B2 = 〈(s2 + 1)(3s1 + 6s2 + 5)(3s1 + 6s2 + 7)(3s1 + 6s2 + 8)(3s1 + 6s2 + 10)〉
• B = 〈(s1 + 1)(s2 + 1)(3s1 + 6s2 + 5)(3s1 + 6s2 + 7)(3s1 + 6s2 + 8)(3s1 + 6s2 +

10)(3s1 + 6s2 + 11)(3s1 + 6s2 + 13)〉

6. (f1, f2)(x1, x2) = (x1, x
3
1 + x2

2)

• BΣ = 〈(s1 + 1)(2s1 + 6s2 + 5), (s2 + 1)(2s1 + 6s2 + 5)〉
• B1 = 〈(s1 + 1)(2s1 + 6s2 + 5)〉
• B2 = 〈(s2 + 1)(2s1 + 6s2 + 5)(2s1 + 6s2 + 7)(2s1 + 6s2 + 9)〉
• B = 〈(s1 +1)(s2 +1)(2s1 +6s2 +5)(2s1 +6s2 +7)(2s1 +6s2 +9)(2s1 +6s2 +11)〉

7. (f1, f2)(x1, x2) = (x2
1 + x3

2, x
3
1 + x2

2)

• BΣ = 〈(s1 +1)(4s1 +6s2 +5)(4s1 +6s2 +7)(6s1 +4s2 +5)(6s1 +4s2 +7), (s2 +
1)(4s1 + 6s2 + 5)(4s1 + 6s2 + 7)(6s1 + 4s2 + 5)(6s1 + 4s2 + 7)〉

• B1 = 〈(s1 +1)(4s1 +6s2 +5)(4s1 +6s2 +7)(6s1 +4s2 +5)(6s1 +4s2 +7)(6s1 +
4s2 + 9)〉

• B2 = 〈(s2 +1)(4s1 +6s2 +5)(4s1 +6s2 +7)(6s1 +4s2 +5)(6s1 +4s2 +7)(4s1 +
6s2 + 9)〉

Some remarks:
— the computation of B for example 7 seems to be hard. We tried using the algorithm
of Oaku (in Oaku and Takayama, 1999) but the computer did not succeed;
— we can see that in examples 4, 5, 6 and 7, we do not have BΣ = B1 + B2;
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— in these examples, B can be obtained as follows:
take B2(s1 +1, s2) := {b(s1 +1, s2)/b(s1, s2) ∈ B2}, then B = B1.B2(s1 +1, s2). Note that
we also have B = B1(s1, s2 + 1).B2 where B1(s1, s2 + 1) = {b(s1, s2 + 1)/b(s1, s2) ∈ B1}.
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Matemáticas, Universidad de Sevilla, 36.
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