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As the name suggests, the fundamental question of optimal transport theory is to compute
the cheapest way to transfer mass from one location (say for instance a quarry) to another
(say a construction site).

Figure 1: The first question in optimal transport: how to move the mass from a quarry to
a construction site with minimal effort.

When we say that we want to transfer mass, we mean that the data of the problem are
two distributions of mass, modelled by nonnegative measures µ and ν, of same total mass.
Up to normalizing them, we will always assume that they are probability measures. When
we say that we want to minimize something, we imply that there is a notion of cost, a
function c = c(x, y) of transporting a unite of mass from location x to location y. To finally
set a problem, it remains to explain how we model the transportation of mass. Historically,
it has been done in two steps.

1 The Monge problem
In what follows, if X is a measurable space (whose σ-algebra is not specified, but always
assumed to be the Borel σ-algebra when dealing with metric spaces),M(X) stands for the
set of nonnegative measures on X and P(X) stands for the set of probability measures on
X.

The first idea is to model the transport by a map T = T (x), meaning that all the mass
located at x initially will be sent at location T (x). Doing so, if the mass is initially distributed
according to the measure µ, it will end up being distributed according to the measure T#µ
defined as follows.

Definition 1 (Push-forward operation). LetX, Y be two measurable spaces, µ ∈M(X) and
T : X → Y be a measurable map. The push-forward of µ by T is the measure T#µ ∈M(Y )
defined for all measurable set A ⊂ Y by

T#µ(A) = µ(T−1(A)).

The map T is an admissible transport for the problem of sending µ onto ν provided
T#µ = ν. If so, we say that T is a transport map from µ to ν.
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Definition 2 (Transport map). Let X, Y be two measurable spaces, µ ∈ P(X) and ν ∈
P(Y ). We say that T : X → Y is a transport map from µ to ν if T is measurable and
T#µ = ν.

We have now all the ingredients for setting the Monge problem of optimal transport.

Definition 3 (Monge problem). Let X, Y be two measurable spaces, µ ∈ P(X), ν ∈ P(Y )
and let us choose a cost function c : X × Y → R+ ∪ {+∞}, measurable.

The Monge problem of transporting µ onto ν with cost c is the minimization problem

CM(µ, ν) := inf

{∫
c(x, T (x)) dµ(x) : T#µ = ν

}
. (1)

In plain words, the Monge problem consists in minimizing the transport cost∫
c(x, T (x)) dµ(x)

among all transport maps T from µ to ν.

A major issue of this optimization problem is that it does not always admit a solution,
or even a competitor. Indeed, for some µ and ν, no transport map from µ to ν exists.

Exemple 4. Let us assume that µ is a Dirac mass. Then for all T : X → Y measurable,
T#µ is a Dirac mass as well. Hence, whenever ν is not a Dirac mass, there cannot exist any
transport map from µ to ν.

Therefore, to get solutions in general, it is necessary to allow concentrated mass to split
along the transport, and hence to change the modelling of the transport. This is done as
follows.

2 The Kantorovic problem
To model this more general kind of transports, we use probability measures on X × Y . The
idea is that if γ is such a probability measure, and if A ⊂ X and B ⊂ Y are measurable,
γ(A × B) describes the mass sent along the transport from A to B. This γ is compatible
with the data µ and ν provided it is a coupling, or a transport plan between µ and ν as
defined below.

Definition 5 (Transport plan). Let X, Y be two measurable spaces, µ ∈ P(X) and ν ∈
P(Y ). We denote by πX : X × Y → X and πY : X × Y → Y the canonical projections. The
probability measure γ ∈ P(X × Y ) is a transport plan between µ and ν if πX#γ = µ and if
πY #γ = ν. We denote by Π(µ, ν) the set of transport plans from µ to ν.

A very good property of transport plans is that they always exist: the product measure
µ ⊗ ν is always a transport plan from µ to ν. The Kantorovic problem is the following
optimization problem.
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Definition 6 (Kantorovic). Let X, Y be two measurable spaces, µ ∈ P(X), ν ∈ P(Y ) and
let us choose a cost function c : X × Y → R+ ∪ {+∞}, measurable.

The Kantorovic problem of transporting µ onto ν with cost c is the minimization problem

CK(µ, ν) := inf

{∫
c(x, y) dγ(x, y) : γ ∈ Π(µ, ν)

}
. (2)

In plain words, the Kantorovic problem consists in minimizing the transport cost∫
c(x, y) dγ(x, y)

among all transport plans from µ to ν

The Kantorovic problem is a generalization of the Monge problem, as explained in the
next proposition whose proof is left as an exercise.

Proposition 7. Let X, Y be two measurable spaces, µ ∈ P(X), ν ∈ P(Y ) and c : X × Y →
R. If T is a transport map from µ to ν, then γT := (Id, T )#µ is a transport plan from µ to
ν, and ∫

c dγT =

∫
c(x, T (x)) dµ(x).

In particular, CK(µ, ν) ≤ CM(µ, ν).

Here, we are in a very good situation: the Kantorovic problem consists in minimizing an
affine functional under affine constraints. This is a linear program! And indeed, with very
little structure, we are able to prove the existence of a solution.

Proposition 8. Let us assume that

• X and Y are separable and complete metric spaces;

• c is lower semi-continuous, below bounded, with possibly values +∞;

•
∫
c dµ⊗ ν < +∞.

Then the Kantorovic problem (2) admits a minimizer.

The proof relies on the Prokhorov theorem, that we recall here without a proof.

Theorem 9 (Prokhorov). Let X be a separable metric space. A subset K of P(X) is relatively
sequentially compact for the topology of narrow convergence ( i.e. in duality with the set Cb(X)
of bounded continuous functions) if and only if it is tight, that is

∀ε > 0, ∃Kε ⊂ X compact s.t. ∀µ ∈ K, µ(X\Kε) ≤ ε.

We are no ready to prove Proposition 8.
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Proof of Proposition 8. We want to minimize the functional

F : γ ∈ P(X × Y ) 7→
∫
c dγ ∈ R ∪ {+∞}.

over the set Π(µ, ν). Hence, to prove existence, it suffices to show that the problem admits
a competitor, that F is lower semi-continuous, and that Π(µ, ν) is sequentially compact for
some topology. It will be done in the narrow topology. The existence of a competitor is
given by assumption (take µ⊗ ν).

F is narrowly l.s.c. Take (γn) ∈ P(X × Y )N a sequence narrowly converging to some γ ∈
P(X × Y ). As X × Y is metric, the cost function c being l.s.c. and bounded below, it is
the supremum of a sequence of bounded continuous functions. Let us take (cp) ∈ Cb(X ×
Y )N a sequence of bounded continuous functions increasing towards c. By the monotone
convergence theorem,

F (γ) = lim
p→+∞

∫
cp dγ.

So for all ε > 0 there exists p such that
∫
cp dγ ≥ F (γ)− ε. But we have

lim inf
n→+∞

∫
c dγn ≥ lim

n→+∞

∫
cp dγn =

∫
cp dγ ≥ F (γ)− ε.

So we get the result by letting ε→ 0.

Π(µ, ν) is narrowly sequentially compact. This is a direct consequence of the Prokhorov the-
orem. As Π(µ, ν) is clearly closed, we only need to show that it is tight. So we give ourselves
ε > 0 and we want to find a compact Kε such that for all γ ∈ Π(µ, ν), γ((X × Y )\Kε) ≤ ε.
But as X and Y are separable and complete, µ and ν are tight. So we can find Aε ⊂ X and
Bε ⊂ Y compact such that µ(X\Aε) ≤ ε/2 and ν(Y \Bε) ≤ ε/2. Choosing Kε = Aε×Bε, as

(X × Y )\Kε =
(

(X\Aε)× Y
)
∪
(
X × (Y \Bε)

)
,

we find that

γ((X × Y )\Kε) ≤ γ((X\Aε)× Y ) + γ(X × (Y \Bε)) = µ(X\Aε) + ν(Y \Bε) ≤ ε.

The result is therefore proven.

3 The Brenier theorem, statement
The Kantorovic problem has the advantage of barely always admitting solutions. The next
question is hence to study these solutions:

• Do we know something about these solutions, their support?
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• Are these solutions unique?

To have a picture in mind of the kind of answer we can get, let us give ourselves as a target
the following result due to Yann Brenier [1].

Theorem 10 (Brenier). Let us set X = Y = Rd, for some d ∈ N∗, and for all x, y ∈ Rd,
c(x, y) = |y − x|2. Let µ, ν ∈ P(Rd) satisfy∫

|x|2 dµ(x) < +∞ and
∫
|y|2 dν(y) < +∞. (3)

Under the assumption that µ� dx, the Kantorovic problem (2) admits a unique solution
γ, and there exists a convex function α : Rd → Rd such that γ = (Id,∇α)#µ. In particular,
CM(µ, ν) = CK(µ, ν) and the Monge problem (1) admits a solution, unique up to a µ-
negligible set.

Remark 11. By a famous result, convex functions are differentiable dx-almost everywhere,
so under the assumption µ� dx, ∇α is well defined µ almost everywhere.

So in the quadratic case and under few assumptions, the (unique) solution of the Kan-
torovic problem is concentrated on a graph: we say that it is of Monge type. Relaxing the
Monge problem does not add any new solution. It is a standard trick in calculus of variations
when studying a problem for which existence is not clear, to relax it in order to get solutions,
possibly in a wider class, and then to show that solutions of the relaxed problem are actually
solutions of the original one.

We will prove almost everything in Theorem 10, only adding the assumption that µ and
ν are concentrated on a compact. Along the way, we will discuss several general aspects of
the solutions of optimal transport problems for general (continuous) costs.

4 Duality
We said that the Kantorovic problem consists in minimizing an affine (hence convex) func-
tional under affine constraints. For such problems, a robust method for getting optimality
conditions is to use the concept of duality. This concept starts with a formal trick. Starting
from (2), assuming for instance that X and Y are separable and complete metric spaces, we
notice the following identity valid for all γ ∈M(X × Y ):

sup
ϕ∈Cb(X), ψ∈Cb(Y )

∫
ϕ dµ+

∫
ψ dν −

∫
ϕ⊕ ψ dγ =

{
0 if γ ∈ Π(µ, ν),

+∞ otherwise,

where we used the notation ϕ⊕ψ for the function (x, y) 7→ ϕ(x) +ψ(y). Using this identity,
we observe:

CK(µ, ν) := inf
γ∈Π(µ,ν)

∫
c dγ = inf

γ∈M(X×Y )
sup

ϕ,ψ∈Cb

∫
c dγ +

∫
ϕ dµ+

∫
ψ dν −

∫
ϕ⊕ ψ dγ.
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Now, let us imagine that we can invert the "inf" and the "sup". We get

CK(µ, ν) = sup
ϕ,ψ∈Cb

∫
ϕ dµ+

∫
ψ dν + inf

γ∈M(X×Y )

∫
{c− ϕ⊕ ψ} dγ.

But a quick analysis shows

inf
γ∈M(X×Y )

∫
{c− ϕ⊕ ψ} dγ =

{
0 if ϕ⊕ ψ ≤ c,

−∞ otherwise.

Therefore, when computing the supremum in ϕ, ψ, the infimum needs to not be −∞, and
so the supremum is necessarily achieved for test functions satisfying ϕ⊕ ψ ≤ c, that is

inf
γ∈Π(µ,ν)

∫
c dγ = sup

ϕ,ψ∈Cb
ϕ⊕ψ≤c

∫
ϕ dµ+

∫
ψ dν. (4)

This duality formula is at the core of the analysis of optimal transport problems.
Let us emphasize that because inf sup ≥ sup inf, the inequality "≥" is always true, even

allowing ϕ and ψ to be in the largest space of L1 functions: for all γ ∈ Π(µ, ν), ϕ ∈ L1(µ),
ψ ∈ L1(ν), if ϕ⊕ ψ ≤ c everywhere, then∫

c dγ ≥
∫
ϕ⊕ ψ dγ =

∫
ϕ dµ+

∫
ψ dν. (5)

So the nontrivial part in equality (4) is "≤".
In order to give a first insight of the power of duality, let us give a first very general result

which does not need any intricate idea and which only uses the easy part of (4).

Proposition 12 (Sufficient conditions for optimality). Let X, Y be any measurable spaces,
µ ∈ P(X) and ν ∈ P(Y ), and γ ∈ Π(µ, ν). Consider the following assertions.

1. γ is a solution of the Kantorovic problem (2).

2. There exists ϕ ∈ L1(µ) and ψ ∈ L1(ν) such that ϕ ⊕ ψ ≤ c everywhere, and the
following identity holds ∫

c dγ =

∫
ϕ dµ+

∫
ψ dν. (6)

3. There exists ϕ ∈ L1(µ) and ψ ∈ L1(ν) such that ϕ ⊕ ψ ≤ c everywhere, and for
γ-almost all (x, y) ∈ X × Y ,

ϕ(x) + ψ(y) = c(x, y). (7)

We have 2⇔ 3⇒ 1. Otherwise stated, 2 and 3 are sufficient conditions for optimality.
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Remark 13. • We will see later on contexts when these conditions are also necessary,
that is, when there is no duality gap. But this result needs more assumptions, and is
more difficult.

• Observe that this very easy proposition gives a way to build solutions of optimal
transport problems with unknown marginals µ and ν. Indeed, take ϕ and ψ two
measurable functions with ϕ⊕ψ ≤ c (say bounded to avoid integrability issues). Then
build γ a probability measure concentrated on the subset of X × Y where equality (7)
holds. Then γ is a solution of the optimal transport problem with its own marginals.

• If condition 2 and 3 hold, then because of (5) and (6), (ϕ, ψ) is a maximizer of (ϕ, ψ) 7→∫
ϕ dµ+

∫
ψ dν under constraint ϕ⊕ ψ ≤ c.

Proof. Let us first prove that 2 ⇒ 1. Assuming 2, let us consider ϕ and ψ as given by this
assertion, and let us choose γ′ ∈ Π(µ, ν). Because ϕ⊕ ψ ≤ c everywhere∫

c dγ′ ≥
∫
ϕ⊕ ψ dγ′ =

∫
ϕ dµ+

∫
ψ dν =

∫
c dγ.

So γ minimizes
∫
c dγ′ over γ′ ∈ Π(µ, ν).

Now, let us prove that 2⇒ 3. Assuming 2, considering ϕ and ψ as given by the assertion,
identity (6) rewrites ∫

{c− ϕ⊕ ψ} dγ = 0.

As c ≥ ϕ⊕ ψ, the result follows.
Let us prove 3⇒ 2. Assuming 3, considering ϕ and ψ as given by the assertion, we have∫

c dγ =

∫
ϕ⊕ ψ dγ =

∫
ϕ dµ+

∫
ψ dν.

5 Proof of the absence of a duality gap
In this section, we prove the absence of duality gap in the case when X and Y are compact
metric spaces and c is continuous. Actually, the result would be true even in separable
and complete spaces, with lower-semi continuous costs, working in duality with bounded
continuous functions, see [5, Theorem 1.3]. Our proof recovers the existence of a solution of
the optimal transport problem.

Theorem 14. Let X and Y be compact metric spaces, c : X × Y → R be continuous,
µ ∈ P(X) and ν ∈ P(Y ). We have

inf
γ∈Π(µ,ν)

∫
c dγ = sup

ϕ∈L1(µ),ψ∈L1(ν)
ϕ⊕ψ≤c

∫
ϕ dµ+

∫
ψ dν = sup

ϕ∈C(X),ψ∈C(Y )
ϕ⊕ψ≤c

∫
ϕ dµ+

∫
ψ dν.

Moreover, the infimum in the l.h.s. is achieved.
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The proof uses the following elementary lemma.

Lemma 15. Let Z be a metric compact space and λ : C(Z)→ R be a linear functional (not
necessarily continuous). The two following assertions are equivalent:

1. There exists m ∈ P(Z) such that for all f ∈ C(Z), λ(f) =
∫
f dm.

2. For all f ∈ C(Z), λ(f) ≤ sup f .

Proof of the Lemma. 1⇒ 2 is trivial. Let us prove 2⇒ 1, that is, let us assume that for all
f ∈ C(Z), λ(f) ≤ sup f . First of all, we have λ(f) ≤ sup f ≤ ‖f‖∞ and −λ(f) = λ(−f) ≤
− inf f ≤ ‖f‖∞, so that |λ(f)| ≤ ‖f‖∞. λ is therefore a continuous linear functional on
C(Z), that is, in virtue of the Riesz theorem, it can be represented by a Radon measure.

Moreover, if f ≥ 0, λ(−f) ≤ sup f ≤ 0, so λ(f) ≥ 0, so λ can be represented by a
nonnegative Radon measure m ∈M(Z).

It remains to prove that λ(1) = 1. This is because λ(1) ≤ 1 and λ(−1) ≤ −1.

We are now ready to prove Theorem 14.

Proof of Theorem 14. We already observed that

inf
γ∈Π(µ,ν)

∫
c dγ ≥ sup

ϕ∈L1(µ),ψ∈L1(ν)
ϕ⊕ψ≤c

∫
ϕ dµ+

∫
ψ dν ≥ sup

ϕ∈C(X),ψ∈C(Y )
ϕ⊕ψ≤c

∫
ϕ dµ+

∫
ψ dν.

So we just need to prove that there exists γ ∈ Π(µ, ν) such that∫
c dγ = sup

ϕ∈C(X),ψ∈C(Y )
ϕ⊕ψ≤c

∫
ϕ dµ+

∫
ψ dν.

Let us callK the quantity in the r.h.s., and E := {ϕ⊕ψ |ϕ ∈ C(X), ψ ∈ C(Y )} ⊂ C(X×Y ).
From Lemma 15, we deduce that it suffices to find a linear functional λ on C(X, Y ) such
that:

1. For all f ∈ C(X × Y ), λ(f) ≤ sup f .

2. For all ϕ⊕ ψ ∈ E , λ(ϕ⊕ ψ) =
∫
ϕ dµ+

∫
ψ dν.

3. The value λ(c) of λ at f = c is K.

This is exactly the kind of things that the Hahn-Banach theorem (see for instance [2,
Theorem I.1]) can do! As f 7→ sup f is real valued, positively homogeneous and subadditive,
if we can prove that

λ : F := Vect(E , c)→ R

f = ϕ⊕ ψ + sc 7→
∫
ϕ dµ+

∫
ψ dν + sK
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satisfies for all f ∈ F the inequality λ(f) ≤ sup f , then the Hahn-Banach theorem allows
to extend λ to the whole C(X × Y ) while keeping the upper-bound λ(f) ≤ sup f , which
provides the γ we are looking for.

So let us prove that for all ϕ ∈ C(X), ψ ∈ C(Y ) and s ∈ R∫
ϕ dµ+

∫
ψ dν + sK ≤ sup{ϕ⊕ ψ + sc}.

First case: s ≥ 0.
In this case, we just use the fact that K ≤

∫
c dµ⊗ ν. Therefore,∫

ϕ dµ+

∫
ψ dν + sK ≤

∫
{ϕ⊕ ψ + sc} dµ⊗ ν ≤ sup{ϕ⊕ ψ + sc}.

Second case: s < 0.
Calling t = −s, we need to prove that

1

t

(∫
ϕ dµ+

∫
ψ dν − sup{ϕ⊕ ψ − tc}

)
≤ K.

But calling ϕ′ := (ϕ−sup{ϕ⊕ψ−tc})/t and ψ′ := ψ/t, we have ϕ′⊕ψ′ ≤ c. So by definition
of K,

K ≥
∫
ϕ′ dµ+

∫
ψ′ dν =

1

t

(∫
ϕ dµ+

∫
ψ dν − sup{ϕ⊕ ψ − tc}

)
,

as announced.

6 Existence in the dual problem
In this section, we assume that X and Y are compact metric spaces, and that c is continuous.
Let us set a few notations. We call

Comp := {(ϕ, ψ) ∈ C(X)× C(Y ) s.t. ϕ⊕ ψ ≤ c},

∀ϕ ∈ C(X), ψ ∈ C(Y ), J(ϕ, ψ) :=

∫
ϕ dµ+

∫
ψ dν.

Therefore, our dual problem rewrites

sup
(ϕ,ψ)∈Comp

J(ϕ, ψ). (8)

The main result that we want to show is the existence of optimizer ϕ and ψ in this
problem. A notion that will be crucial towards this perspective is the c-transform of a test
function. To give a precise definition, let us use the following notations: we write ϕ ∈ FX
provided ϕ is a function from X to R ∪ {−∞}, and there exists x ∈ X such that ϕ(x) ∈ R.
We define the similar notation FY for functions defined on Y .
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Definition 16 (c-transform). Let ϕ ∈ FX . The c-transform of ϕ is the function ϕc : Y → R
defined for all y ∈ Y by

ϕc(y) = inf
x∈X

c(x, y)− ϕ(x).

Similarly, let ψ ∈ FY . The c-transform of ψ is the function ψc : X → R defined for all x ∈ X
by

ψc(x) = inf
y∈Y

c(x, y)− ψ(y).

Remark 17. We use the same notation for c-transform of functions of x and y, so be cautious!
We will not always specify that when proving results about functions of x, they also apply
for functions of y.

Let us gather some information about c-transforms of test functions.

Proposition 18. 1. Let ϕ ∈ FX , then ϕc ∈ C(Y ). Similarly, let ψ ∈ FY , then ψc ∈
C(X).

2. The sets
{ϕc |ϕ ∈ FX} ⊂ C(Y ) and {ψc |ψ ∈ FY } ⊂ C(X)

are uniformly equicontinuous.

3. Given ϕ ∈ C(X), (ϕ, ϕc) ∈ Comp and we have

sup
ψ s.t. (ϕ,ψ)∈Comp

J(ϕ, ψ) = J(ϕ, ϕc).

Similarly, given ψ ∈ C(Y ), (ψc, ψ) ∈ Comp and we have

sup
ϕ s.t. (ϕ,ψ)∈Comp

J(ϕ, ψ) = J(ψc, ψ).

Proof. The first point is a consequence of the second one. So let us prove that {ϕc |ϕ ∈ FX}
is uniformly equicontinuous. The second set is treated in the same way. Let ε > 0 and
δ > 0 such that for all x, x′ ∈ X, for all y, y′ ∈ Y such that dX(x, x′) + dY (y, y′) ≤ δ,
|c(x′, y′) − c(x, y)| ≤ ε. This is possible since X × Y is compact and c is continuous. Now
for y, y′ ∈ Y such that dY (y, y′) ≤ δ, we have

ϕc(y′)− ϕc(y) = inf
x′∈X

sup
x∈X

c(x′, y′)− ϕ(x′)− c(x, y) + ϕ(x) ≤ sup
x∈X

c(x, y′)− c(x, y) ≤ ε,

where we chose x′ = x in the infimum to get an upper bound, and dY (y, y′) ≤ δ to get the
last inequality. Reversing the roles of y and y′, we get |ϕc(y′) − ϕc(y)| ≤ ε, and hence, the
result.

It remains to prove the third point. For ϕ ∈ C(X), x ∈ X and y ∈ Y ,

ϕc(y) ≤ c(x, y)− ϕ(x),
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so that ϕ⊕ ϕc ≤ c and by continuity of ϕc, (ϕ, ϕc) ∈ Comp. The last thing to prove is that
for all (ϕ, ψ) ∈ Comp, J(ϕ, ψ) ≤ J(ϕ, ϕc). But whenever (ϕ, ψ) ∈ Comp, for all x ∈ X and
y ∈ Y

ψ(y) ≤ c(x, y)− ϕ(x).

Taking the infimum in x in the r.h.s., we find ψ ≤ ϕc. So the conclusion follows from the
monotonicity of J(ϕ, ψ) w.r.t. ψ.

Therefore, if (ϕ, ψ) ∈ Comp, then (ϕ, ϕc) provides a better competitor for our maximiza-
tion problem. We can keep going and consider (ϕcc, ϕc), (ϕcc, ϕccc),... Actually, this iteration
stops thanks to the following lemma.

Lemma 19. For all ϕ ∈ FX , ϕccc = ϕc. Similarly, for all ψ ∈ FY , ψccc = ψc.

Proof. The two ingredients for this proof is that on the one hand, for all ϕ, ϕcc ≥ ϕ, and on
the other hand, if ϕ ≤ ϕ′, then ϕc ≥ ϕ′c. Indeed, with these two properties we know that
ϕccc = (ϕc)cc ≥ ϕc by the first point, and ϕccc = (ϕcc)c ≤ ϕc by the first point together with
ϕcc ≥ ϕ.

The second point is a consequence of the minus sign in the definition of ϕc. Let us prove
the first one. We have for all x ∈ X,

ϕcc(x) = inf
y∈Y

sup
x′∈X

c(x, y)− c(x′, y) + ϕ(x′) ≥ ϕ(x),

by chosing x′ = x in the sup to get a lower bound.

As a consequence, it is often useful to give a name to c-transforms of functions.

Definition 20 (c-concave functions). A function ϕ : X → R is said to be c-concave if it
is the c-transform of a function ψ ∈ FY . Similarly, a function ψ : Y → R is said to be
c-concave if it is the c-transform of a function ϕ ∈ FY .

Remark 21. Due to the previous results, when X and Y are compact and c is continuous, if
ϕ is c-concave, then ϕ is continuous, and is the c-transform of a continuous function.

Proposition 22. A function ϕ is c-concave if and only if ϕcc = ϕ. In particular, if ϕ is
c-concave, calling ψ = ϕc, we also have ϕ = ψc. In this case, we call the pair (ϕ, ψ) a pair
of c-concave conjugates.

We have all the ingredients needed to prove

Proposition 23. Let X, Y be compact metric spaces, and c : X × Y → R be continuous.
The maximization problem (8) admits some maximizers (ϕ̄, ψ̄) ∈ Comp. Moreover, some of
these maximizers are pairs of convex conjugates.
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Proof. Let (ϕn, ψn) ∈ CompN be a maximizing sequence (this is possible since Comp is
nonempty: choose ϕ ≡ −M and ψ ≡ 0 for M sufficiently large). For all n, up to replacing
(ϕn, ψn) by (ϕccn , ϕ

c
n), which increases the objective functional, we can assume that ϕn ∈

{ψc |ψ ∈ FY } and ψn ∈ {ϕc |ϕ ∈ FX}, and hence that both (ϕn) and (ψn) are uniformly
equicontinuous sequences.

Moreover, let us replace ϕn by ϕn − inf ϕn and ψn by ψn + inf ϕn. This does not change
the value of J , keeps the property (ϕn, ψn) ∈ Comp, keeps the property of ϕn and ψn to be
c-tranforms of each other and keeps the sequences to be uniformly equicontinuous. By this
trick, we can assume that inf ϕn = 0. By uniform equicontinuity, (ϕn) is therefore uniformly
bounded, and by definition of the c-tranform, (ψn) is as well.

So the Ascoli-Arzela theorem applies: up to extraction, (ϕn) converges uniformly towards
a certain function ϕ̄ ∈ C(X), and (ψn) converges uniformly towards a function ψ̄ ∈ C(Y ).
Passing to the pointwise limit in ϕn ⊕ ψn ≤ c leads to (ϕ̄, ψ̄) ∈ Comp, and we have

J(ϕ̄, ψ̄) = lim
n→+∞

J(ϕn, ψn) = sup
(ϕ,ψ)∈Comp

J(ϕ, ψ),

and the optimization problem (8) admits optimizers.
Finally, up to replacing (ϕ̄, ψ̄) by (ϕ̄cc, ϕ̄c), we can assume that ϕ̄ = ψ̄c and ψ̄ = ϕ̄c.

7 Necessary condition for optimality
Let us still work in the case when X and Y are compact metric spaces, and c is continuous.
By Propositions 8 and 23, and Theorem 14, we know that there is existence in both the
primal and dual problems and that the corresponding values coincide. This is exactly the
kind of situations where we can derive necessary and sufficient optimality conditions.

Proposition 24 (Optimality conditions for the Kantorovic problem). Let γ ∈ Π(µ, ν). The
following assertions are equivalent:

1. γ is a solution of the Kantorovic problem (2).

2. There exists ϕ ∈ L1(µ) and ψ ∈ L1(ν) such that ϕ ⊕ ψ ≤ c everywhere, and for
γ-almost all (x, y),

ϕ(x) + ψ(y) = c(x, y).

3. There exists a c-concave function ϕ ∈ C(X) such that for all (x, y) ∈ Supp(γ)

ϕ(x) + ϕc(y) = c(x, y).

Remark 25. Notice that in case γ is a solution of the Kantorovic problem, any maximizer of
the dual problem (8) satisfies point 2 and that any c-concave maximizer of the dual problem
satisfies point 3.
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Proof. 3⇒ 2 is obvious setting ψ := ϕc, 2⇒ 1 has already been done in Proposition 12. It
remains to prove 1 ⇒ 3. By Proposition 23, the dual problem (8) admits as a maximizer a
pair of c-concave functions (ϕ, ϕc) ∈ C(X)×C(Y ). By Theorem 14, there is no duality gap,
that is ∫

c dγ =

∫
ϕ dµ+

∫
ϕc dν.

So as proven in Proposition 12, for γ almost all (x, y), ϕ(x) +ϕc(y) = c(x, y). As both c and
ϕ⊕ψ are continuous, the set of points where they coincide is closed, and hence contains the
support of γ.

8 c-cyclical monotonicity and 1 dimensional case
This optimality condition has an important geometric consequence on the support of solu-
tions of optimal transport problems: they are c-cyclically monotone.

Definition 26 (c-cyclical monotonicity). A subset S ⊂ X × Y is said to be c-cyclically
monotone whenever for all N ∈ N∗ and (x1, y1), . . . , (xN , yN) ∈ S,

c(x1, y1) + · · ·+ c(xN , yN) ≤ c(x1, y2) + · · ·+ c(xN−1, yN) + c(xN , y1).

Remark 27. This is the same as saying that for all N ∈ N∗, (x1, y1), . . . , (xN , yN) ∈ S and
σ ∈ SN ,

c(x1, y1) + · · ·+ c(xN , yN) ≤ c(x1, yσ(1)) + · · ·+ c(xN , yσ(N)).

(Just decompose σ as the composition of disjoint supports cycles.)

Proposition 28. Let γ ∈ Π(µ, ν) be a solution of the Kantorovic problem (2). Then Supp(γ)
is c-cyclically monotone.

Remark 29. We will prove this result using duality, but it could be proven directly (see [3,
Theorem 2.4.3]). It could be proven that this necessary condition is also sufficient, see [3,
Corollary 2.6.8].

Proof. Let N ∈ N∗ and (x1, y1), . . . , (xN , yN) ∈ Supp(γ). Let ϕ be given by point 3 of
Proposition 24. We have:

c(x1, y1) + · · ·+ c(xN , yN) = ϕ(x1) + ϕc(y1) + · · ·+ ϕ(xN) + ϕc(yN)

= ϕ(x1) + ϕc(y2) + · · ·+ ϕ(xN−1) + ϕc(yN) + ϕ(xN) + ϕc(y1)

≤ c(x1, y2) + · · ·+ c(xN−1, yN) + c(xN , y1).

As a consequence of c-cyclical monotonicity, we can give results about optimal transport
in one space dimension. We leave this as an exercise.
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Exercice 30. Let h : R → R be a strictly convex function and µ, ν ∈ P(R) with compact
support (we could do better but let us keep to the compact case). Set c : (x, y) ∈ R2 7→
h(y − x), and let γ be a solution of the optimal transport problem between µ and ν with
cost c.

1. Take (x, y), (x′, y′) ∈ Supp(γ) and assume that x < x′. Prove using c-cyclical mono-
tonicity that y ≤ y′.

2. Assume in addition for the rest of the exercise that µ has no atom. Take x, y, y′ ∈ R
with y < y′, (x, y) ∈ Supp(γ) and (x, y′) ∈ Supp(γ). Prove with question 1 that
γ(R × (y, y′)) = 0. Conclude that for all x ∈ R, {y ∈ R s.t. (x, y) ∈ Supp(γ)} has
cardinality 0, 1 or 2.

3. Show that those x whose corresponding set of ys defined in the previous question has
cardinality 2 are at most countable.

4. Conclude that γ is concentrated on the graph of a nondecreasing function f .

5. Using the convexity of the set of solutions, prove that γ is unique.

9 The quadratic case, proof of the Brenier theorem
We will prove a slight modification of the Brenier Theorem 10 replacing the assumption (3)
by a compact support for µ and ν in order to be able to use Proposition 24. That is:

Theorem 31. Let us set X = Y = BR ⊂ Rd, for some R > 0 and d ∈ N∗, and for all
x, y ∈ Rd, c(x, y) = 1

2
|y − x|2. Let µ ∈ P(BR) and ν ∈ P(BR).

Under the assumption that µ� dx, the Kantorovic problem (2) admits a unique solution
γ, and there exists a convex function α : BR → R such that γ = (Id,∇α)#µ. In particular,
CM(µ, ν) = CK(µ, ν) and the Monge problem (1) admits a solution, unique up to a µ-
negligible set.

In the proof, we will make a crucial use of:

Theorem 32. Let U ⊂ Rd be a convex open set and α : U → R convex, then α is dx-almost
everywhere differentiable on U .

Proof. Let γ be a solution of the Kantorovic problem (2) as given by Proposition 8. We first
show that there exists a convex function α on BR such that γ = (Id,∇α)#µ.

By Proposition 24, there exists ϕ ∈ C(X) a c-concave function such that for every
(x, y) ∈ Supp(γ),

ϕ(x) + ϕc(y) =
1

2
|y − x|2.

Let us set for all x, y ∈ BR

α(x) :=
|x|2

2
− ϕ(x) and β(y) :=

|y|2

2
− ϕc(y).
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We have for all x, y ∈ BR:

α(x) + β(y) =
|x|2

2
+
|y|2

2
− ϕ(x)− ϕc(y)

≥ |x|
2

2
+
|y|2

2
− 1

2
|y − x|2 = 〈x, y〉,

so that
α(x) + β(y) ≥ 〈x, y〉

with an equality sign on the support of γ. This is reminiscent of the theory of convex
functions: (α, β) are convex conjugate functions. For instance, to see that α is convex,
observe that as ϕcc = ϕ,

α(x) =
|x|2

2
− ϕ(x) =

|x|2

2
− inf

y∈BR

|y − x|2

2
− ϕc(y)

= sup
y∈BR

〈x, y〉 −
(
|y|2

2
− ϕc(y)

)
= sup

y∈BR

〈x, y〉 − β(y),

which is convex as a supremum of affine functions.
Let us prove that for γ almost all (x, y) ∈ BR × BR, x ∈ BR, α is differentiable at x

and y = ∇α(x). As α is convex and µ � dx, µ(BR) = 1 and α is differentiable µ-almost
everywhere on BR. Let D ⊂ BR be measurable, such that µ(D) = 1, and for all x ∈ D, α
is differentiable at x. Let us call S := Supp(γ) ∩ (D × BR). Of course, γ(S) = 1 (this is
because γ(Supp(γ)) = 1 and γ(D×BR) = µ(D) = 1). Moreover, for all (x, y) ∈ S, x ∈ BR,
α is differentiable at x, and the function

x′ ∈ BR 7→ α(x′)− 〈x′, y〉

achieves its maximum β(y) at x′ = x. So differentiating at x′ = x, we find

y = ∇α(x).

In conclusion, for all f ∈ C(BR ×BR),∫
f dγ =

∫
S
f dγ =

∫
S
f(x,∇α(x)) dγ(x, y)

=

∫
D×BR

f(x,∇α(x)) dγ(x, y)

=

∫
D
f(x,∇α(x)) dµ(x) =

∫
f(x,∇α(x)) dµ(x)

=

∫
f d (Id,∇α)#µ(x, y).
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We conclude that γ is of Monge type, and hence that CK(µ, ν) = CM(µ, ν).
It remains to prove uniqueness. Assume that the Kantorovic problem admits two solu-

tions γ1 and γ2. Then, γ := (γ1 + γ2)/2 is a solution as well. By the first part of the proof,
there exists α1, α2 and α three convex functions such that

for γ1-almost all (x, y), α1 is differentiable at x and y = ∇α1(x),

for γ2-almost all (x, y), α2 is differentiable at x and y = ∇α2(x),

for γ-almost all (x, y), α is differentiable at x and y = ∇α(x).

But as γ1 � γ, the third point is also valid for γ1-almost all (x, y), that is, for γ1-almost all
(x, y), α1 and α are differentiable at x and y = ∇α1(x) = ∇α(x). In particular, for γ1-almost
all (x, y), α1 and α are differentiable at x and ∇α1(x) = ∇α(x). This assertion does not
depend on y, so it is true for µ-almost all x. Doing the same reasoning with γ2, we find that
for µ-almost all x, α1 and α2 are differentiable at x, and ∇α1(x) = ∇α2(x). Uniqueness for
the Kantorovic problem follows. Uniqueness for the Monge problem follows the same lines,
observing that if T is a solution of the Monge problem, then (Id, T )#µ is a solution of the
Kantorovic problem (as CK(µ, ν) = CM(µ, ν)). Therefore, our argument shows that T = ∇α
µ-almost everywhere.

Remark 33. In the proof, we saw that if ϕ is c-concave with c(x, y) := |y − x|2/2, then
α : x 7→ |x|2/2−ϕ(x) is convex. Actually, this is an equivalence, and β : y 7→ |y|2/2−ϕc(y) is
the Legendre transform of α. This draws a link between c-transform and Legendre transform.

Another way to see this link is that using c(x, y) := |y − x|2/2 or c(x, y) := −〈x, y〉 does
not affect the solutions of optimal transport. But with c(x, y) := −〈x, y〉, the c-transform
is exactly the Legendre transform of concave functions, and therefore, c-concavity coincide
with standard concavity.

See [4, Section 1.6.1] for more material about this.

10 The Monge-Ampère equation
The purpose of this section is to draw a formal link between optimal transport problems and
the Monge-Ampère equation. Let us place ourselves in the context of the Monge problem on
Rd: µ and ν are probability measures on Rd. Assume in addition that µ� dx and ν � dy.
In this case, there exist f and g two nonnegative functions on Rd such that dµ(x) = f(x) dx
and dµ(y) = g(y) dy. Assume that they are continuous and positive. Let T be a transport
map from µ to ν. Assuming that T is a diffeomorphism, T−1 is a transport map from ν to
µ. Therefore, we have for all ϕ ∈ Cb(Rd)∫

ϕ(x)f(x) dx =

∫
ϕ(T−1(y))g(y) dy.
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But assuming in addition that det DT > 0, we can apply the change of variables y = T (x)
(and hence dy = det DT (x) dx), and find∫

ϕ(x)f(x) dx =

∫
ϕ(x)g(T (x)) det DT (x) dx,

and hence, for all x,

det DT (x) =
f(x)

g(T (x))
.

Now assume that T is the solution of the Monge problem with quadratic cost: in virtue
of the Brenier theorem, there exists a convex function α such that T = ∇α. Therefore, our
identity rewrites

det D2α(x) =
f(x)

g(∇α(x))
.

This is the Monge-Ampère equation, a fully nonlinear elliptic equation. Studying the reg-
ularity of optimal transport maps for the quadratic cost (that is, showing that whenever f
and g are smooth, α is smooth) reduces to study the regularity of this elliptic PDE.

11 Bibliographical notes
We decided here to present results about the Kantorovic problem relying on duality. This is
a robust approach that can be used for a large variety of contexts. To get finer results (in
particular the generalization in Polish spaces), we refer to [5, Chapter 1].

Another approach leading to the same results in a more efficient but less robust way is
to mainly rely on c-cyclical monotonicity. Once proven that the support of a solution γ of
the Kantorovic problem is c-cyclically monotone, it is possible to build by hand a c-concave
function ϕ such that for every (x, y) on the support of γ, ϕ(x) +ϕc(y) = c(x, y). This is the
approach chosen in [3, Chapter 2].

Let us also mention the book [4] which gives an overview of both approaches, with a lot
of examples and illustrations of the results.
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