
Optimal transport: introduction, applications and derivation
Lecture 1: the Brenier theorem

Contents
1 The Monge problem 2

2 The Kantorovic problem 3

3 The Brenier theorem, statement 5

4 Duality 5

5 Proof of the absence of duality gap 7

6 Existence in the dual problem 8

7 Necessary condition for optimality 10

8 c-cyclical monotonicity and 1 dimensional case 11

9 The quadratic case, proof of the Brenier theorem 12

10 The Monge-Ampère equation 14

11 Bibliographical notes 14

1



As the name suggests, the fundamental question of optimal transport theory is to compute the cheapest
way to transfer mass from one location (say for instance a quarry) to another (say a construction site).

Figure 1: The first question in optimal transport: how to move the mass from a quarry to a construction
site with minimal effort.

When we say that we want to transfer mass, we mean that the data of the problem are two distributions
of mass, modelled by nonnegative measures µ and ν, of same total mass. Up to normalizing them, we will
always assume that they are probability measures. When we say that we want to minimize something, we
imply that there is a notion of cost, a function c = c(x, y) of transporting a unite of mass from location
x to location y. To finally set a problem, it remains to explain how we model the transportation of mass.
Historically, it has been done in two steps.

1 The Monge problem
In what follows, if X is a measurable space (whose σ-algebra is not specified, but always assumed to be the
Borel σ-algebra when dealing with metric spaces),M(X) stands for the set of nonnegative measures on X
and P(X) stands for the set of probability measures on X.

The first idea is to model the transport by a map T = T (x), meaning that all the mass located at x
initially will be sent at location T (x). Doing so, if the mass is initially distributed according to the measure
µ, it will end up being distributed according to the measure T#µ defined as follows.

Definition 1 (Push-forward operation). Let X,Y be two measurable spaces, µ ∈ M(X) and T : X → Y
be a measurable map. The push-forward of µ by T is the measure T#µ ∈ M(Y ) defined for all measurable
set A ⊂ Y by

T#µ(A) = µ(T−1(A)).

The map T is an admissible transport for the problem of sending µ onto ν provided T#µ = ν. If so, we
say that T is a transport map from µ to ν.

Definition 2 (Transport map). Let X,Y be two measurable spaces, µ ∈ P(X) and ν ∈ P(Y ). We say that
T : X → Y is a transport map from µ to ν if T is measurable and T#µ = ν.

We have now all the ingredients for setting the Monge problem of optimal transport.

Definition 3 (Monge problem). Let X,Y be two measurable spaces, µ ∈ P(X), ν ∈ P(Y ) and let us choose
a cost function c : X × Y → R, measurable.

The Monge problem of transporting µ onto ν with cost c is the minimization problem

CM (µ, ν) := inf

{∫
c(x, T (x)) dµ(x) : T#µ = ν

}
. (1)

In plain words, the Monge problem consists in minimizing the transport cost∫
c(x, T (x)) dµ(x)
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among all transport maps T from µ to ν.

Remark 4. Uniqueness?

A major issue of this optimization problem is that it does not always admit a solution, or even a com-
petitor. Indeed, for some µ and ν, no transport map from µ to ν exists.

Exemple 5. Let us assume that µ is a Dirac mass. Then for all T : X → Y measurable, T#µ is a Dirac mass
as well. Hence, whenever ν is not a Dirac mass, there cannot exist any transport map from µ to ν.

Therefore, to get solutions in general, it is necessary to allow concentrated mass to split along the
transport, and hence to change the modelling of the transport. This is done as follows.

2 The Kantorovic problem
To model this more general kind of transports, we use probability measures on X × Y . The idea is that if γ
is such a probability measure, and if A ⊂ X and B ⊂ Y are measurable, γ(A× B) describes the mass sent
along the transport from A to B. This γ is compatible with the data µ and ν provided it is a coupling, or a
transport plan between µ and ν as defined below.

Definition 6 (Transport plan). Let X,Y be two measurable spaces, µ ∈ P(X) and ν ∈ P(Y ). We denote
by πX : X×Y → X and πY : X×Y → Y the canonical projections. The probability measure γ ∈ P(X×Y )
is a transport plan between µ and ν if πX#γ = µ and if πY #γ = ν. We denote by Π(µ, ν) the set of transport
plans from µ to ν.

A very good property of transport plans is that they always exist: the product measure µ⊗ ν is always
a transport plan from µ to ν. The Kantorovic problem is the following optimization problem.

Definition 7 (Kantorovic). Let X,Y be two measurable spaces, µ ∈ P(X), ν ∈ P(Y ) and let us choose a
cost function c : X × Y → R, measurable.

The Kantorovic problem of transporting µ onto ν with cost c is the minimization problem

CK(µ, ν) := inf

{∫
c(x, y) dγ(x, y) : γ ∈ Π(µ, ν)

}
. (2)

In plain words, the Kantorovic problem consists in minimizing the transport cost∫
c(x, y) dγ(x, y)

among all transport plans from µ to ν

The Kantorovic problem is a generalization of the Monge problem, as explained in the next proposition
whose proof is left as an exercise.

Proposition 8. Let X,Y be two measurable spaces, µ ∈ P(X), ν ∈ P(Y ) and c : X × Y → R. If T is a
transport map from µ to ν, then γT := (Id, T )#µ is a transport plan from µ to ν, and∫

cdγT =

∫
c(x, T (x)) dµ(x).

In particular, CK(µ, ν) ≤ CM (µ, ν).

Here, we are in a very good situation: the Kantorovic problem consists in minimizing an affine functional
under affine constraints. This is a linear program! And indeed, with very little structure, we are able to
prove the existence of a solution.

Proposition 9. Let us assume that
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• X and Y are separable and complete metric spaces;

• c is lower semi-continuous, below bounded, with possibly values +∞;

•
∫
cdµ⊗ ν < +∞.

Then the Kantorovic problem (2) admits a minimizer.

The proof relies on the Prokhorov theorem, that we recall here without a proof.

Theorem 10 (Prokhorov). Let X be a separable metric space. A subset K of P(X) is relatively sequentially
compact for the topology of narrow convergence ( i.e. in duality with the set Cb(X) of bounded continuous
functions) if and only if it is tight, that is

∀ε > 0, ∃Kε ⊂ X compact s.t. ∀µ ∈ K, µ(X\Kε) ≤ ε.

We are no ready to prove Proposition 9.

Proof of Proposition 9. We want to minimize the functional

F : γ ∈ P(X × Y ) 7→
∫
cdγ ∈ R ∪ {+∞}.

over the set Π(µ, ν). Hence, to prove existence, it suffices to show that the problem admits a competitor,
that F is lower semi-continuous, and that Π(µ, ν) is sequentially compact for some topology. It will be done
in the narrow topology. The existence of a competitor is given by assumption (take µ⊗ ν).

F is narrowly l.s.c. Take (γn) ∈ P(X × Y )N a sequence narrowly converging to some γ ∈ P(X × Y ). As
X × Y is metric, the cost function c being l.s.c. and bounded below, it is the supremum of a sequence of
bounded continuous functions. Let us take (cp) ∈ Cb(X × Y )N a sequence of bounded continuous function
increasing towards c. By the monotone convergence theorem,

F (γ) = lim
p→+∞

∫
cp dγ.

So for all ε > 0 there exists p such that
∫
cp dγ ≥ F (γ)− ε. But we have

lim inf
n→+∞

∫
cdγn ≥ lim

n→+∞

∫
cp dγn =

∫
cp dγ ≥ F (γ)− ε.

So we get the result by letting ε→ 0.

Π(µ, ν) is narrowly sequentially compact. This is a direct consequence of the Prokhorov theorem. As Π(µ, ν)
is clearly closed, we only need to show that it is tight. So we give ourselves ε > 0 and we want to find a
compact Kε such that for all γ ∈ Π(µ, ν), γ((X×Y )\Kε) ≤ ε. But as X ans Y are separable and complete, µ
and ν are tight. So we can find Aε ⊂ X and Bε ⊂ Y compact such that µ(X\Aε) ≤ ε/2 and ν(Y \Bε) ≤ ε/2.
Choosing Kε = Aε ×Bε, as

(X × Y )\Kε =
(

(X\Aε)× Y
)
∪
(
X × (Y \Bε)

)
,

we find that

γ((X × Y )\Kε) ≤ γ((X\Aε)× Y ) + γ(X × (Y \Bε)) = µ(X\Aε) + ν(Y \Bε) ≤ ε.

The result is therefore proven.
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3 The Brenier theorem, statement
The Kantorovic problem has the advantage of barely always admitting solutions. The next question is hence
to study these solutions:

• Do we know something about these solutions, their support?

• Are these solutions unique?

To have a picture in mind of the kind of answer we can get, let us give ourselves as a target the following
result due to Yann Brenier [1].

Theorem 11 (Brenier). Let us set X = Y = Rd, for some d ∈ N∗, and for all x, y ∈ Rd, c(x, y) = |y − x|2.
Let µ, ν ∈ P(Rd) satisfy ∫

|x|2 dµ(x) < +∞ and
∫
|y|2 dν(y) < +∞. (3)

Under the assumption that µ � dx, the Kantorovic problem (2) admits a unique solution γ, and there
exists a convex function α : Rd → Rd such that γ = (Id,∇α)#µ. In particular, CM (µ, ν) = CK(µ, ν) and
the Monge problem (1) admits a solution, unique up to a µ-negligible set.

Remark 12. By a famous result, convex functions are differentiable dx-almost everywhere, so under the
assumption µ� dx, ∇α is well defined µ almost everywhere.

So in the quadratic case and under few assumptions the (unique) solution of the Kantorovic problem is
concentrated on a graph: we say that it is of Monge type. Relaxing the Monge problem does not add any
new solution. It is a standard trick in calculus of variations when studying a problem for which existence is
not clear, to relax it in order to get solutions, possibly in a wider class, and then to show that solutions of
the relaxed problem are actually solutions of the original one.

We will prove almost everything in Theorem 11, only adding the assumption that µ and ν are concentrated
on a compact. Along the way, we will discuss several general aspects of the solutions of optimal transport
problems for general (continuous) costs.

4 Duality
We said that the Kantorovic problem consists in minimizing an affine (hence convex) functional under affine
constraints. For such problems, a robust method for getting optimality conditions is to use the concept of
duality. This concept starts with a formal trick. Starting from (2), assuming for instance that X and Y are
separable and complete metric spaces, we notice the following identity valid for all γ ∈M(X × Y ):

sup
ϕ∈Cb(X), ψ∈Cb(Y )

∫
ϕdµ+

∫
ψ dν −

∫
ϕ⊕ ψ dγ =

{
0 if γ ∈ Π(µ, ν),

+∞ otherwise,

where we used the notation ϕ⊕ ψ for the function (x, y) 7→ ϕ(x) + ψ(y). Using this identity, we observe:

CK(µ, ν) := inf
γ∈Π(µ,ν)

∫
cdγ = inf

γ∈M(X×Y )
sup

ϕ,ψ∈Cb

∫
cdγ +

∫
ϕdµ+

∫
ψ dν −

∫
ϕ⊕ ψ dγ.

Now, let us imagine that we can invert the "inf" and the "sup". We get

CK(µ, ν) = sup
ϕ,ψ∈Cb

∫
ϕdµ+

∫
ψ dν + inf

γ∈M(X×Y )

∫
{c− ϕ⊕ ψ} dγ.

But a quick analysis shows

inf
γ∈M(X×Y )

∫
{c− ϕ⊕ ψ} dγ =

{
0 if ϕ⊕ ψ ≤ c,
−∞ otherwise.
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Therefore, when computing the supremum in ϕ,ψ, the infimum needs to not be −∞, and so the supremum
is necessarily achieved for test functions satisfying ϕ⊕ ψ ≤ c, that is

inf
γ∈Π(µ,ν)

∫
cdγ = sup

ϕ,ψ∈Cb
ϕ⊕ψ≤c

∫
ϕdµ+

∫
ψ dν. (4)

This duality formula is at the core of the analysis of optimal transport problems.
Let us emphasize that because inf sup ≥ sup inf, the inequality "≥" is always true, even allowing ϕ and ψ

to be in the largest space of L1 functions: for all γ ∈ Π(µ, ν), ϕ ∈ L1(µ), ψ ∈ L1(ν), if ϕ⊕ψ ≤ c everywhere,
then ∫

cdγ ≥
∫
ϕ⊕ ψ dγ =

∫
ϕdµ+

∫
ψ dν. (5)

So the nontrivial part in equality (4) is "≤".
In order to give a first insight of the power of duality, let us give a first very general result which does

not need any intricate idea and which only use the easy part of (4).

Proposition 13 (Sufficient conditions for optimality). Let X,Y be any measurable spaces, µ ∈ P(X) and
ν ∈ P(Y ). Consider the following assertions.

1. γ is a solution of the Kantorovic problem (2).

2. There exists ϕ ∈ L1(µ) and ψ ∈ L1(ν) such that ϕ⊕ψ ≤ c everywhere, and the following identity holds∫
cdγ =

∫
ϕdµ+

∫
ψ dν. (6)

3. There exists ϕ ∈ L1(µ) and ψ ∈ L1(ν) such that ϕ ⊕ ψ ≤ c everywhere, and for γ-almost all (x, y) ∈
X × Y ,

ϕ(x) + ψ(y) = c(x, y). (7)

We have 2⇔ 3⇒ 1. Otherwise stated, 2 and 3 are sufficient conditions for optimality.

Remark 14. • We will see later on contexts when these conditions are also necessary, that is, when there
is no duality gap. But this result needs more assumptions, and is more difficult.

• Observe that this very easy proposition gives a way to build solutions of optimal transport problems
with unknown marginals µ and ν. Indeed, take ϕ and ψ two measurable functions with ϕ⊕ψ ≤ c (say
bounded to avoid integrability issues). Then build γ a probability measure concentrated on the subset
of X ×Y where equality (7) holds. Then γ is a solution of the optimal transport problem with its own
marginals.

• If condition 2 and 3 hold, then because of (5) and (6), (ϕ,ψ) is a maximizer of (ϕ,ψ) 7→
∫
ϕdµ+

∫
ψ dν

under constraint ϕ⊕ ψ ≤ c.

Proof. Let us first prove that 2⇒ 1. Assuming 2, let us consider ϕ and ψ as given by this assertion, and let
us choose γ′ ∈ Π(µ, ν). Because ϕ⊕ ψ ≤ c everywhere∫

cdγ′ ≥
∫
ϕ⊕ ψ dγ′ =

∫
ϕdµ+

∫
ψ dν =

∫
cdγ.

So γ minimizes
∫
cdγ′ over γ′ ∈ Π(µ, ν).

Now, let us prove that 2 ⇒ 3. Assuming 2, considering ϕ and ψ as given by the assertion, identity (6)
rewrites ∫

{c− ϕ⊕ ψ} dγ = 0.
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As c ≥ ϕ⊕ ψ, the result follows.
Let us prove 3⇒ 2. Assuming 3, considering ϕ and ψ as given by the assertion, we have∫

cdγ =

∫
ϕ⊕ ψ dγ =

∫
ϕdµ+

∫
ψ dν.

5 Proof of the absence of duality gap
In this section, we prove the absence of duality gap in the case when X and Y are compact metric spaces and
c is continuous. Actually, the result would be true even in separable and complete spaces, with lower-semi
continuous costs, working in duality with bounded continuous functions, see [5, Theorem 1.3]. Our proof
recovers the existence of a solution of the optimal transport problem.

Theorem 15. Let X and Y be compact metric spaces, c : X × Y → R be continuous, µ ∈ P(X) and
ν ∈ P(Y ). We have

inf
γ∈Π(µ,ν)

∫
cdγ = sup

ϕ∈L1(µ),ψ∈L1(ν)
ϕ⊕ψ≤c

∫
ϕdµ+

∫
ψ dν = sup

ϕ∈C(X),ψ∈C(Y )
ϕ⊕ψ≤c

∫
ϕdµ+

∫
ψ dν.

Moreover, the infimum in the l.h.s. is achieved.

The proof uses the following elementary lemma.

Lemma 16. Let Z be a metric compact space and λ : C(Z) → R be a linear functional (not necessarily
continuous). The two following assertions are equivalent:

1. There exists m ∈ P(Z) such that for all f ∈ C(Z), λ(f) =
∫
f dm.

2. For all f ∈ C(Z), λ(f) ≤ sup f .

Proof of the Lemma. 1 ⇒ 2 is trivial. Let us prove 2 ⇒ 1, that is, let us assume that for all f ∈ C(Z),
λ(f) ≤ sup f . First of all, we have λ(f) ≤ sup f ≤ ‖f‖∞ and −λ(f) = λ(−f) ≤ − inf f ≤ ‖f‖∞, so that
|λ(f)| ≤ ‖f‖∞. λ is therefore a continuous linear functional on C(Z), that is, in virtue of the Riesz theorem,
it can be represented by a Radon measure.

Moreover, if f ≥ 0, λ(−f) ≤ sup f ≤ 0, so λ(f) ≥ 0, so λ can be represented by a nonnegative Radon
measure m ∈M(Z).

It remains to prove that λ(1) = 1. This is because λ(1) ≤ 1 and λ(−1) ≤ −1.

We are now ready to prove Theorem 15.

Proof of Theorem 15. We already observed that

inf
γ∈Π(µ,ν)

∫
cdγ ≥ sup

ϕ∈L1(µ),ψ∈L1(ν)
ϕ⊕ψ≤c

∫
ϕdµ+

∫
ψ dν ≥ sup

ϕ∈C(X),ψ∈C(Y )
ϕ⊕ψ≤c

∫
ϕdµ+

∫
ψ dν.

So we just need to prove that there exists γ ∈ Π(µ, ν) such that∫
cdγ = sup

ϕ∈C(X),ψ∈C(Y )
ϕ⊕ψ≤c

∫
ϕdµ+

∫
ψ dν.

Let us call K the quantity in the r.h.s., and E := {ϕ ⊕ ψ |ϕ ∈ C(X), ψ ∈ C(Y )} ⊂ C(X × Y ). From
Lemma 16, we deduce that it suffices to find a linear functional λ on C(X,Y ) such that:
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1. For all f ∈ C(X × Y ), λ(f) ≤ sup f .

2. For all ϕ⊕ ψ ∈ E , λ(ϕ⊕ ψ) =
∫
ϕdµ+

∫
ψ dν.

3. The value λ(c) of λ at f = c is K.

This is exactly the kind of things that the Hahn-Banach theorem (see for instance [2, Theorem I.1]) can
do! As f 7→ sup f is real valued, positively homogeneous and subadditive, if we can prove that

λ : F := Vect(E , c)→ R

f = ϕ⊕ ψ + sc 7→
∫
ϕdµ+

∫
ψ dν + sK

satisfies for all f ∈ F the inequality λ(f) ≤ sup f , then the Hahn-Banach theorem allows to extend λ to the
whole C(X × Y ) while keeping the upper-bound λ(f) ≤ sup f , which provides the γ we are looking for.

So let us prove that for all ϕ ∈ C(X), ψ ∈ C(Y ) and s ∈ R∫
ϕdµ+

∫
ψ dν + sK ≤ sup{ϕ⊕ ψ + sc}.

First case: s ≥ 0.
In this case, we just use the fact that K ≤

∫
cdµ⊗ ν. Therefore,∫

ϕdµ+

∫
ψ dν + sK ≤

∫
{ϕ⊕ ψ + sc}dµ⊗ ν ≤ sup{ϕ⊕ ψ + sc}.

Second case: s < 0.
Calling t = −s, we need to prove that

1

t

(∫
ϕdµ+

∫
ψ dν − sup{ϕ⊕ ψ − tc}

)
≤ K.

But calling ϕ′ := (ϕ− sup{ϕ⊕ ψ − tc})/t and ψ′ := ψ/t, we have ϕ′ ⊕ ψ′ ≤ c. So by definition of K,

K ≥
∫
ϕ′ dµ+

∫
ψ′ dν =

1

t

(∫
ϕdµ+

∫
ψ dν − sup{ϕ⊕ ψ − tc}

)
,

as announced.

6 Existence in the dual problem
In this section, we assume that X and Y are compact metric spaces, and that c is continuous. Let us set a
few notations. We call

Comp := {(ϕ,ψ) ∈ C(X)× C(Y ) s.t. ϕ⊕ ψ ≤ c},

∀ϕ ∈ C(X), ψ ∈ C(Y ), J(ϕ,ψ) :=

∫
ϕdµ+

∫
ψ dν.

Therefore, our dual problem rewrites
sup

(ϕ,ψ)∈Comp

J(ϕ,ψ). (8)

The main result that we want to show is the existence of optimizer ϕ and ψ in this problem. A notion
that will be crucial towards this perspective is the c-transform of a test function. To give a precise definition,
let us use the following notations: we write ϕ ∈ FX provided ϕ is a function from X to R∪{−∞}, and there
exists x ∈ X such that ϕ(x) ∈ R. We define the similar notation FY for functions defined on Y .

8



Definition 17 (c-transform). Let ϕ ∈ FX . The c-transform of ϕ is the function ϕc : Y → R defined for all
y ∈ Y by

ϕc(y) = inf
x∈X

c(x, y)− ϕ(x).

Similarly, let ψ ∈ FY . The c-transform of ψ is the function ψc : X → R defined for all x ∈ X by

ψc(x) = inf
y∈Y

c(x, y)− ψ(y).

Remark 18. We use the same notation for c-transform of functions of x and y, so be cautious! We will not
always specify that when proving results about functions of x, they also apply for functions of y.

Let us gather some information about c-transforms of test functions.

Proposition 19. 1. Let ϕ ∈ FX , then ϕc ∈ C(Y ). Similarly, let ψ ∈ FY , then ψc ∈ C(X).

2. The sets
{ϕc |ϕ ∈ FX} ⊂ C(Y ) and {ψc |ψ ∈ FY } ⊂ C(X)

are uniformly equicontinuous.

3. Given ϕ ∈ C(X), (ϕ,ϕc) ∈ Comp and we have

sup
ψ s.t. (ϕ,ψ)∈Comp

J(ϕ,ψ) = J(ϕ,ϕc).

Similarly, given ψ ∈ C(Y ), (ψc, ψ) ∈ Comp and we have

sup
ϕ s.t. (ϕ,ψ)∈Comp

J(ϕ,ψ) = J(ψc, ψ).

Proof. The first point is a consequence of the second one. So let us prove that {ϕc |ϕ ∈ FX} is uniformly
equicontinuous. The second set is treated in the same way. Let ε > 0 and δ > 0 such that for all x, x′ ∈ X,
for all y, y′ ∈ Y such that dX(x, x′) + dY (y, y′) ≤ δ, |c(x′, y′)− c(x, y)| ≤ ε. This is possible since X × Y is
compact and c is continuous. Now for y, y′ ∈ Y such that dY (y, y′) ≤ δ, we have

ϕc(y′)− ϕc(y) = inf
x′∈X

sup
x∈X

c(x′, y′)− ϕ(x′)− c(x, y) + ϕ(x) ≤ sup
x∈X

c(x, y′)− c(x, y) ≤ ε,

where we chose x′ = x in the infimum to get an upper bound, and dY (y, y′) ≤ δ to get the last inequality.
Reversing the roles of y and y′, we get |ϕc(y′)− ϕc(y)| ≤ ε, and hence, the result.

It remains to prove the third point. For ϕ ∈ C(X), x ∈ X and y ∈ Y ,

ϕc(y) ≤ c(x, y)− ϕ(x),

so that ϕ ⊕ ϕc ≤ c and by continuity of ϕc, (ϕ,ϕc) ∈ Comp. The last thing to prove is that for all
(ϕ,ψ) ∈ Comp, J(ϕ,ψ) ≤ J(ϕ,ϕc). But whenever (ϕ,ψ) ∈ Comp, for all x ∈ X and y ∈ Y

ψ(y) ≤ c(x, y)− ϕ(x).

Taking the infimum in x in the r.h.s., we find ψ ≤ ϕc. So the conclusion follows from the monotonicity of
J(ϕ,ψ) w.r.t. ψ.

Therefore, if (ϕ,ψ) ∈ Comp, then (ϕ,ϕc) provides a better competitor for our maximization problem.
We can keep going and consider (ϕcc, ϕc), (ϕcc, ϕccc),... Actually, this iteration stops thanks to the following
lemma.

Lemma 20. For all ϕ ∈ FX , ϕccc = ϕc. Similarly, for all ψ ∈ FY , ψccc = ψc.
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Proof. The two ingredients for this proof is that on the one hand, for all ϕ, ϕcc ≥ ϕ, and on the other hand,
if ϕ ≤ ϕ′, then ϕc ≥ ϕ′c. Indeed, with these two properties we know that ϕccc = (ϕc)cc ≥ ϕc by the first
point, and ϕccc = (ϕcc)c ≤ ϕc by the first point together with ϕcc ≥ ϕ.

The second point is a consequence of the minus sign in the definition of ϕc. Let us prove the first one.
We have for all x ∈ X,

ϕcc(x) = inf
y∈Y

sup
x′∈X

c(x, y)− c(x′, y) + ϕ(x′) ≥ ϕ(x),

by chosing x′ = x in the sup to get a lower bound.

As a consequence, it is often useful to give a name to c-transforms of functions.

Definition 21 (c-concave functions). A function ϕ : X → R is said to be c-concave if it is the c-transform
of a function ψ ∈ FY . Similarly, a function ψ : Y → R is said to be c-concave if it is the c-transform of a
function ϕ ∈ FY .

Remark 22. Due to the previous results, when X and Y are compact and c is continuous, if ϕ is c-concave,
then ϕ is continuous, and is the c-transform of a continuous function.

Proposition 23. A function ϕ is c-concave if and only if ϕcc = ϕ. In particular, if ϕ is c-concave, calling
ψ = ϕc, we also have ϕ = ψc. In this case, we call the pair (ϕ,ψ) a pair of c-concave conjugates.

We have all the ingredients needed to prove

Proposition 24. Let X,Y be compact metric spaces, and c : X × Y → R be continuous. The maximization
problem (8) admit some maximizers (ϕ̄, ψ̄) ∈ Comp. Moreover, some of these maximizers are pairs of convex
conjugates.

Proof. Let (ϕn, ψn) ∈ CompN be a maximizing sequence (this is possible since Comp is nonempty: choose
ϕ ≡ −M and ψ ≡ 0 forM sufficiently large). For all n, up to replacing (ϕn, ψn) by (ϕccn , ϕ

c
n), which increases

the objective functional, we can assume that ϕn ∈ {ψc |ψ ∈ FY } and ψn ∈ {ϕc |ϕ ∈ FX}, and hence that
both (ϕn) and (ψn) are uniformly equicontinuous sequences.

Moreover, let us replace ϕn by ϕn − inf ϕn and ψn by ψn + inf ϕn. This does not change the value of
J , keeps the property (ϕn, ψn) ∈ Comp, keeps the property of ϕn and ψn to be c-tranforms of each other
and keeps the sequences to be uniformly equicontinuous. By this trick, we can assume that inf ϕn = 0. By
uniform equicontinuity, (ϕn) is therefore uniformly bounded, and by definition of the c-tranform, (ψn) is as
well.

So the Ascoli-Arzela theorem applies: up to extraction, (ϕn) converges uniformly towards a certain
function ϕ̄ ∈ C(X), and (ψn) converges uniformly towards a function ψ̄ ∈ C(Y ). Passing to the pointwise
limit in ϕn ⊕ ψn ≤ c leads to (ϕ̄, ψ̄) ∈ Comp, and we have

J(ϕ̄, ψ̄) = lim
n→+∞

J(ϕn, ψn) = sup
(ϕ,ψ)∈Comp

J(ϕ,ψ),

and the optimization problem (8) admits optimizers.
Finally, up to replacing (ϕ̄, ψ̄) by (ϕ̄cc, ϕ̄c), we can assume that ϕ̄ = ψ̄c and ψ̄ = ϕ̄c.

7 Necessary condition for optimality
Let us still work in the case when X and Y are compact metric spaces, and c is continuous. By Propositions 9
and 24, and Theorem 15, we know that there is existence in both the primal and dual problems and that
the corresponding values coincide. This is exactly the kind of situations where we can derive necessary and
sufficient optimality conditions.

Proposition 25 (Optimality conditions for the Kantorovic problem). Let γ ∈ Π(µ, ν). The following
assertions are equivalent:
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1. γ is a solution of the Kantorovic problem (2).

2. There exists ϕ ∈ L1(µ) and ψ ∈ L1(ν) such that ϕ⊕ ψ ≤ c everywhere, and for γ-almost all (x, y),

ϕ(x) + ψ(y) = c(x, y).

3. There exists a c-concave function ϕ ∈ C(X) such that for all (x, y) ∈ Supp(γ)

ϕ(x) + ϕc(y) = c(x, y).

Remark 26. Notice that in case γ is a solution of the Kantorovic problem, any maximizer of the dual
problem (8) satisfies point 2 and that any c-concave maximizer of the dual problem satisfies point 3.

Proof. 3 ⇒ 2 is obvious setting ψ := ϕc, 2 ⇒ 1 has already been done in Proposition 13. It remains to
prove 1 ⇒ 3. By Proposition 24, the dual problem (8) admits as a maximizer a pair of c-concave functions
(ϕ,ϕc) ∈ C(X)× C(Y ). By Theorem 15, there is no duality gap, that is∫

cdγ =

∫
ϕdµ+

∫
ϕc dν.

So as proven in Proposition 13, for γ almost all (x, y), ϕ(x) + ϕc(y) = c(x, y). As both c and ϕ ⊕ ψ are
continuous, the set of points where they coincide is closed, and hence contains the support of γ.

8 c-cyclical monotonicity and 1 dimensional case
This optimality condition has an important geometric consequence on the support of solutions of optimal
transport problems: they are c-cyclically monotone.

Definition 27 (c-cyclical monotonicity). A subset S ⊂ X × Y is said to be c-cyclically monotone whenever
for all N ∈ N∗ and (x1, y1), . . . , (xN , yN ) ∈ S,

c(x1, y1) + · · ·+ c(xN , yN ) ≤ c(x1, y2) + · · ·+ c(xN−1, yN ) + c(xN , y1).

Remark 28. This is the same as saying that for all N ∈ N∗, (x1, y1), . . . , (xN , yN ) ∈ S and σ ∈ SN ,

c(x1, y1) + · · ·+ c(xN , yN ) ≤ c(x1, yσ(1)) + · · ·+ c(xN , yσ(N)).

(Just decompose σ as the composition of disjoint supports cycles.)

Proposition 29. Let γ ∈ Π(µ, ν) be a solution of the Kantorovic problem (2). Then Supp(γ) is c-cyclically
monotone.

Remark 30. We will prove this result using duality, but it could be proven directly (see [3, Theorem 2.4.3]).
It could be proven that this necessary condition is also sufficient, see [3, Corollary 2.6.8].

Proof. Let N ∈ N∗ and (x1, y1), . . . , (xN , yN ) ∈ Supp(γ). Let ϕ be given by point 3 of Proposition 25. We
have:

c(x1, y1) + · · ·+ c(xN , yN ) = ϕ(x1) + ϕc(y1) + · · ·+ ϕ(xN ) + ϕc(yN )

= ϕ(x1) + ϕc(y2) + · · ·+ ϕ(xN−1) + ϕc(yN ) + ϕ(xN ) + ϕc(y1)

≤ c(x1, y2) + · · ·+ c(xN−1, yN ) + c(xN , y1).

As a consequence of c-cyclical monotonicity, we can give results about optimal transport in one space
dimension. We leave this as an exercise.
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Exercice 31. Let h : R→ R be a strictly convex function and µ, ν ∈ P(R) with compact support (we could
do better but let us keep to the compact case). Set c : (x, y) ∈ R2 7→ h(y− x), and let γ be a solution of the
optimal transport problem between µ and ν with cost c.

1. Take (x, y), (x′, y′) ∈ Supp(γ) and assume that x < x′. Prove using c-cyclical monotonicity that y ≥ y′.

2. Assume in addition for the rest of the exercise that µ has no atom. Take x, y, y′ ∈ R with y < y′,
(x, y) ∈ Supp(γ) and (x, y′) ∈ Supp(γ). Prove with question 1 that γ(R× (y, y′)) = 0. Conclude that
for all x ∈ R, {y ∈ R s.t. (x, y) ∈ Supp(γ)} has cardinality 0, 1 or 2.

3. Show that those x whose corresponding set of ys defined in the previous question has cardinality 2 are
at most countable.

4. Conclude that γ is concentrated on the graph of a nondecreasing function f .

5. Using the convexity of the set of solutions, prove that γ is unique.

9 The quadratic case, proof of the Brenier theorem
We will prove a slight modification of the Brenier Theorem 11 replacing the assumption (3) by a compact
support for µ and ν in order to be able to use Proposition 25. That is:

Theorem 32. Let us set X = Y = BR ⊂ Rd, for some R > 0 and d ∈ N∗, and for all x, y ∈ Rd,
c(x, y) = 1

2 |y − x|
2. Let µ ∈ P(BR) and ν ∈ P(BR).

Under the assumption that µ � dx, the Kantorovic problem (2) admits a unique solution γ, and there
exists a convex function α : BR → R such that γ = (Id,∇α)#µ. In particular, CM (µ, ν) = CK(µ, ν) and
the Monge problem (1) admits a solution, unique up to a µ-negligible set.

In the proof, we will make a crucial use of:

Theorem 33. Let U ⊂ Rd be a open set and α : U → R convex, then α is dx-almost everywhere differentiable
on U .

Proof. Let γ be a solution of the Kantorovic problem (2) as given by Proposition 9. We first show that there
exists a convex function α on BR such that γ = (Id,∇α)#µ.

By Proposition 25, there exists ϕ ∈ C(X) a c-concave function such that for every (x, y) ∈ Supp(γ),

ϕ(x) + ϕc(y) =
1

2
|y − x|2.

Let us set for all x, y ∈ BR

α(x) :=
|x|2

2
− ϕ(x) and β(y) :=

|y|2

2
− ϕc(y).

We have for all x, y ∈ BR:

α(x) + β(y) =
|x|2

2
+
|y|2

2
− ϕ(x)− ϕc(y)

≥ |x|
2

2
+
|y|2

2
− 1

2
|y − x|2 = 〈x, y〉,

so that
α(x) + β(y) ≥ 〈x, y〉
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with an equality sign on the support of γ. This is reminiscent of the theory of convex functions: (α, β) are
convex conjugate functions. For instance, to see that α is convex, observe that as ϕcc = ϕ,

α(x) =
|x|2

2
− ϕ(x) =

|x|2

2
− inf
y∈BR

|y − x|2

2
− ϕc(y)

= sup
y∈BR

〈x, y〉 −
(
|y|2

2
− ϕc(y)

)
= sup
y∈BR

〈x, y〉 − β(y),

which is convex as a supremum of affine functions.
Let us prove that for γ almost all (x, y) ∈ BR × BR, x ∈ BR, α is differentiable at x and y = ∇α(x).

As α is convex and µ� dx, µ(BR) = 1 and α is differentiable µ-almost everywhere on BR. Let D ⊂ BR be
measurable, such that µ(D) = 1, and for all x ∈ D, α is differentiable at x. Let us call S := Supp(γ) ∩ (D×
BR). Of course, γ(S) = 1 (this is because γ(Supp(γ)) = 1 and γ(D × BR) = µ(D) = 1). Moreover, for all
(x, y) ∈ S, x ∈ BR, α is differentiable at x, and the function

x′ ∈ BR 7→ α(x′)− 〈x′, y〉

achieves its maximum β(y) at x′ = x. So differentiating at x′ = x, we find

y = ∇α(x).

In conclusion, for all f ∈ C(BR ×BR),∫
f dγ =

∫
S
f dγ =

∫
S
f(x,∇α(x)) dγ(x, y)

=

∫
D×BR

f(x,∇α(x)) dγ(x, y)

=

∫
D
f(x,∇α(x)) dµ(x) =

∫
f(x,∇α(x)) dµ(x)

=

∫
f d (Id,∇α)#µ(x, y).

We conclude that γ is of Monge type, and hence that CK(µ, ν) = CM (µ, ν).
It remains to prove uniqueness. Assume that the Kantorovic problem admits two solutions γ1 and γ2.

Then, γ := (γ1 + γ2)/2 is a solution as well. By the first part of the proof, there exists ϕ1, ϕ2 and ϕ three
convex functions such that

for γ1-almost all (x, y), α1 is differentiable at x and y = ∇α1(x),

for γ2-almost all (x, y), α2 is differentiable at x and y = ∇α2(x),

for γ-almost all (x, y), α is differentiable at x and y = ∇α(x).

But as γ1 � γ, the third point is also valid for γ1-almost all (x, y), that is, for γ1-almost all (x, y), α1 and
α are differentiable at x and y = ∇α1(x) = ∇α(x). In particular, for γ1-almost all (x, y), α1 and α are
differentiable at x and ∇α1(x) = ∇α(x). This assertion does not depend on y, so it is true for µ-almost
all x. Doing the same reasoning with γ2, we find that for µ-almost all x, α1 and α2 are differentiable at x,
and ∇α1(x) = ∇α2(x). Uniqueness for the Kantorovic problem follows. Uniqueness for the Monge problem
follows the same lines, observing that if T is a solution of the Monge problem, then (Id, T )#µ is a solution of
the Kantorovic problem (as CK(µ, ν) = CM (µ, ν)). Therefore, our argument shows that T = ∇α µ-almost
everywhere.
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Remark 34. In the proof, we saw that if ϕ is c-concave with c(x, y) := |y−x|2/2, then α : x 7→ |x|2/2−ϕ(x)
is convex. Actually, this is an equivalence, and β : y 7→ |y|2/2− ϕc(y) is the Legendre transform of α. This
draws a link between c-transform and Legendre transform.

Another way to see this link is that using c(x, y) := |y − x|2/2 or c(x, y) := −〈x, y〉 does not affect the
solutions of optimal transport. But with c(x, y) := −〈x, y〉, the c-transform is exactly the Legendre transform
of concave functions, and therefore, c-concavity coincide with standard concavity.

See [4, Section 1.6.1] for more material about this.

10 The Monge-Ampère equation
The purpose of this section is to draw a formal link between optimal transport problems and the Monge-
Ampère equation. Let us place ourselves in the context of the Monge problem on Rd: µ and ν are probability
measures on Rd. Assume in addition that µ � dx and ν � dy. In this case, there exist f and g two
nonnegative functions on Rd such that dµ(x) = f(x) dx and dµ(y) = g(y) dy. Assume that they are
continuous and positive. Let T be a transport map from µ to ν. Assuming that T is a diffeomorphism, T−1

is a transport map from ν to µ. Therefore, we have for all ϕ ∈ Cb(Rd)∫
ϕ(x)f(x) dx =

∫
ϕ(T−1(y))g(y) dy.

But assuming in addition that det DT > 0, we can apply the change of variables y = T (x) (and hence
dy = det DT (x) dx), and find ∫

ϕ(x)f(x) dx =

∫
ϕ(x)g(T (x)) det DT (x) dx,

and hence, for all x,

det DT (x) =
f(x)

g(T (x))
.

Now assume that T is the solution of the Monge problem with quadratic cost: in virtue of the Brenier
theorem, there exists a convex function α such that T∇α. Therefore, our identity rewrites

det D2α(x) =
f(x)

g(∇α(x))
.

This is the Monge-Ampère equation, a fully nonlinear elliptic equation. Studying the regularity of optimal
transport maps for the quadratic cost (that is, showing that whenever f and g are smooth, α is smooth)
reduces to study the regularity of this elliptic PDE.

11 Bibliographical notes
We decided here to present results about the Kantorovic problem relying on duality. This is a robust approach
that can be used for a large variety of contexts. To get finer results (in particular the generalization in Polish
spaces), we refer to [5, Chapter 1].

Another approach leading to the same results in a more efficient but less robust way is to mainly rely
on c-cyclical monotonicity. Once proven that the support of a solution γ of the Kantorovic problem is c-
cyclically monotone, it is possible to build by hand a c-concave function ϕ such that for every (x, y) on the
support of γ, ϕ(x) + ϕc(y) = c(x, y). This is the approach chosen in [3, Chapter 2].

Let us also mention the book [4] which gives an overview of both approaches, with a lot of examples and
illustrations of the results.
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