
Optimal transport: introduction, applications and derivation
Lecture 4: The Schrödinger problem
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The goal of this lecture is to introduce the Schrödinger problem of statistical mechanics, and to show
its links with the optimal transport problem. Just like for the optimal transport problem, this problem has
three version: a dynamical one, that is, in term of processes, a Benamou-Brenier like, that is, in terms of
curves in the space of probabilities, and a static one, in terms of transport plans. We will start with the
dynamical one, and show how it translates into its other versions. Unfortunately, due to the lack of time,
we will only be sketchy concerning some results of probability theory. We will give as much as possible
references to books or articles that provide the necessary information to prove everything rigorously.

On the other hand, we will prove rigorously the convergence towards optimal transport at the Benamou-
Brenier level.

If time allows, we will also show the interest of working with the Schrödinger problem instead of the
optimal transport problem: the Sinkhorn algorithm provides an efficient algorithm for computing solutions.

1 Introduction
The Schrödinger problem falls into the class of large deviation problems for a large population of random
particles. A priori, we expect the law of large number to govern the evolution of such a system. But under
the very rare event when it is not the case, what can we say?

1.1 Large deviations of the empirical process and the relative entropy functional
Let X be a separable and complete metric space, and R ∈ P(X ) be a Borel probability measure on X . We are
interested in the sequence (µn)n∈N∗ of random probability measures on X built as follows. Let X1, X2, . . .
be a sequence of i.i.d. random variables of law R, defined on a probability space (Ω,P). For n ∈ N∗, we call

µn :=
1

n

n∑
i=1

δXi
∈ P(X ).

The law of large numbers gives a convergence result of (µn) converges towards R.

Proposition 1. The family (µn) converges almost surely towards R in the narrow topology.

Some elements of the proof. For the first convergence, we want to show that almost surely, for all ϕ ∈ Cb(X ),

lim
n→+∞

∫
ϕdµn =

∫
ϕdR.

But for all n ∈ N and ϕ ∈ Cb(X ), ∫
ϕdµn =

1

n

(
ϕ(X1) + · · ·+ ϕ(Xn)

)
.

But ϕ(X1), ϕ(X2), . . . is a sequence of i.i.d. bounded (therefore integrable) random variables, of mean value
E[ϕ(X1)] =

∫
ϕdR. So by the strong law of large numbers, its empirical average

1

n

(
ϕ(X1) + · · ·+ ϕ(Xn)

)
converges towards its mean value

∫
ϕdR. Hence, the result consist in swapping "for all ϕ" and "almost

surely". This is a density argument that I do not want to write.

In this context, the large deviation questions are interested in answering the following type of questions:

• If E is a family of test functions and for all ϕ ∈ E , a number cϕ is given, what is the probability to
observe for a given large n and for all ϕ ∈ E∫

ϕdµn ≈ cϕ.
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• If we consider P ∈ P(X ) different from R, what is the probability to have µn ≈ P .

The answer involves the relative entropy functional defined as follows.

Definition 2. The relative entropy of P ∈ P(X ) w.r.t. R ∈ P(X ) is given by

H(P |R) :=


∫

dP

dR
log

dP

dR
dR =

∫
log

dP

dR
dP if P � R,

+∞ otherwise.

Remark 3. In this context when R is a probability measure, the problems that we had in the previous lecture
to define the entropy does not exist: it is always well defined with values in [0,+∞]. Indeed, the negative part
of dP

dR log dP
dR is below bounded, and therefore R is integrable. In addition, calling h : x ∈ R+ 7→ x log x+1−x,

h is nonnegative and we have

H(P |R) =

∫
h

(
dP

dR

)
dR ≥ 0.

The relative entropy w.r.t. R has good properties for minimization problems.

Proposition 4. Given R ∈ P(X ), H(·|R) is strictly convex and has compact sublevels in P(X ) endowed
with the topology of narrow convergence.

Proof. The strict convexity is a direct consequence of the strict convexity of s 7→ s log s and of the linearity
of the Radon-Nikodym derivative.

For the lower semi-continuity, remark the important formula:

H(P |R) = sup
ϕ∈Lb(X )

∫
ϕdP −

∫
exp(ϕ− 1) dR = sup

ϕ∈Cb(X )

∫
ϕdP −

∫
exp(ϕ− 1) dR,

where Lb(X ) stands for the set of measurable and bounded measures on X . To see that, remark that for the
first equality, the "≥" part comes from the convex inequality uz ≤ z log z + exp(u− 1) holding for all u ∈ R
and z ∈ R+. The "≥" part of the second inequality is obvious. And the fact that the r.h.s. is larger than the
l.h.s. follows from approximating 1+log dP

dR by continuous and bounded functions. The lower semicontinuity
follows.

To show that the sublevels of the entropy are precompact for the topology of narrow convergence, we
use the Prokhorov theorem. Given M > 0, let us show that {P ∈ P(X ) such that H(P |R) ≤ M} is tight.
Let us take ε > 0 and P with H(P |R) ≤ M . Considering ϕ := 1 + λ1A in the previous formula, for some
measurable A ⊂ X and λ ∈ R,

1 + λP (A) ≤ H(P |R) + exp(λ)R(A) +R(cA) ≤M + exp(λ)R(A) + 1.

Therefore, symplifying the 1, dividing by λ and choosing λ := − logR(A), we find

P (A) ≤ 1 +M

− logR(A)
.

Now, consider A = cK where K ⊂ X is a compact set that is so big that the r.h.s. of the previous inequality
(which is independent of P ) is below ε we find that P (A) ≤ ε, and hence the result.

To answer the question that we stated, the main theorem is the following. Its proof can be found in [2].

Theorem 5. The family of laws of (µn) satisfies a large deviation principle for the topology of narrow
convergence, of good rate function H(·|R).

In other words, for all closed set F ∈ P(X ),

lim sup
n→+∞

1

n
log(P(µn ∈ F )) ≤ − inf

P∈F
H(P |R),

3



and for all open set U ∈ P(X ),

lim inf
n→+∞

1

n
log(P(µn ∈ U)) ≥ − inf

P∈U
H(P |R).

Remark 6. This theorem has the following consequence: if the set A ⊂ X is such that infAH(·|R) =
infÅH(·|R) (which is generally true for a great variety of sets), then

P(µn ∈ A) = exp

(
−n inf

P∈A
H(P |R) + o

n→+∞
(n)

)
.

The probability to observe µn in A is exponentially low, with a rate given by the smallest value of H(P |R) for
P ∈ A. Assume that the minimizer P ∗ is unique. In this case, conditionally to the event P ∈ A, µn is close
to P ∗ with very high probability. Therefore, conditionally to the event µn ∈ A, we conclude the stronger
statement that µn ≈ P ∗. This is the main idea of the Schrödinger problem. Computing the minimizers of
the entropy on some sets gives the most probable configuration conditionally to a very rare event.

1.2 The Schrödinger problem and its interpretation
Now, X = C([0, 1];Td), and R is the law of the Brownian motion on Td, starting from the Lebesgue measure,
of diffusivity ν (this is the reversible Brownian motion on the torus). It is well known that for this choice,
for all time t ∈ [0, 1], Xt#R = dx.

The Schrödinger problem states as follows.

Definition 7. Let ρ0, ρ1 ∈ P(Td). The Schrödinger problem consists in computing the value

inf
{
H(P |R)

∣∣∣P ∈ P(C([0, 1];Td)) with X0#P = ρ0 and X1#P = ρ1

}
.

Due to the previous section, this problem asks the following question: imagine that a large population
of Brownian particles are originally uniformly distributed on Td. At a first later time that we call t = 0, we
expect them to be still uniformly distributed. But instead, we observe a large deviation from this expected
result, and realize that they are distributed according to ρ0. At time t = 1, we expect the density of particles
to be ρ0 ∗ τν , (τs) being the heat kernel. But instead, we observe ρ1. By the Sanov theorem, we conclude
that under this observation, the most probable is that this population of particles is described by P , the
solution of the Schrödinger problem.
Remark 8. The relative entropy is strictly convex w.r.t. P and the constraints are affine. Therefore, unique-
ness is obvious. Concerning existence, as the entropy is lower semicontinuous and the constraints are closed,
it is equivalent to the existence of a competitor with finite entropy.

1.3 Additivity of the entropy, static formulation and formal link with optimal
transport

Our next task is to find a necessary and sufficient conditions on ρ0 and ρ1 for the previous problem to admit
a (unique) solution/ This will be done in the next section, relying on an important property of the relative
entropy that we state now: it behaves well under disintegration. The proposition is the following.

Proposition 9. Let X ,Y be two complete and separable metric spaces, P,R two Borel probability measures
on X and T : X → Y be a measurable map.

Disintegrating P,R by T , we know that there are two families of probability measures on X that we
call (P y)y∈Y and (Ry)y∈Y that are respectively well defined for T#P and T#R almost all y ∈ Y, that are
concentrated on the set {x |T (x) = y} on the ys where they are well defined, and such that for all measurable
function ϕ nonnegative or bounded∫

ϕdP =

∫
Y

(∫
ϕdP y

)
dT#P (y) and

∫
ϕdR =

∫
Y

(∫
ϕdRy

)
dT#R(y).
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Then, we have

H(P |R) = H(T#P |T#R) +

∫
H(P y|Ry) dT#P (y). (1)

In particular,
H(T#P |T#R) ≤ H(P |R).

Pushing forward measures reduces the value of the entropy.

Proof. First, let us compute dT#P
dT#R

in terms of F := dP
dR . Let us consider ψ a measurable and nonnegative

function on Y. We have∫
ψ dT#P =

∫
ψ ◦ T dP =

∫
ψ ◦ T × F dR =

∫ (∫
ψ ◦ T × F dRy

)
dT#R(y).

But for T#R-almost all y, for Ry-almost all x, T (x) = y. Therefore,∫
ψ dT#P =

∫
ψ(y)

(∫
F dRy

)
dT#R(y).

We conclude that P � R and for R-almost all y,

dT#P

dT#R
(y) =

∫
F dRy =: G(y).

Then, let us compute dPy

dRy (x), for T#P -almost all y and Ry almost all x. Let ϕ be a nonnegative
measurable function on X . We have∫

ϕdP =

∫
ϕ× F dR =

∫ (∫
ϕ× F dRy

)
dT#R(y).

Now, observe that for T#R-almost all y, whenever G(y) = 0, then we also have
∫
ϕ× F dRy = 0. So using

as a convention 0
0 = 0, we find∫

ϕdP =

∫ (∫
ϕ× F

G(y)
dRy

)
G(y) dT#R(y) =

∫ (∫
ϕ× F

G(y)
dRy

)
dT#P (y).

This is enough to conclude that for T#P -almost all y, P y � Ry, and for Ry-almost all x,

dP y

dRy
(x) =

F (x)

G(y)
.

We end up with the following formula: for T#P -almost all y, Ry-almost all x,

dP

dR
(x) =

dT#P

dT#R
(y)× dP y

dRy
(x).

In particular, for P -almost all x,

dP

dR
(x) =

dT#P

dT#R
(T (x))× dPT (x)

dRT (x)
(x).

Taking the log of this formula and integrating it against P , we find

H(P |R) =

∫ (
log

dT#P

dT#R
(T (x)) + log

dPT (x)

dRT (x)
(x)

)
dP (x)

= H(T#P |T#R) +

∫
H(P y|Ry) dT#P (y).

The last point of the proposition is obvious.

5



Back to the context where the Schrödinger problem is set, the following proposition gives a problem equiv-
alent to the Schrödinger problem, but much simpler to study. In the following, we call R01 := (X0, X1)#R.
We have

dR01(x, y) = τν(y − x) dxdy. (2)

Finally, for all x, y ∈ Td, we call Rx,y := R(·|X0 = x,X1 = y) the Brownian bridge between x and y. A
priori, it is only defined for almost every x, y, but classical results of stochastic processes let us define it for
all x, y.

Proposition 10. For all P ∈ P(C([0, 1];Td)), we have

H(P |R) ≥ H
(

(X0, X1)#P
∣∣∣R01

)
.

Conversely, for all γ ∈ P(Td × Td), define P γ :=
∫
Rx,y dγ(x, y). We have

H(γ|R01) = H(P |R).

Consequently, for ρ0, ρ1 ∈ P(Td),

inf
{
H(P |R)

∣∣∣P ∈ P(C([0, 1];Td)) with X0#P = ρ0 and X1#P = ρ1

}
= inf

{
H(γ|R01)

∣∣∣ γ ∈ Π(ρ0, ρ1)
}
,

and the existence of a competitor or equivalently of a minimizer in both problems is equivalent.

Proof. The first point is a direct consequence the fact that the entropy is nonincreasing under the push-
forward operation.

The second point follows from the observation that (X0, X1)#P
γ = γ, and for γ-almost all x, y, (P γ)x,y =

Rx,y. Therefore, identity (1) lets us conclude.
The last point follows directly.

Remark 11. Hence, we have reformulated the Schrödinger problem as

inf
{
H(γ|R01)

∣∣∣ γ ∈ Π(ρ0, ρ1)
}
.

But using (2), we find that for all γ ∈ P(Td × Td),

H(γ|R01) =

∫
log

dγ

τν(x, y) dx dy
dγ(x, y) =

∫
log

dγ

dxdy
dγ(x, y)−

∫
log τν(y − x) dγ(x, y)

= H(γ|dx dy)−
∫

log τν(y − x) dγ(x, y).

Multiplying this identity by ν and using that for almost all x, y ∈ Td

−ν log τν(y − x) =
1

2
d(x, y)2 +

d

2
ν log(2πν) + o

ν→0
(ν),

we find that

νH(γ|R01) =
1

2

∫
d(x, y)2 dγ(x, y) + νH(γ|dxdy) +

d

2
ν log(2πν) + o

ν→0
(ν).

Therefore, the Schrödinger problem consists in minimizing the optimal transport cost while penalizing the
entropy of the transport plans. Formally, as ν → 0, we expect to recover the optimal transport problem.
This is done rigorously in Rd in [1].
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1.4 Existence of solutions
With Proposition 10 at hand, we can give a necessary and sufficient condition for existence of solutions in
the Schrödinger problem.

Theorem 12. Let ρ0, ρ1 ∈ P(Td). The Schrödinger problem between ρ0 and ρ1 admits a solution if and
only if H(ρ0|dx) and H(ρ1|dx) are both finite.

Proof. By Proposition 10, we can work with the static problem instead of the dynamic one. Assume that the
Schrödinger problem admits a solution γ. Projecting H(γ|R01) on the first coordinate, we find H(ρ0|dx) <
+∞. In the same way, H(ρ1|dx) < +∞.

Now, let us assume that H(ρ0|dx) < +∞ and H(ρ1|dx) < +∞. Let us show that ρ0⊗ρ1 is an admissible
competitor for the static Schrödinger problem. Of course, ρ0 ⊗ ρ1 ∈ Π(ρ0, ρ1). In addition, identifying ρ0

and ρ1 with their densities w.r.t. the Lebesgue measure, we find

H(ρ0 ⊗ ρ1|R01) =

∫
log

ρ0(x)ρ1(y)

τν(y − x)
ρ0(x)ρ1(y) dxdy

=

∫
ρ0 log ρ0 dx+

∫
ρ1 log ρ1 dy −

∫
log τν(y − x)ρ0(x)ρ1(y) dxdy

≤ H(ρ0|dx) +H(ρ1|dx) + max
z∈Td

(
− log τν(z)

)
< +∞.

The result follows.

1.5 The Benamou-Brenier formulation
Just like the optimal transport problem, the Schrödinger problem admits a formulation of Benamou-Brenier
type. Deriving it involves several results of probability theory, and more particularly of the theory of
stochastic processes. We will state them without a proof.

The Girsanov theorem. The first important thing is the Girsanov theorem. It states the following: a
law P that has finite entropy w.r.t. the law of the Brownian motion is the law of a Brownian motion to which
a drift is added, and this drift is L2(P ⊗ dt). The theorem, proved for instance in [4], states as follows.

Theorem 13 (Girsanov under finite entropy). Let R be the law of the reversible Brownian motion on the
torus, of diffusivity ν. For all P ∈ P(C([0, 1];Td)), H(P |R) < +∞ if and only if there exists a unique
progressive vector valued process (

−→
b t)t∈[0,1] ∈ L2(P ⊗dt) such that under P , the canonical process solves the

SDE
dXt =

−→
b t dt+ dBt, (3)

where B is a Brownian motion of diffusivity ν under P .
In this case, the following identity holds

H(P |R) = H(X0#P |R) +
1

2ν
EP

[∫ 1

0

|
−→
b t|2 dt

]
. (4)

Remark 14. Knowing that (
−→
b t) ∈ L2(P ⊗ dt), the SDE (3) can be reformulated as follows.

• Under P , the process

t 7→ Xt −
∫ t

0

−→
b s ds

is a Brownian motion of diffusivity ν.
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• For all ϕ ∈ C2([0, 1]× Td), under P , the following process, which is clearly bounded in L2(P ),

t 7→ ϕ(t,Xt)−
∫ t

0

{
∂tϕ(s,Xs) +∇ϕ(s,Xs) ·

−→
b s +

ν

2
∆ϕ(s,Xs)

}
ds (5)

is a martingale.

As shown in the next proposition, there is a PDE binding ρ and
−→
b .

Proposition 15. In the context of the Girsanov theorem, calling for all t ∈ [0, 1] ρ(t) := Xt#P and for
dt-almost all t and ρ(t)-almost all x ∈ Td −→v (t, x) := EP [

−→
b t|Xt = x], we have distributionally

∂tρ+ div(ρ−→v ) =
ν

2
∆ρ. (6)

Proof. Considering ϕ ∈ C2
c (]0, 1[×Td) and taking the expectation of the martingale in (5) at time t = 1, we

find

EP

[∫ 1

0

{
∂tϕ(s,Xs) +∇ϕ(s,Xs) ·

−→
b s +

ν

2
∆ϕ(s,Xs)

}
ds

]
= 0.

But on the other hand

EP

[∫ 1

0

{
∂tϕ(s,Xs) +∇ϕ(s,Xs) · v(s,Xs) +

ν

2
∆ϕ(s,Xs)

}
ds

]
=

∫ 1

0

∫ {
∂tϕ(s, x) +∇ϕ(s, x) · v(s, x) +

ν

2
∆ϕ(s, x)

}
dρ(s, x) ds,

so the result follows.

Time reversal. Let P be a law such that H(P |R) < +∞, and

T : ω ∈ C([0, 1];Td) 7→
(
t 7→ ω(1− t)

)
∈ C([0, 1];Td).

By Proposition 9, H(T#P + T#R) ≤ H(P |R) < +∞ (actually, as T ◦ T = Id, applying once again this
inequality, we see that it is actually an equality). On the other hand, by a famous property of the Brownian
motion, T#R = R. Therefore , T#P has finite entropy w.r.t. R, and the Girsanov theorem applies. We can
apply the same reasoning as before but with T#P instead of P . This provides.

Proposition 16. Let P be such that H(P |R) < +∞, (
←−
b t) be the drift associated with the law T#P by the

Girsanov theorem and ρ(t) := Xt#P . Then (
←−
b t ◦ T ) ∈ L2(P ⊗ dt), and

H(P |R) = H(ρ(1)|R) +
1

2ν
EP

[∫ 1

0

|
←−
b t|2 dt

]
. (7)

Moreover, calling for dt-almost all t and ρ(t)-almost all x ∈ Td, ←−v (t, x) := −EP [
←−
b 1−t ◦ T |Xt = x], we have

∂tρ+ div(ρ←−v ) = −ν
2

∆ρ. (8)

Proof. If ϕ ∈ C2
c (]0, 1[×Td), calling ψ(t, x) := ϕ(1− t, x), we have

ET#P

[∫ 1

0

{
∂tψ(s,Xs) +∇ψ(s,Xs) ·

←−
b s +

ν

2
∆ψ(s,Xs)

}
ds

]
= 0.
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But we have

ET#P

[∫ 1

0

{
∂tψ(s,Xs) +∇ψ(s,Xs) ·

←−
b s +

ν

2
∆ψ(s,Xs)

}
ds

]
= EP

[∫ 1

0

{
∂tψ(s,X1−s) +∇ψ(s,X1−s) ·

←−
b s ◦ T +

ν

2
∆ψ(s,X1−s)

}
ds

]
= EP

[∫ 1

0

{
−∂tϕ(s,Xs) +∇ϕ(s,Xs) ·

←−
b 1−s ◦ T +

ν

2
∆ϕ(s,Xs)

}
ds

]
,

and the result follows.

The next remark gathers the main ideas leading to the Benamou-Brenier formulation of the Schrödinger
problem.

Remark 17. Notice that taking the half sum of (6) and (8), and calling

c :=
−→v +←−v

2
(9)

ρ solves the continuity equation with velocity c. We call this c the current velocity associated with P .
Also, taking the difference between (6) and (8) and calling

w :=
−→v −←−v

2
, (10)

we find
div
(
ρw
)

=
ν

2
div
(
∇ρ
)
, (11)

We call this w the osmotic velocity associated with P .
By the Jensen’s inequality, −→v , ←−v , c and w all belong to L2(dt⊗ ρ(t)).

Actually, we know more than (11) concerning the osmotic velocity. For a proof, see [3].

Theorem 18. Let P be such that H(P |R) < +∞. With the same notations as above, the spatial distribu-
tional gradient of ρ satisfies

ν

2
∇ρ = ρw

in D′(]0, 1[×Td).

Remark 19. Whenever a measure ρ ∈ P(Td) is such that ∇ρ is a Radon measure with ∇ρ � ρ (in the
following, we simply write ∇ρ� ρ), we call ∇ log ρ its Radon-Nikodym derivative. Therefore, in the context
of the theorem above, we have

w =
ν

2
∇ log ρ.

Benamou-Brenier formulation. We have now all the ingredients to state and prove the Benamou-
Brenier formula for the Schrödinger problem.

Theorem 20. Let ρ0, ρ1 ∈ P(Td). We have

inf
{
νH(P |R)

∣∣∣X0#P = ρ0 and X1#P = ρ1

}
= ν

H(ρ0|dx) +H(ρ1|dx)

2
+ inf

{
1

2

∫ 1

0

∫ {
|c|2 +

∣∣∣ν
2
∇ log ρ

∣∣∣2}dρ(t) dt

∣∣∣∣∣ (ρ, c) sol of (CE),
ρ(0) = ρ0 and ρ(1) = ρ1

}
,

where the integral in the r.h.s. is set to +∞ unless ∇ρ(t)� ρ(t) for almost every t.
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Proof. The "≥" part is a consequence of what we already did. Take ρ(t), −→v , ←−v , c and w as before. Taking
the half sum of (4) and (7), we find that

νH(P |R) = ν
H(ρ0|dx) +H(ρ1|dx)

2
+

1

2
EP

[∫ 1

0

|
−→
b t|2 + |

←−
b 1−t|2

2
dt

]

≥ νH(ρ0|dx) +H(ρ1|dx)

2
+

1

2
EP

[∫ 1

0

|−→v (t,Xt)|2 + |←−v (t,Xt)|2

2
dt

]
= ν

H(ρ0|dx) +H(ρ1|dx)

2
+

1

2
EP

[∫ 1

0

{
|c(t,Xt)|2 + |w(t,Xt)|2

}
dt

]
= ν

H(ρ0|dx) +H(ρ1|dx)

2
+

1

2

∫ 1

0

∫ {
|c|2 + |w|2

}
dρ(t) dt.

As (ρ, c) solves the continuity equation and w = ν
2∇ log ρ, our claims follows.

The proof of the "≤" part is very similar to the proof of existence of a generalized flow associated with
a solution of the continuity equation. First, if H(ρ0|dx) = +∞ or H(ρ1|dx) = +∞, then by Proposition 9,
both sides of the inequality is infinite. Otherwise, let (ρ, c) be a competitor for the r.h.s.. We use the
standard regularization for a given ε > 0

∀t ∈ [0, 1], ρε(t) := ρ(t) ∗ τε, cε(t) :=
(ρ(t)c(t)) ∗ τε

ρε(t)
.

Notice that with this definition, we also have

∇ log ρε(t) =
(ρ(t)∇ log ρ(t)) ∗ τε

ρε(t)
,

so that not only ∫ 1

0

∫
|cε|2 dρε(t) dt ≤

∫ 1

0

∫
|c|2 dρ(t) dt,

but also ∫ 1

0

∫
|∇ log ρε|2 dρε(t) dt ≤

∫ 1

0

∫
|∇ log ρ|2 dρ(t) dt.

Now, call −→v ε := cε + ν
2∇ log ρε, and take P ε the unique law solution of the SDE{

dXt = −→v ε(t,Xt) dt+ dBt,

X0 ∼ ρε(0),

(Bt) being a Brownian motion of diffusivity ν. The law P ε has forward drift −→v ε which is clearly L2(P ε⊗dt),
so H(P ε|R) < +∞. Therefore, its osmotic velocity is ν

2∇ log ρε, and hence its current velocity is cε and its
backward drift is←−v ε = −→v ε−ν∇ log ρε. A computation similar to the one of the beginning of the proof gives

νH(P ε|R) = ν
H(ρε0|dx) +H(ρε1|dx)

2
+

1

2

∫ 1

0

∫ {
|cε|2 + |wε|2

}
dρε(t) dt

≤ νH(ρ0|dx) +H(ρ1|dx)

2
+

1

2

∫ 1

0

∫ {
|c|2 + |w|2

}
dρ(t) dt,

by argument that we have already seen in the previous lectures. Therefore, as the relative entropy has
compact sublevels for the topology of narrow convergence, the family (P ε) admits limit points, and for any
limit point P ,

νH(P |R) ≤ lim inf
ε→0

νH(P ε|R) ≤ νH(ρ0|dx) +H(ρ1|dx)

2
+

1

2

∫ 1

0

∫ {
|c|2 + |w|2

}
dρ(t) dt.

As taking the marginals is continuous for the topology of narrow convergence, P is a competitor of the
Schrödinger problem, and therefore the result follows.
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Remark 21. • Tracking the inequality in the first part of the proof, we see that for the optimizers,
P -almost everywhere, for almost every t,

−→
b t = −→v (t,Xt) and

←−
b t =←−v (t,Xt).

Otherwise stated, the drift only depends of the current position. It means that the law P is Markov.

• Therefore, given ρ0, ρ1 ∈ P(Td), the Benamou-Brenier formulation of the Schrödinger problem is

inf

{
1

2

∫ 1

0

∫ {
|c|2 +

∣∣∣ν
2
∇ log ρ

∣∣∣2} dρ(t) dt

∣∣∣∣∣ (ρ, c) sol of (CE),
ρ(0) = ρ0 and ρ(1) = ρ1

}
.

By the proof of Theorem 20, whenever ρ0 and ρ1 have finite entropy w.r.t. Lebesgue, this minimization
admits a solution (the density/current velocity of the solution of the dynamical Schrödinger problem),
and this solution is unique (otherwise, they would give rise to two different solutions in the dynamical
Schrödinger problem).

2 Γ-convergence towards optimal transport
In this paragraph, the goal is to show the following theorem.

Theorem 22. Let ρ0, ρ1 ∈ P(Td) have finite entropy w.r.t. the Lebesgue measure. We have

lim
ν→0

inf

{
1

2

∫ 1

0

∫ {
|c|2 +

∣∣∣ν
2
∇ log ρ

∣∣∣2}dρ(t) dt

∣∣∣∣∣ (ρ, c) sol of (CE),
ρ(0) = ρ0 and ρ(1) = ρ1

}

= inf

{
1

2

∫ 1

0

∫
|c|2 dρ(t) dt

∣∣∣∣∣ (ρ, c) sol of (CE),
ρ(0) = ρ0 and ρ(1) = ρ1

}
.

Moreover, if (ρν , cν)ν>0 is the unique solution of the l.h.s., then the family (ρν , ρνcν) admit limit points
in P([0, 1]×Td)×M([0, 1]×Td;Rd), if (ρ,m) is such a limit point, m� ρ, and calling c its Radon-Nikodym
derivative, (ρ, c) is a solution of the r.h.s..

In this sense, we can say that the Schrödinger problem converges towards the optimal transport problem,
at least in Benamou-Brenier formulation. As often in this kind of result, the only hard thing to do is to build
a recovery sequence, that is, given (ρ, c) a competitor of the r.h.s., to build a sequence (ρν , cν) for which the
l.h.s. functional evaluated at (ρν , cν) converges towards the r.h.s. functional evaluated at (ρ, c). This is linked
to the theory of Γ-convergence that we do not have the time to formalize, but which is the good notion of
convergence for minimization problems.

Proof of Theorem 22. Given ρ ∈ C([0, 1];P(Td)) and c a measurable vector field, we write

A(ρ, c) :=
1

2

∫ 1

0

∫
|c|2 dρ(t) dt and F(ρ, c) :=

1

2

∫ 1

0

∫ ∣∣∣∣12∇ log ρ

∣∣∣∣2 dρ(t) dt,

with value +∞ if ∇ρ is not absolutely continuous w.r.t. ρ. Also, we call CE(ρ0, ρ1) the set of pairs (ρ, c)
solution of the continuity equation between ρ0 and ρ1. We want to show

inf
CE(ρ0,ρ1)

A = lim
ν→0

inf
CE(ρ0,ρ1)

A+ ν2F .

Of course, as F ≥ 0, it suffices to prove that

lim sup
ν→0

inf
CE(ρ0,ρ1)

A+ ν2F ≤ inf
CE(ρ0,ρ1)

A.
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To do so, we consider (ρ, c) ∈ CE(ρ0, ρ1) such that A(ρ, c) < +∞.
For given ν, δ > 0 and t ∈ [0, 1], we define

ρν,δ(t) = ρ(t) ∗ τδ+νt(1−t).

It solves the continuity equation with velocity field

cν,δ = cν,δ1 + cν,δ2

where

cν,δ1 (t) =

(
ρ(t)c(t)

)
∗ τδ+νt(1−t)

ρν,δ(t)
and cν,δ2 (t) = −ν (1− 2t)× 1

2
∇ log ρν,δ(t).

A quick computation provides, by the same trick as in the previous lecture

A(ρν,δ, cν,δ) + ν2F(ρν,δ, cν,δ)

=
1

2

∫ 1

0

∫
|cν,δ1 + cν,δ2 |2 dρν,δ(t) dt+

ν2

2

∫ 1

0

∫ ∣∣∣∣12∇ log ρν,δ
∣∣∣∣2 dρν,δ(t) dt

=
1

2

∫ 1

0

∫
|cν,δ1 |2 dρν,δ(t) dt+

∫ 1

0

∫
cν,δ · cν,δ2 dρν,δ(t) dt− 1

2

∫ 1

0

∫
|cν,δ2 |2 dρν,δ(t) dt

+
ν2

2

∫ 1

0

∫ ∣∣∣∣12∇ log ρν,δ
∣∣∣∣2 dρν,δ(t) dt

≤ A(ρ, c)− ν

2

∫ 1

0

(1− 2t)
d

dt
H(ρν,δ(t)|dx) dt+

ν2

2

∫ 1

0

(
1− (1− 2t)2

) ∫ ∣∣∣∣12∇ log ρν,δ(t)

∣∣∣∣2 dρν,δ(t) dt

= A(ρ, c) + ν

(
H(ρν,δ(0)|dx) +H(ρν,δ(1)|dx)

2
−
∫ 1

0

H(ρν,δ(t)|dx) dt

)
+
ν2

2

∫ 1

0

4t(1− t)
∫ ∣∣∣∣12∇ log ρν,δ(t)

∣∣∣∣2 dρν,δ(t) dt

≤ A(ρ, c) + ν
H(ρ0|dx) +H(ρ1|dx)

2
+
ν2

2

∫ 1

0

4t(1− t)
∫ ∣∣∣∣12∇ log ρν,δ(t)

∣∣∣∣2 dρν,δ(t) dt.

Recalling the Li-Yau inequality, there is K such that we have for all ν, δ > 0 and t ∈ (0, 1)∫ ∣∣∣∣12∇ log ρν,δ(t)

∣∣∣∣2 dρ(t) ≤ K

δ + νt(1− t)
≤ K

νt(1− t)
.

Therefore, we end up with

A(ρν,δ, cν,δ) + ν2F(ρν,δ, cν,δ) ≤ A(ρ, c) + O
ν→0

(ν).

By lower-semicontinuity arguments that we have already seen, we can let δ go to 0 and find for all ν > 0

A(ρν , cν) + ν2F(ρν , cν) ≤ A(ρ, c) + O
ν→0

(ν).

As (ρν , cν) ∈ CE(ρ0, ρ1), the convergence of minimum values follows.
For the convergence of minimizers, observe that if (ρν , cν) is a minimizer for the Benamou-Brenier for-

mulation of the Schrödinger problem, then A(ρν , cν) is bounded uniformly in ν for ν sufficiently small (as
its lim sup is smaller than the optimal value in the optimal transport problem, as a consequence of the first
part of the proof). Therefore, (ρν , ρνcν) has limit points in P([0, 1] × Td) ×M([0, 1] × Td) and by lower
semicontinuity of the optimal transport action, we get that any limit point is a minimizer in the optimal
transport problem.
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