TD 4: Topologie

Exercice 1. Pour chacun des sous-ensembles suivants de \mathbb{R}^2 , indiquer s'il est ouvert, fermé, les deux ou aucun, puis donner son intérieur et son adhérence.

- 1. $\{(x,y) \mid -1 < x < 1, y = 0\},\$
- 2. $\{(x,y) \mid x \text{ et } y \text{ sont des entiers naturels}\},$
- 3. $\{(x,y) \mid x \text{ et } y \text{ sont des rationnels}\},$
- 4. $\{(x,y) \mid x+y=1\},\$
- 5. $\{(x,y) \mid x+y<1\},\$
- 6. $\{(x,y) \mid x=0 \text{ ou } y=0\}.$
- 7. $\{(x,y) \mid x^2y^2 > 1\}.$
- 8. $\{(x,y) \mid x^2 + y^2 = 1, y > 0\}.$

Exercice 2. Soit A un ouvert de \mathbb{R}^2 et B un ouvert de \mathbb{R} . Montrer que $A \times B$ est un ouvert de \mathbb{R}^3 .

Exercice 3 (Bord d'un ensemble). Soit $E \subset \mathbb{R}^d$. On définit son bord par

$$\partial E := \overline{E} \backslash \mathring{E}.$$

- 1. Montrer que E est fermé si et seulement si $\partial E \subset E$.
- 2. Montrer que E est ouvert si et seulement si $\partial E \cap E = \emptyset$.

Exercice 4 (Distance à un ensemble). Soit E un sous-ensemble de \mathbb{R}^d . Pour tout $x \in \mathbb{R}^d$, on définit la distance de x à E de la façon suivante :

$$d(x, E) := \inf_{y \in E} ||y - x||.$$

1. Montrer que si E est compact et non vide, alors pour tout $x \in \mathbb{R}^d$, il existe $y \in E$ tel que :

$$d(x, E) = ||y - x||.$$

- 2. En considérant $E \cap \overline{B}(x,R)$ avec R suffisamment grand, montrer que le même énoncé est encore vrai si E est seulement fermé et non vide.
- 3. Montrer que si E n'est pas fermé, alors le résultat est faux : il existe un point $x \in \mathbb{R}^d$ tel que pour tout $y \in E$,

$$d(x, E) < ||y - x||.$$

Exercice 5. Soient $x \in \mathbb{R}^d$ et R > 0. Montrer que l'adhérence de la boule ouverte de centre x et de rayon R est la boule fermée de centre x et de rayon R.

Exercice 6. Soit f la fonction de \mathbb{R}_+^* à valeurs dans \mathbb{R} définie pour tout $x \in \mathbb{R}_+^*$ par :

$$f(x) = \sin\left(\frac{1}{x}\right).$$

On note E son graphe, c'est à dire :

$$E := \{(x, f(x)), x \in \mathbb{R}_+^*\} \subset \mathbb{R}^2.$$

Déterminer l'adhérence de E.

Exercice 7. Soient A et B deux parties de \mathbb{R}^d . On définit :

$$A + B := \{ z \in \mathbb{R}^d | \exists x \in A, \exists y \in B, z = x + y \}.$$

- 1. Démontrer que si A est ouvert, alors A + B est ouvert.
- 2. Démontrer que les parties $A := \{(x,y) \in \mathbb{R}^2 | xy = 1\}$ et $B := \{0\} \times \mathbb{R}$ sont fermées.
- 3. Démontrer que A+B n'est pas fermée.

Exercice 8 (Sous-espaces vectoriels).

1. Soit A une partie de \mathbb{R}^d . Montrer que A^{\perp} est fermé.

Soit E un sous-espace vectoriel de \mathbb{R}^d .

- 2. Montrer que E est fermé.
- 3. Montrer que si E est ouvert, alors $E = \mathbb{R}^d$.

Exercice 9 (Ensemble dense). Soit E un sous-ensemble de \mathbb{R}^d . On dit que E est dense dans \mathbb{R}^d si pour tout $x \in \mathbb{R}^d$, il existe $(u_n)_{n \in \mathbb{N}}$ une suite d'éléments de E qui converge vers x.

- 1. Montrer que \mathbb{Q} est dense dans \mathbb{R} .
- 2. Montrer que si E est un sous ensemble fermé et dense de \mathbb{R}^d , alors $E = \mathbb{R}^d$.
- 3. Montrer que E est dense dans \mathbb{R}^d si et seulement si pour tout ouvert U de \mathbb{R}^d , $U \cap E \neq \emptyset$.

Exercice 10. Soient U et V deux ouverts denses de \mathbb{R}^d . Montrer que $U \cap V$ est encore un ouvert dense de \mathbb{R}^d .

Exercice 11 (Topologie induite). Soit $E \subset \mathbb{R}^d$. On dit qu'un sous-ensemble U de E est un ouvert de E si

$$\forall x \in E, \exists r > 0 \text{ tel que } \forall y \in B(x, r) \cap E, y \in U.$$

On dit qu'un sous ensemble F de E est un fermé de E si $E \setminus F$ est un ouvert de E.

1. Montrer que $U \subset E$ est un ouvert de E si et seulement si il existe un ouvert V de \mathbb{R}^d tel que

$$U = V \cap E$$
.

2. Montrer que F est un fermé de E si et seulement si il existe un fermé G de \mathbb{R}^d tel que

$$F = G \cap E$$
.

- 3. Montrer que F est un fermé de E si et seulement si pour toute suite d'éléments de E qui converge vers une limite $l \in E$, on a $l \in F$.
- 4. Montrer qu'une union d'ouverts de *E* est un ouvert de *E*, qu'une intersection finie d'ouverts de *E* est un ouvert de *E*, qu'une intersection de fermés de *E* est un fermé de *E* et qu'une union finie de fermés de *E* est un fermé de *E*.
- 5. Soit f une fonction de E dans \mathbb{R}^n . Montrer que f est continue si et seulement si l'image réciproque de tout ouvert de \mathbb{R}^n par f est un ouvert de E.
- 6. Soit f une fonction de E dans \mathbb{R}^n . Montrer que f est continue si et seulement si l'image réciproque de tout fermé de \mathbb{R}^n par f est un fermé de E.