Introduction to model theory

Tomás Ibarlucía, Institut Camille Jordan, UCBL1. When topological dynamics meets model theory, Marseille, June 29th, 2015.

Overview

(Syntax/Semantics)

- 1. Choose a signature σ : a list of basic symbols. Look at σ -structures: sets and relations interpreting σ .
- 2. Build a language \mathcal{L} : well-formed formulas using σ . Look at the definable sets on the structures.
- 3. Choose axioms (a theory, T): a set of statements from \mathcal{L} . Restrict to models of T (how many are there?).
- 4. Look at consistent sets of formulas. Finitely satisfiable conditions: types.
- 5. Invoke a monster (a structure realizing most types).
- 6. Look at definable groups and/or automorphism groups.

Signature

A *signature* is a list of

- relation symbols (basic predicates)
- and *function symbols*,

each with a prescribed arity (a natural number). Function symbols of arity 0 are called *constants*.

In continuous logic (CL), a modulus of uniform continuity is also prescribed.

- *Examples* 1. $\sigma_{\text{rings}} = \{+, -, \cdot, 0, 1\}$, where $+, -, \cdot$ are binary function symbols and 0, 1 are constants.
 - $\sigma_{\text{graphs}} = \{R\}$, where R is a binary predicate.
 - σ_{MALG} = {μ, Δ, ∩, ·^c, 0, 1}, where μ is a 1-Lipschitz unary predicate, Δ, ∩ are binary function symbols, ·^c is a unary function symbol and 0, 1 are constants.

Structures

Fix a signature σ . A (classical) σ -structure M is a set (which we will also denote by M) together with interpretations for the symbols in σ :

- each *n*-ary basic predicate *P* is interpreted as a relation $P^M \subset M^n$;
- each *n*-ary function symbol f is interpreted as a function $f^M : M^n \to M$.

In CL: a metric σ -structure M is a bounded complete metric space; an n-ary predicate P is interpreted as a continuous function $P^M : M^n \to [0, 1]$. Moreover, P^M and f^M must respect the given moduli of uniform continuity.

Examples 2. • Every ring or field is naturally a σ_{rings} -structure.

- A measure algebra (with the distance given by the measure of the symmetric difference) is naturally a σ_{MALG} -structure.
- Any complete bounded metric space is a structure over $\sigma = \emptyset$.

The first-order language

First-order formulas are well-formed expressions using the symbols of σ and the logical symbols: the equality relation, connectives, variables and quantifiers.

More formally, one starts by defining *terms*:

- every constant or variable is a term;
- if f is an n-ary function symbol and t_0, \ldots, t_{n-1} are terms, then $f(t_0, \ldots, t_{n-1})$ is a term.

Examples 3. • $x^2 + 2x - 1$ is a term in σ_{rings} (more formally, replace x^2 by $\cdot(x, x), 2$ by +(1, 1), etc).

• $x \cap y^c$ is a term in σ_{MALG} .

The first-order language

Then one defines *basic formulas*:

- if t and t' are terms, t = t' is a basic formula;
- if P is an n-ary basic predicate and t is an n-tuple of terms, P(t) is a basic formula.

In CL, t = t' is replaced by d(t, t').

Finally, the set \mathcal{L}_{σ} of *formulas* is given as follows:

- basic formulas are formulas;
- if φ and ψ are formulas, then so are $\varphi \land \psi, \varphi \lor \psi, \varphi \to \psi, \neg \varphi$;
- if φ is a formula and x is a variable, then $\forall x \varphi$ and $\exists x \varphi$ are formulas.

In CL, connectives are replaced by any continuous combinations $[0,1]^n \to [0,1]$. Quantifiers are suprema and infima: $\sup_x \varphi$, $\inf_x \varphi$. One also considers *forced limits* of sequences of formulas.

The first-order language

Remark: Formulas may or may not have *free* variables (i.e. not quantified). Intuitively, in the first case they express properties, in the second they express statements.

Respectively, in CL, they express functions or statements of a numerical nature. Examples 4. • $x^2 + 2x - 1 = 0$ ("x is a root of the polynomial $x^2 + 2x - 1$ ").

- $\exists x \ x^2 + 2x 1 = 0$ ("the polynomial $x^2 + 2x 1$ has a root").
- $\forall y_0 \forall y_1 \exists x \ x^2 + y_1 x + y_0 = 0$ ("every monic quadratic polynomial has a root").
- $\frac{1}{4}(||x+y||^2 ||x-y||^2)$ (the inner product in a real Hilbert space, in the language of Banach spaces).
- $\sup_x \inf_y |\mu(x \cap y) \mu(x \cap y^c)|$ (the measure of the largest atom in a measure algebra).

Intepretation of formulas

Let φ be a σ -formula. We usually write $\varphi(x)$ to indicate that the free variables of φ are contained in x (a tuple of distinct variables).

Let M be a σ -structure and let $a \in M^{|x|}$. We write

$$\varphi^M(a)$$

for the truth value of $\varphi(x)$ on M when x is interpreted to denote the tuple a. Of course, quantifiers are interpreted as ranging over *elements of* M.

We omit the formal (recursive, natural) definition.

In CL, $\varphi^M(a)$ is a real number.

Satisfaction, definable sets

We write

 $M \models \varphi(a)$

to say that $\varphi^M(a)$ is true.

A subset $D \subset M^n$ is definable if there is a formula $\varphi(x)$, |x| = n, such that

$$D = \{ a \in M^n : M \models \varphi(a) \}.$$

Sometimes this set is denoted by $\varphi(M)$.

In CL one can think of truth as given by the value zero, then write

$$M \models \varphi(a)$$

to mean that $\varphi^M(a) = 0$. A function $P: M^n \to [0,1]$ is a *definable predicate* if there is a formula $\varphi(x)$ such that $\varphi^M = P$ as functions on M^n .

Definability with parameters

It is useful to admit parameters: if M is a σ -structure and $B \subset M$ is any subset, then $D \subset M^n$ is *B*-definable if there is a formula $\varphi(x, y)$ and a tuple $b \in B^m$ such that

$$D = \{ a \in M^n : M \models \varphi(a, b) \}.$$

Equivalently: D is definable in the σ_B -structure M_B , where we have expanded σ to a signature σ_B with constants c_b for each $b \in B$, and M_B is just M with the obvious interpretation of this constants.

We denote the set of σ_B -formulas by $\mathcal{L}_{\sigma}(B)$. Thus, with a small abuse of notation, $\varphi(x, b) \in \mathcal{L}_{\sigma}(B)$.

Theories

A theory (on a given signature) is a set of statements (formulas with no free variables). A structure M is a model of a theory T, denoted $M \models T$, if each $\varphi \in T$ is true in M.

A theory T implies a statement φ if φ is true in every model of T:

if
$$M \models T$$
, then $M \models \varphi$.

Each structure M induces a theory,

$$\Gamma h(M) = \{ \varphi : M \models \varphi \},\$$

which is *complete* in the sense that, for every statement φ , either $T \models \varphi$ or $T \models \neg \varphi$.

Theories

Examples 5. • The theory of infinite sets is axiomatized by the statements

$$\varphi_n: \exists x_0 \dots \exists x_{n-1} \bigwedge_{0 \le i < j < n} x_i \ne x_j$$

- The usual axioms of fields can be written in the first-order language of $\sigma_{\rm rings}$.
- By adding the (infinitely many) axioms saying that 0 is different from 1, 1+1, 1+1+1, etc, and that every monic polynomial of degree $n \ge 2$ has a root, we obtain the theory of algebraically closed fields of characteristic 0, denoted by ACF₀.
- The theory of measure algebras is also first-order axiomatizable. Moreover, we have

$$M \models \sup_{x} \inf_{y} |\mu(x \cap y) - \mu(x \cap y^{c})|$$

if and only if M is atomless.

Elementary extensions

Let M and N be two σ -structures such that $M \subset N$ as sets. Then N is an *extension* of M (or M is a *substructure* of N) if we have

$$P^{M}(a) = P^{N}(a), \ f^{M}(a) = f^{N}(a)$$

for every basic predicate P and function symbol f, and every tuple a from M.

In CL, M must be a metric subspace of N.

If moreover

$$\varphi^M(a) = \varphi^N(a)$$

for every $\varphi(x) \in \mathcal{L}_{\sigma}$, then N is an elementary extension of M, denoted $M \prec N$. In particular, if $M \prec N$ then $\operatorname{Th}(M) = \operatorname{Th}(N)$.

E.g.: as linear orders, \mathbb{Q} is an extension of \mathbb{Z} but $\mathbb{Z} \not\prec \mathbb{Q}$. Instead, $\mathbb{Q} \prec \mathbb{R}$.

Compactness

Let $\Gamma(x)$ be a set of σ -formulas with free variables from x.

 $\Gamma(x)$ is satisfiable if there is an x-tuple a in some σ -structure M such that

 $M \models \Gamma(a).$

We also say that $\Gamma(x)$ is *realized* by *a*.

 $\Gamma(x)$ is finitely realized (in M) if every finite $\Delta(x) \subset \Gamma(x)$ is realized (by some tuple of M).

Theorem 6. If $\Gamma(x)$ is finitely realized (in M) then it is satisfiable (realized in some elementary extension of M, e.g. in an ultrapower of M).

Compactness

In CL, the same definition says that $\Gamma(x)$ is *satisfiable* (or *realized in M*) if for some a in some structure (resp., in M) we have $\varphi(a) = 0$ for every $\varphi \in \Gamma(x)$.

 $\Gamma(x)$ is approximately finitely realized (in M) if for any $\epsilon > 0$ and finitely many formulas $\varphi_i(x) \in \Gamma(x)$, i < n, there is a tuple a (in M) such that

 $|\varphi_i(a)| < \epsilon$

for every i < n.

(*Equivalently:* the closed ideal generated by $\{\varphi^M : \varphi \in \Gamma(x)\}$ in the space of real-valued continuous bounded functions $C(M^{|x|})$ is proper.)

Theorem 7. If $\Gamma(x)$ is approximately finitely realized (in M) then it is satisfiable (realized in some elementary extension of M, e.g. in an ultrapower of M).

Types

Fix a σ -structure $M, B \subset M$. A *(partial) type in x over B in M* is a set $\pi(x) \subset \mathcal{L}_{\sigma}(B)$ that is (approximately) finitely realized in M. When $|x| = n, \pi(x)$ is also called an *n*-type over B.

Given an x-tuple a in M, we define the type of a over B by

$$\operatorname{tp}(a/B) = \{ \varphi \in \mathcal{L}_{\sigma}(B) : M \models \varphi(a) \}.$$

These are *complete* types: maximal for inclusion. That is, complete types over A are ultrafilters in the algebra of B-definable sets.

If $B \subset M \prec N$, then any set $\Gamma(x) \subset \mathcal{L}_{\sigma}(B)$ is (app.) finitely realized in M if and only if it is (app.) finitely realized in N. In particular, types over B in M or in N coincide.

By the compactness theorem, every type over $B \subset M$ is realized in some elementary extension of M.

Types, quantifier elimination

A theory has quantifier elimination if tp(a/B) is determined by the basic formulas in $\mathcal{L}_{\sigma}(B)$ satisfied by a. Using that this is true for dense linear orders and for pure sets, we see that:

- *Examples* 8. There is only one 1-type over \emptyset in $(\mathbb{Q}, <)$, only three 2-types over \emptyset , etc: a type over \emptyset is determined by the order isomorphism type of a tuple that realizes it.
 - The type $\{x \neq b : b \in \mathbb{N}\}$ is the only non-realized 1-type over $B = \mathbb{N}$ in the pure set $M = \mathbb{N}$.
 - There as many non-realized 1-types over $B = \mathbb{Q}$ in $(\mathbb{Q}, <)$ as there are partitions $\mathbb{Q} = C \sqcup D$ with c < d for every $c \in C$, $d \in D$.

Space of types

Fix $B \subset M$ as before. We denote by $S_x(B)$ the space of all complete types over B in the variable x, or alternatively $S_n(B)$ if |x| = n. It is a compact Hausdorff totally disconnected space with basic clopen sets

$$[\varphi] = \{ p \in S_x(B) : \varphi \in p \}$$

for each $\varphi(x) \in \mathcal{L}_{\sigma}(B)$.

In CL, the space of complete types $S_x(B)$ can be seen as the maximal ideal space of the algebra of *B*-definable predicates on *M*, with its usual Gelfand topology (of course, here it need not be totally disconnected). In other words, $S_x(B)$ is the minimal compactification of M^n through which every function φ^M ($\varphi(x) \in \mathcal{L}_{\sigma}(B)$) factors.

Saturation

Let κ be an infinite cardinal. A structure M is κ -saturated if, for any $B \subset M$ of cardinality $|B| < \kappa$, every type in $S_1(B)$ is realized in M (equivalently: any *n*-type over B).

Examples 9. 1. Every \aleph_0 -categorical structure is \aleph_0 -saturated.

2. A model of ACF_0 is \aleph_0 -saturated if and only if it has infinite transcendence degree.

The monster

Fix a theory T. It is usual and convenient to work inside a fixed very saturated, homogeneous model of T containing all models of interest as elementary substructures.

More precisely, for an arbitrarily large cardinal κ one can find a model M (a *monster model*) such that:

- (call a set *B* small if $|B| < \kappa$)
- all small models of T are elementary embeddable in \mathbb{M} ;
- every type over a small subset of M is realized in M;
- every *elementary map* between small subsets of M can be extended to an automorphism of M.

Definable groups

Let M be a structure. A *definable group* in M is given by definable sets $G \subset M^n$ and $\cdot \subset M^n \times M^n \times M^n$ such that

$$M \models "(G, \cdot)$$
 is a group".

We may abuse notation and identify G and \cdot with the formulas defining them.

Then for any elementary extension $M \prec N$ we have that (G^N, \cdot^N) is also a group. In fact it contains (G, \cdot) as a subgroup, since for any $a, b, c \in G$ we have

$$M \models a \cdot b = c$$
 if and only if $N \models a \cdot b = c$.

Definable groups

Now let $S_G(M)$ be the space of types over M containing the formula G. That is, the closure of the image of the set G in the natural embedding tp : $M^n \to S_n(M)$. By saturation we have

$$S_G(M) = \{ \operatorname{tp}(\tilde{g}/M) : \tilde{g} \in G^{\mathbb{M}} \}.$$

But G is a subgroup of $G^{\mathbb{M}}$, and this induces an action of G on $S_G(M)$:

$$g.\mathrm{tp}(\tilde{g}/M) = \mathrm{tp}(g \cdot \tilde{g}/M)$$

for $g \in G \subset M^n$ and $\tilde{g} \in G^{\mathbb{M}} \subset \mathbb{M}^n$. Since the product is definable, this is a well-defined action by homeomorphisms. That is, $S_G(M)$ is a point-transitive G-flow.

Automorphism groups

Let M be a structure. We denote by $\operatorname{Aut}(M)$ the group of automorphisms of M. Then $\operatorname{Aut}(M)$ is a topological group under the topology of *pointwise convergence*. If M is countable (separable) then $\operatorname{Aut}(M)$ is a Polish group.

In fact, automorphism groups of classical countable structures are precisely the closed subgroups of S_{∞} : if $G \leq S(X)$, one can define basic predicates on X to turn it into a structure with $G = \operatorname{Aut}(X)$.

Similarly, any Polish group can be seen as the automorphism group of a separable metric structure: one chooses a left-invariant metric on G, takes $X = \widehat{G}_L$ its completion and defines appropriate predicates on X to turn it into a metric structure with $G = \operatorname{Aut}(M)$.

Automorphism groups

Aut(M) acts continuously (by isometries) on M. It also acts continuously on $S_x(M)$. If $g \in Aut(M)$, $p \in S_x(M)$ then gp is defined by

$$\varphi(x,m)^{gp} = \varphi(x,g^{-1}m)^p,$$

where $\varphi(x, y)$ ranges over σ -formulas, $m \in M^{|y|}$, and $\varphi(x, b)^q$ denotes the value of $\varphi(a, b)$ for any a realizing $q \in S_x(M)$.

Categoricity

Let κ be a cardinal. A theory T is κ -categorical if there is only one model of cardinal κ up to isomorphism.

In CL: if there is only one model of density character κ .

Examples 10. • The theory of infinite sets is κ -categorical for every infinite κ .

- ACF₀ is κ -categorical for every $\kappa \geq \aleph_1$ but not for $\kappa = \aleph_0$.
- Th($\mathbb{Q}, <$) is κ -categorical for $\kappa = \aleph_0$ but not for any $\kappa \ge \aleph_1$.
- The theory of infinite dimensional Hilbert spaces is categorical in every infinite cardinal.
- The theory of atom less measure algebras is $\aleph_0\text{-categorical}$ but not $\kappa\text{-categorical}$ for larger $\kappa.$

\aleph_0 -categorical structures

Theorem 11. Let T be a complete theory in a countable signature. The following are equivalent.

- 1. T is \aleph_0 -categorical.
- 2. $S_n(\emptyset)$ is finite for every n.

Theorem 12. Let M be a countable structure such that Th(M) is \aleph_0 -categorical. Then:

- M is homogeneous: if a, b are finite tuples with tp(a/∅) = tp(b/∅) then there is g ∈ Aut(M) with ga = b.
- A set $D \subset M^n$ is definable if and only if it is Aut(M)-invariant.
- It follows that $S_n(\emptyset)$ can be identified with M^n/G .

Hence the theory of M is \aleph_0 -categorical if and only if the action of Aut(M) on M is oligomorphic.

\aleph_0 -categorical structures

Analogous continuous/approximate statements hold for $\aleph_0\text{-}categorical structures}$ in CL. Among them:

- $S_n(T)$ can be identified with the metric quotient $M^n // \operatorname{Aut}(M)$ (in particular these quotients are compact for all n, and this is equivalent to \aleph_0 -categoricity).
- A predicate $P: M^n \to \mathbb{R}$ is definable if and only if it is uniformly continuous and $\operatorname{Aut}(M)$ -invariant.

Suppose M is \aleph_0 -categorical and denote by E the set of endomorphisms of M, which is a topological semigroup under the topology of pointwise convergence. Then by (approximate) homogeneity we have the following:

Theorem 13. E is exactly the pointwise closure of G in M^M , and it can be identified with the left-completion \widehat{G}_L .

References

- K. Tent and M. Ziegler. A course in model theory, Lecture Notes in Logic, ASL, Cambridge University Press, 2012.
- [2] D. Marker. Model theory: an introduction, Graduate texts in mathematics, Springer, 2002.
- [3] I. Ben Yaacov, A. Berenstein, W. Henson and A. Usvyatsov. Model theory for metric structures, Model theory with applications to algebra and analysis. Vol. 2, Cambridge University Press, 2008.