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Overview
(Syntax/Semantics)

1. Choose a signature σ: a list of basic symbols. Look at σ-structures: sets
and relations interpreting σ.

2. Build a language L: well-formed formulas using σ. Look at the definable
sets on the structures.

3. Choose axioms (a theory, T ): a set of statements from L. Restrict to
models of T (how many are there?).

4. Look at consistent sets of formulas. Finitely satisfiable conditions: types.

5. Invoke a monster (a structure realizing most types).

6. Look at definable groups and/or automorphism groups.

Signature
A signature is a list of

• relation symbols (basic predicates)

• and function symbols,

each with a prescribed arity (a natural number). Function symbols of arity 0
are called constants.

In continuous logic (CL), a modulus of uniform continuity is also prescribed.

Examples 1. • σrings = {+,−, ·, 0, 1}, where +, −, · are binary function
symbols and 0, 1 are constants.

• σgraphs = {R}, where R is a binary predicate.

• σMALG = {µ,∆,∩, ·c, 0, 1}, where µ is a 1-Lipschitz unary predicate, ∆, ∩ are

binary function symbols, ·c is a unary function symbol and 0, 1 are constants.

Structures
Fix a signature σ. A (classical) σ-structure M is a set (which we will also

denote by M) together with interpretations for the symbols in σ:

• each n-ary basic predicate P is interpreted as a relation PM ⊂Mn;

• each n-ary function symbol f is interpreted as a function fM : Mn →M .
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In CL: a metric σ-structure M is a bounded complete metric space; an n-ary pred-

icate P is interpreted as a continuous function PM : Mn → [0, 1]. Moreover, PM and

fM must respect the given moduli of uniform continuity.

Examples 2. • Every ring or field is naturally a σrings-structure.

• A measure algebra (with the distance given by the measure of the symmetric
difference) is naturally a σMALG-structure.

• Any complete bounded metric space is a structure over σ = ∅.

The first-order language
First-order formulas are well-formed expressions using the symbols of σ and

the logical symbols: the equality relation, connectives, variables and quantifiers.

More formally, one starts by defining terms:

• every constant or variable is a term;

• if f is an n-ary function symbol and t0, . . . tn−1 are terms, then f(t0, . . . , tn−1)
is a term.

Examples 3. • x2 + 2x− 1 is a term in σrings (more formally, replace x2 by
·(x, x), 2 by +(1, 1), etc).

• x ∩ yc is a term in σMALG.

The first-order language
Then one defines basic formulas:

• if t and t′ are terms, t = t′ is a basic formula;

• if P is an n-ary basic predicate and t is an n-tuple of terms, P (t) is a basic
formula.

In CL, t = t′ is replaced by d(t, t′).

Finally, the set Lσ of formulas is given as follows:

• basic formulas are formulas;

• if ϕ and ψ are formulas, then so are ϕ ∧ ψ, ϕ ∨ ψ, ϕ→ ψ, ¬ϕ;

• if ϕ is a formula and x is a variable, then ∀xϕ and ∃xϕ are formulas.

In CL, connectives are replaced by any continuous combinations [0, 1]n → [0, 1].

Quantifiers are suprema and infima: supx ϕ, infx ϕ. One also considers forced limits

of sequences of formulas.
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The first-order language
Remark: Formulas may or may not have free variables (i.e. not quantified).

Intuitively, in the first case they express properties, in the second they express
statements.

Respectively, in CL, they express functions or statements of a numerical nature.

Examples 4. • x2 +2x−1 = 0 (“x is a root of the polynomial x2 +2x−1”).

• ∃x x2 + 2x− 1 = 0 (“the polynomial x2 + 2x− 1 has a root”).

• ∀y0∀y1∃x x2 + y1x + y0 = 0 (“every monic quadratic polynomial has a
root”).

• 1
4
(‖x+y‖2−‖x−y‖2) (the inner product in a real Hilbert space, in the language

of Banach spaces).

• supx infy |µ(x ∩ y) − µ(x ∩ yc)| (the measure of the largest atom in a measure

algebra).

Intepretation of formulas
Let ϕ be a σ-formula. We usually write ϕ(x) to indicate that the free vari-

ables of ϕ are contained in x (a tuple of distinct variables).

Let M be a σ-structure and let a ∈M |x|. We write

ϕM (a)

for the truth value of ϕ(x) on M when x is interpreted to denote the tuple a.
Of course, quantifiers are interpreted as ranging over elements of M .

We omit the formal (recursive, natural) definition.

In CL, ϕM (a) is a real number.

Satisfaction, definable sets
We write

M |= ϕ(a)

to say that ϕM (a) is true.

A subset D ⊂Mn is definable if there is a formula ϕ(x), |x| = n, such that

D = {a ∈Mn : M |= ϕ(a)}.

Sometimes this set is denoted by ϕ(M).

In CL one can think of truth as given by the value zero, then write

M |= ϕ(a)

to mean that ϕM (a) = 0. A function P : Mn → [0, 1] is a definable predicate if there

is a formula ϕ(x) such that ϕM = P as functions on Mn.
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Definability with parameters
It is useful to admit parameters: if M is a σ-structure and B ⊂ M is any

subset, then D ⊂ Mn is B-definable if there is a formula ϕ(x, y) and a tuple
b ∈ Bm such that

D = {a ∈Mn : M |= ϕ(a, b)}.

Equivalently: D is definable in the σB-structure MB , where we have ex-
panded σ to a signature σB with constants cb for each b ∈ B, and MB is just
M with the obvious interpretation of this constants.

We denote the set of σB-formulas by Lσ(B). Thus, with a small abuse of
notation, ϕ(x, b) ∈ Lσ(B).

Theories
A theory (on a given signature) is a set of statements (formulas with no free

variables). A structure M is a model of a theory T , denoted M |= T , if each
ϕ ∈ T is true in M .

A theory T implies a statement ϕ if ϕ is true in every model of T :

if M |= T , then M |= ϕ.

Each structure M induces a theory,

Th(M) = {ϕ : M |= ϕ},

which is complete in the sense that, for every statement ϕ, either T |= ϕ or
T |= ¬ϕ.

Theories

Examples 5. • The theory of infinite sets is axiomatized by the statements

ϕn : ∃x0 . . . ∃xn−1
∧

0≤i<j<n

xi 6= xj .

• The usual axioms of fields can be written in the first-order language of
σrings.

• By adding the (infinitely many) axioms saying that 0 is different from 1,
1 + 1, 1 + 1 + 1, etc, and that every monic polynomial of degree n ≥ 2 has
a root, we obtain the theory of algebraically closed fields of characteristic
0, denoted by ACF0.

• The theory of measure algebras is also first-order axiomatizable. Moreover, we
have

M |= sup
x

inf
y
|µ(x ∩ y)− µ(x ∩ yc)|

if and only if M is atomless.
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Elementary extensions
Let M and N be two σ-structures such that M ⊂ N as sets. Then N is an

extension of M (or M is a substructure of N) if we have

PM (a) = PN (a), fM (a) = fN (a)

for every basic predicate P and function symbol f , and every tuple a from M .

In CL, M must be a metric subspace of N .

If moreover
ϕM (a) = ϕN (a)

for every ϕ(x) ∈ Lσ, then N is an elementary extension of M , denoted M ≺ N .
In particular, if M ≺ N then Th(M) = Th(N).

E.g.: as linear orders, Q is an extension of Z but Z 6≺ Q. Instead, Q ≺ R.

Compactness
Let Γ(x) be a set of σ-formulas with free variables from x.

Γ(x) is satisfiable if there is an x-tuple a in some σ-structure M such that

M |= Γ(a).

We also say that Γ(x) is realized by a.

Γ(x) is finitely realized (in M) if every finite ∆(x) ⊂ Γ(x) is realized (by
some tuple of M).

Theorem 6. If Γ(x) is finitely realized (in M) then it is satisfiable (realized in
some elementary extension of M , e.g. in an ultrapower of M).

Compactness
In CL, the same definition says that Γ(x) is satisfiable (or realized in M) if for some

a in some structure (resp., in M) we have ϕ(a) = 0 for every ϕ ∈ Γ(x).

Γ(x) is approximately finitely realized (in M) if for any ε > 0 and finitely many
formulas ϕi(x) ∈ Γ(x), i < n, there is a tuple a (in M) such that

|ϕi(a)| < ε

for every i < n.

(Equivalently: the closed ideal generated by {ϕM : ϕ ∈ Γ(x)} in the space of
real-valued continuous bounded functions C(M |x|) is proper.)

Theorem 7. If Γ(x) is approximately finitely realized (in M) then it is satisfiable
(realized in some elementary extension of M , e.g. in an ultrapower of M).
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Types
Fix a σ-structure M , B ⊂ M . A (partial) type in x over B in M is a set

π(x) ⊂ Lσ(B) that is (approximately) finitely realized in M . When |x| = n, π(x)
is also called an n-type over B.

Given an x-tuple a in M , we define the type of a over B by

tp(a/B) = {ϕ ∈ Lσ(B) : M |= ϕ(a)}.

These are complete types: maximal for inclusion. That is, complete types over
A are ultrafilters in the algebra of B-definable sets.

If B ⊂ M ≺ N , then any set Γ(x) ⊂ Lσ(B) is (app.) finitely realized in M
if and only if it is (app.) finitely realized in N . In particular, types over B in
M or in N coincide.

By the compactness theorem, every type over B ⊂ M is realized in some
elementary extension of M .

Types, quantifier elimination
A theory has quantifier elimination if tp(a/B) is determined by the basic

formulas in Lσ(B) satisfied by a. Using that this is true for dense linear orders
and for pure sets, we see that:

Examples 8. • There is only one 1-type over ∅ in (Q, <), only three 2-types
over ∅, etc: a type over ∅ is determined by the order isomorphism type of
a tuple that realizes it.

• The type {x 6= b : b ∈ N} is the only non-realized 1-type over B = N in
the pure set M = N.

• There as many non-realized 1-types over B = Q in (Q, <) as there are
partitions Q = C tD with c < d for every c ∈ C, d ∈ D.

Space of types
Fix B ⊂ M as before. We denote by Sx(B) the space of all complete types

over B in the variable x, or alternatively Sn(B) if |x| = n. It is a compact
Hausdorff totally disconnected space with basic clopen sets

[ϕ] = {p ∈ Sx(B) : ϕ ∈ p}

for each ϕ(x) ∈ Lσ(B).

In CL, the space of complete types Sx(B) can be seen as the maximal ideal space

of the algebra of B-definable predicates on M , with its usual Gelfand topology (of

course, here it need not be totally disconnected). In other words, Sx(B) is the minimal

compactification of Mn through which every function ϕM (ϕ(x) ∈ Lσ(B)) factors.
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Saturation
Let κ be an infinite cardinal. A structure M is κ-saturated if, for any B ⊂M

of cardinality |B| < κ, every type in S1(B) is realized in M (equivalently: any
n-type over B).

Examples 9. 1. Every ℵ0-categorical structure is ℵ0-saturated.

2. A model of ACF0 is ℵ0-saturated if and only if it has infinite transcendence
degree.

The monster
Fix a theory T . It is usual and convenient to work inside a fixed very satu-

rated, homogeneous model of T containing all models of interest as elementary
substructures.

More precisely, for an arbitrarily large cardinal κ one can find a model M (a
monster model) such that:

• (call a set B small if |B| < κ)

• all small models of T are elementary embeddable in M;

• every type over a small subset of M is realized in M;

• every elementary map between small subsets of M can be extended to an
automorphism of M.

Definable groups
Let M be a structure. A definable group in M is given by definable sets

G ⊂Mn and · ⊂Mn ×Mn ×Mn such that

M |= “(G, ·) is a group”.

We may abuse notation and identify G and · with the formulas defining
them.

Then for any elementary extension M ≺ N we have that (GN , ·N ) is also a
group. In fact it contains (G, ·) as a subgroup, since for any a, b, c ∈ G we have

M |= a · b = c if and only if N |= a · b = c.

Definable groups
Now let SG(M) be the space of types over M containing the formula G.

That is, the closure of the image of the set G in the natural embedding tp :
Mn → Sn(M). By saturation we have

SG(M) = {tp(g̃/M) : g̃ ∈ GM}.
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But G is a subgroup of GM, and this induces an action of G on SG(M):

g.tp(g̃/M) = tp(g · g̃/M)

for g ∈ G ⊂ Mn and g̃ ∈ GM ⊂ Mn. Since the product is definable, this is a
well-defined action by homeomorphisms. That is, SG(M) is a point-transitive
G-flow.

Automorphism groups
Let M be a structure. We denote by Aut(M) the group of automorphisms

of M . Then Aut(M) is a topological group under the topology of pointwise
convergence. If M is countable (separable) then Aut(M) is a Polish group.

In fact, automorphism groups of classical countable structures are precisely
the closed subgroups of S∞: if G ≤ S(X), one can define basic predicates on X
to turn it into a structure with G = Aut(X).

Similarly, any Polish group can be seen as the automorphism group of a separable

metric structure: one chooses a left-invariant metric on G, takes X = ĜL its comple-

tion and defines appropriate predicates on X to turn it into a metric structure with

G = Aut(M).

Automorphism groups
Aut(M) acts continuously (by isometries) on M . It also acts continuously on

Sx(M). If g ∈ Aut(M), p ∈ Sx(M) then gp is defined by

ϕ(x,m)gp = ϕ(x, g−1m)p,

where ϕ(x, y) ranges over σ-formulas, m ∈M |y|, and ϕ(x, b)q denotes the value
of ϕ(a, b) for any a realizing q ∈ Sx(M).

Categoricity
Let κ be a cardinal. A theory T is κ-categorical if there is only one model

of cardinal κ up to isomorphism.

In CL: if there is only one model of density character κ.

Examples 10. • The theory of infinite sets is κ-categorical for every infinite
κ.

• ACF0 is κ-categorical for every κ ≥ ℵ1 but not for κ = ℵ0.

• Th(Q, <) is κ-categorical for κ = ℵ0 but not for any κ ≥ ℵ1.

• The theory of infinite dimensional Hilbert spaces is categorical in every infinite
cardinal.

• The theory of atomless measure algebras is ℵ0-categorical but not κ-categorical

for larger κ.
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ℵ0-categorical structures

Theorem 11. Let T be a complete theory in a countable signature. The fol-
lowing are equivalent.

1. T is ℵ0-categorical.

2. Sn(∅) is finite for every n.

Theorem 12. Let M be a countable structure such that Th(M) is ℵ0-categorical.
Then:

• M is homogeneous: if a, b are finite tuples with tp(a/∅) = tp(b/∅) then
there is g ∈ Aut(M) with ga = b.

• A set D ⊂Mn is definable if and only if it is Aut(M)-invariant.

• It follows that Sn(∅) can be identified with Mn/G.

Hence the theory of M is ℵ0-categorical if and only if the action of Aut(M)
on M is oligomorphic.

ℵ0-categorical structures
Analogous continuous/approximate statements hold for ℵ0-categorical structures

in CL. Among them:

• Sn(T ) can be identified with the metric quotient Mn � Aut(M) (in particular
these quotients are compact for all n, and this is equivalent to ℵ0-categoricity).

• A predicate P : Mn → R is definable if and only if it is uniformly continuous
and Aut(M)-invariant.

Suppose M is ℵ0-categorical and denote by E the set of endomorphisms of
M , which is a topological semigroup under the topology of pointwise conver-
gence. Then by (approximate) homogeneity we have the following:

Theorem 13. E is exactly the pointwise closure of G in MM , and it can be
identified with the left-completion ĜL.
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