Université Claude Bernard Lyon I Licence deuxième année : Algèbre IV

Jeudi 27 mars 2014

Partiel Algèbre IV

Durée : 2H. Aucun document n'est autorisé

Exercice 1. (8 pts) On se place dans l'espace vectoriel \mathbb{R}^3 et fixe une base $\mathcal{B} = (e_1, e_2, e_3)$. Ensuite on définit la fonction suivante :

où (x,y,z) sont les coordonnées d'un point de \mathbb{R}^3 dans la base \mathcal{B} . On admettra que c'est une forme quadratique.

- 1. (2 pts) Déterminer la forme polaire de q et sa matrice dans la base canonique.
- 2. (3 pts) Déterminer une base orthogonale pour q.
- 3. (3 pts) Déterminer trois vecteurs isotropes et linéairement indépendants. En déduire que le cône isotrope de que n'est pas un sous-espace vectoriel.

Exercice 2. (8 pts) On se met dans l'espace vectoriel \mathbb{R}^3 et fixe une base $\mathcal{B} = (e_1, e_2, e_3)$. Ensuite on définit la fonction suivante :

où (x,y,z) sont les coordonnées d'un point de \mathbb{R}^3 dans la base \mathcal{B} . On admettra que c'est une forme quadratique.

- 1. (2 pts) Déterminer la forme polaire de q et sa matrice dans la base canonique.
- 2. (3 pts) Déterminer une base orthogonale pour q.
- 3. (1 pt) Quelle est la signature de q?
- 4. (2 pts) Déterminer $(1, -2, 1)^{\perp}$.

Exercice 3. (Un peu de théorie) (4 pts) Soient E un \mathbb{R} -espace vectoriel et q une forme quadratique non-dégénérée sur E. Montrer qu'aucune base orthogonale de E ne contient un vecteur isotrope.