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Abstract

The aim is to give an overview of recent advancements in the theory of Euler–Korteweg
model for liquid-vapour mixtures. This model takes into account the surface tension
of interfaces by means of a capillarity coefficient. The interfaces are not sharp fronts.
Their width, even though extremely small for values of the capillarity compatible with
the measured, physical surface tension, is nonzero. We are especially interested in non-
dissipative isothermal models, in which the viscosity of the fluid is neglected and there-
fore the (extended) free energy, depending on the density and its gradient, is a conserved
quantity. From the mathematical point of view, the resulting conservation law for the
momentum of the fluid involves a third order, dispersive term but no parabolic smooth-
ing effect. We present recent results about well-posedness and propagation of solitary
waves.
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1 Introduction to Korteweg’s theory of capillarity

1.1 Historical background

The mathematical theory of phase boundaries dates back to the 19th century. One of the
first achievements is the famous Young–Laplace relation, stating that the pressure difference
across a fluid interface (between e.g. water and air, or water and vapour) equals the sur-
face tension (a volumic force actually localized on the surface, as its name indicates) times
the sum of principal curvatures of the surface (which implies in particular that there is no
pressure difference for a flat interface). It was independently established by Young1[76]
and Laplace2[52] in the early 1800s, and was later revisited by Gauß3[37]. Poisson4[64],
Maxwell5[58], Gibbs6[40], Thomson7[72], and Rayleigh8[65] then contributed to develop the
theory of nonzero thickness interfaces, in which capillarity comes into play, before it was for-
malized by van der Waals9[74] and his student (the only one known) Korteweg10[49]: we refer

1Thomas Young [1773–1829]
2Pierre-Simon Laplace [1749–1827]
3Carl Friedrich Gauß [1777–1855]
4Siméon-Denis Poisson [1781–1840]
5James Clerk Maxwell [1831–1879]
6Josiah Willard Gibbs [1839–1903]
7James Thomson [1822–1892] (elder brother of Lord Kelvin)
8John William Strutt, best known as Lord Rayleigh [1842–1919]
9Johannes Diederik van der Waals [1837–1923]

10Diederik Johannes Korteweg [1848–1941]
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the reader to the book by Rowlinson and Widom [71] for more historical and physical details
on capillarity, as well as for further information on reprinted and/or translated/commented
editions of those ancient papers (which were originally written in as various languages as
dutch, english, french, german, and latin).

1.2 What is capillarity?

In everyday life, capillarity effects may be observed in thin tubes. For instance, if a straw is
filled with your favourite drink, this liquid will usually exhibit a concave meniscus at end-
points (even though some liquids, like mercury, yield a convex meniscus, if you remember
how looked like those old medical thermometers). Capillarity is also involved when you use
a paper towel to wipe off spilled coffee on your table, and (before you clean up), it is surface
tension that maintains the non-flat shape of coffee drops spread on the table: as we shall see,
capillarity and surface tension are intimately linked (the words are even sometimes used as
synonyms, at least by mathematicians). Less likely to be seen in your kitchen are the super-
fluids (such as liquid helium at very low temperature), which would spontaneously creep up
the wall of your cup and eventually spill over the table. Again, capillarity is suspected to play
a role in this weird phenomenon.

Of course these observations do not make a definition. As far as we are concerned, cap-
illarity will occur as a ‘coefficient’, possibly depending on density, in the energy of the fluid.
We will consider only isothermal fluids (which seems to be physically justified in the case of
superfluids, and for liquid-vapour mixtures in standard conditions). For this reason, by en-
ergy we will actually mean free energy. A ‘regular’ isothermal fluid (at rest) of density ρ and
temperature T has an energy density F0(ρ,T ), and its total energy in a volumeΩ is

F0[ρ,T ] =
∫
Ω

F0(ρ,T )dx .

In a capillary fluid, regions with large density gradients (typically phase boundaries of small
but nonzero thickness), are assumed to be responsible for an additional energy, which is
usually taken of the form

1
2

∫
Ω

K (ρ,T ) |∇ρ|2 dx ,

in such a way that the total energy density is

F = F (ρ,T,∇ρ) = F0(ρ,T ) + 1
2 K (ρ,T ) |∇ρ|2 .

1.3 Where are the phase boundaries?

If F0 is a convex function of ρ with a unique (global) minimum ρ, the fluid will not exhibit
phase boundaries. For, the constant state ρ ≡ ρ is an obvious global minimum of the total
energy F = ∫

ΩF dx under the mass constraint
∫
Ω(ρ−ρ)dx = 0. Now things are very differ-

ent if F0 is a double-well potential , which happens to be so for instance in van der Waals
fluids below critical temperature. By double-well potential we mean that F0 has a bitangent
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at some points ρv and ρ`, called Maxwell points, with ρv < ρ` to fix the ideas (the subscript
v standing for vapour and ` for liquid).Then the total energy has many types of minimisers
where the two values, each one corresponding to a ‘phase’, ρv and ρ` co-exist. The inves-
tigation of minimisers in general is out of scope, but we shall come back to this topic in §3
from the special point of view of planar traveling waves. This will be a way to consider not
only stationary phase boundaries in a fluid at rest but also propagating phase boundaries in
a moving fluid.

1.4 Equations of motion for capillary fluids

The motion of a ‘regular’, compressible and inviscid isothermal fluid is known (see for in-
stance [31]) to be governed by the Euler equations, consisting of

conservation of mass

(1) ∂tρ+div(ρu) = 0,

conservation of momentum

(2) ∂t (ρu)+div(ρu⊗u) = divΣ ,

where ρ denotes as before the density, u is the velocity, and Σ is the stress tensor of the fluid,
given by

Σ = −p I , p := ρ ∂F

∂ρ
− F .

Here above, the energy density F is assumed to depend only on (ρ,T ), and p is the actual
pressure in the fluid. For capillary fluids, or more generally if we allow F to depend not only
on (ρ,T ) but also on ∇ρ, we can still define a (generalised) pressure by

p := ρ ∂F

∂ρ
− F .

However, it turns out that in this situation the stress tensor is not merely given by −p I. Ad-
ditional terms are to be defined in terms of the vector field w, of components

wi := ∂F

∂ρ,i
,

where for i ∈ {1, . . . ,d}, ρ,i stands for ∂iρ, the i -th component of ∇ρ. By variational arguments
detailed in the appendix (also see [67]), we can justify that for capillary fluids the stress tensor
Σ has to be modified into

(3) Σ= (−p + ρdivw)I − w⊗∇ρ .

In particular, when

(4) F = F0(ρ) + 1
2 K (ρ) |∇ρ|2 ,
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(we can forget about the dependency of F on T since we consider only isothermal motions)
we have

w = K ∇ρ , p = p0 + 1
2 (ρK ′

ρ−K ) |∇ρ|2 ,

where

p0 := ρ ∂F0

∂ρ
− F0

is the standard pressure. After substitution of w and p for their expressions in terms of K , ρ,
and ∇ρ inΣ, the momentum equation (2) may seem overcomplicated at first glance. To get a
simpler point of view, it is in fact better to return to the abstract form of Σ, and observe that
by the generalised Gibbs relation

dF = −S dT + g dρ +
d∑

i=1
wi dρ,i ,

we have (by definition) p = ρg −F , hence

dp = ρdg + S dT −
d∑

i=1
wi dρ,i .

(Here above, S is the entropy density, and g is the - generalised - chemical potential of the
fluid.) In particular, along isothermal, smooth enough motions we have

∂ j p = ρ∂ j g −
d∑

i=1
wi ∂ jρ,i = ρ∂ j g −

d∑
i=1

wi ∂iρ, j

by the Schwarz lemma. This (almost readily) yields the identity

divΣ= ρ∇(−g + divw) .

Therefore, the Euler equations (1)-(2) with the modified stress tensor (3) may alternatively
be written in conservative form

(5)

{
∂tρ+div(ρu) = 0,
∂t (ρu)+div(ρu⊗u) = ∇(−p + ρdivw) − div(w⊗∇ρ) ,

or (using in a standard manner the conservation of mass to cancel out terms in the left hand
side of the momentum equation), in convection form

(6)

{
∂tρ+u ·∇ρ + ρdivu = 0,
∂t u+ (u ·∇)u = ∇(−g + divw) .

In particular, when w = K ∇ρ (that is, if (4) holds true),

g = g0 + 1
2 K ′

ρ |∇ρ|2 ,
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where g0 is independent of ∇ρ, and more precisely g0 is such that p0 = ρg0 −F0, and the
second equation in (6) reads

(7) ∂t u+ (u ·∇)u = ∇(−g0 + 1
2 K ′

ρ |∇ρ|2 + K ∆ρ) .

An apparently simple, special case is when K is a constant. Then Equation (7) reduces to

(8) ∂t u+u ·∇u + ∇g0 = K ∇∆ρ ,

which has a linear principal part. Nevertheless, we shall see in the analysis of the Cauchy
problem that it is not the easiest case. A somehow physical explanation for this fact is the
following. Since the total energy of the fluid, including kinetic energy, is

F + 1
2 ρ |u|2 = F0 + 1

2 ρ (|u|2 +|v|2) , v :=
√

K

ρ
∇ρ ,

it seems reasonable to try and reformulate (7) in terms of the vector field v instead of w =
K∇ρ. This works indeed, thanks to the identity (shown in the appendix)

1
2 K ′

ρ |∇ρ|2 + K ∆ρ = a divv + 1
2 |v|2 , a :=√

ρK ,

so that (7) equivalently reads

(9) ∂t u+ (u ·∇)u + ∇g0 = ∇(a divv + 1
2 |v|2) .

Even though this equation looks more complicated than (8), it points out another special
case, namely when a is constant, that is when K is proportional to 1/ρ (which we shall merely
write K ∝ 1/ρ). Indeed, for such an a, the principal part in (9) is a∇divv, obviously linear in
v with a constant coefficient. (We could also have noticed that ρK ≡ constant simplifies the
principal part, ∇(ρK ∆ρ), of the momentum equation in (5) when w = K∇ρ.) By the way, we
shall see in §1.5 below that the special case K ∝ 1/ρ is a physical one, in the framework of
Quantum HydroDynamics (QHD) for semiconductors or for Bose–Einstein condensates. In
any case, Eq. (9) and its counterpart for v (see §2.2.1) will be play a crucial role later on in the
analysis.

1.5 Euler–Korteweg equations and related models

For F as in (4), w = K (ρ)∇ρ, and p, p0, g , g0 defined as in the previous subsection by

(10)


p = p0 + 1

2 (ρK ′
ρ−K ) |∇ρ|2 , p0 = ρg0 −F0 ,

g = g0 + 1
2 K ′

ρ |∇ρ|2 , g0 = ∂F0

∂ρ
,

we shall refer indifferently to (5) or to (6) as the Euler–Korteweg equations, and call Korteweg
stress tensor

(11) K := p0 I + Σ = ρK ∆ρ I + 1
2 (K +ρK ′

ρ) |∇ρ|2 I − K ∇ρ⊗∇ρ .
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It is to be noted that originally Korteweg [49] (see also [73, pp. 513–515] for a modern account
and discussion) considered more general stress tensors, of the form

(12) K = α(ρ) |∇ρ|2 I + β(ρ)∇ρ⊗∇ρ + γ(ρ)∆ρ I + δ(ρ)∇2ρ .

The tensor obtained above corresponds to α = 1
2 (K +ρK ′

ρ), β = −K , γ = ρK , δ = 0. Another
class of examples pertaining to the general form (12) is

K = µ(ρ)∇2ξ(ρ) ,

corresponding to α = 0, β = 0, γ = µξ′′ρ, δ = µξ′ρ. We shall meet of one them in the QHD
paragraph.

Incompressible inhomogeneous Euler–Korteweg equations An incompressible fluid is char-
acterized by a solenoidal (that is, divergence-free) velocity. It can be homogeneous, and then
its density ρ is merely a constant, or inhomogeneous, in which case ρ is just transported by
the flow, obeying the law

∂tρ + u ·∇ρ = 0.

(This equation is a special case of the mass conservation law (1) when divu = 0.) Recently
[56], local-in-time well-posedness in Sobolev spaces was shown for the model of incom-
pressible inhomogeneous fluids with a Korteweg tensor of the form (12) withα> 0, β=−3α,
γ = 0, δ = 0. It is to be noted that for these values of parameters, the momentum equation
does not contain third order derivatives. The nasty quadratic terms in ∇ρ are dealt with by
using elliptic regularity estimates for the modified pressureΠ= p +2α|∇ρ|2.

Navier–Stokes–Korteweg equations The (compressible) Navier–Stokes–Korteweg equations
are made of (1)-(2) with a stress tensor

Σ = −p0I + K+ D ,

including a viscous stress tensor, generally of the form

D = λ(ρ) (divu)I + µ(ρ) (∇u+ (∇u)T ) .

In the mathematical analysis of the Navier–Stokes–Korteweg equations, the positivity of the
viscosity coefficient µ plays a crucial role (basically lying in a parabolic smoothing). More
precisely, it was shown in [30] that for constant λ and µ such that µ > 0 and λ+2µ > 0, and
for K > 0 also constant, the Cauchy problem is locally well-posed in critical Besov spaces, and
globally well-posed for ‘small’ data (in fact, for densities close to a stable state, i.e. where F0 is
strictly convex). On the other hand, it was shown in [24] that forλ= 0, µ= νρ, ν> 0 constant,
and K > 0 constant, the Cauchy problem admits global weak solutions. The special form of µ
enabled indeed the authors to derive an a priori estimate for the effective velocity u+ν∇ lnρ.
Another important ingredient in the analysis of the Navier–Stokes–Korteweg (and also of the
Euler–Korteweg) equations is a further a priori estimate on ∇ρ, due to the term 1

2 K |∇ρ|2 in
the energy, which allows more general pressure laws – in particular nonmonotone ones, like
for van der Waals fluids – than for compressible Navier–Stokes equations (dealt with by Lions
[55] and Feireisl [35]).
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Quantum hydrodynamic equations The mathematical theory of semi-conductors involves
models analogous to Euler–Korteweg and Navier–Stokes–Korteweg equations, referred to as
quantum hydrodynamic equations (QHD) [44, 45], in which the ‘Korteweg’ tensor is of the
form

K = ερ∇2 ln(ρ) .

When expanded as in (12), this tensor involves in particular a term β∇ρ⊗∇ρ with β=−ε/ρ,
similarly as the Korteweg tensor we introduced for capillary fluids (11) when K ∝ 1/ρ. Let
us mention that in QHD, the higher order term divK in the momentum equation is usually
written by using the remarkable identity (shown in the appendix)

div(ρ∇2 ln(ρ)) = 2ρ∇
(
∆
p
ρ

p
ρ

)
.

Recently [46], a global existence result of weak solutions was obtained for the quantum
Navier–Stokes equations, namely (1)-(2) withΣ = −p0I+K+D, K as above and D = νρ (∇u+
(∇u)T ), using a reformulation of the equations in terms of the same effective velocity u+
ν∇ lnρ as in [24]. As regards inviscid quantum equations, local-in-time existence results for
smooth solutions were obtained in the early 2000s [43, 53] on the quantum Euler-Poisson
equations, in which the momentum equation is coupled with a Poisson equation through
the force associated to the electrostatic potential. (The literature on QHD is of course much
wider than the few references given here above.)

Gross–Pitaevskĭı equation A model for Bose–Einstein condensates [63] (which also have to
do with quantum mechanics, and among which we find for instance superfluid Helium-4) is
the Gross–Pitaevskiı̆ equation

i∂tψ + 1
2∆ψ = (|ψ|2 − 1)ψ ,

a particular nonlinear Schrödinger equation (usually referred to as NLS). More generally, we
may consider the NLS

(13) i∂tψ + 1
2∆ψ = g0(|ψ|2)ψ .

A bit of algebra shows that for (smooth enough) complex-valued solutionsψ of this equation,
the vector-valued function (ρ = |ψ|2,u = ∇ϕ), where ϕ denotes the argument of ψ, satisfies
(at least formally) the Euler–Korteweg equations (6) with

K = 1

4ρ
.

Conversely, a solution (ρ,u) of (6) with ρ > 0, K = 1/(4ρ), and u irrotational, yields a solution
ψ of (13) through the Madelung transform

(ρ,u) 7→ψ=p
ρeiϕ ; ∇ϕ = u .

The theory of the Gross–Pitaevskĭı equation is a very active field of research in itself, see e.g.
[2, 14, 15, 16, 17, 18, 39].
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Water waves equations The original Boussinesq11 equation [23]

∂2
t h − g H ∂2

xh − 3
2 g ∂2

x(h2) − g H 3∂4
xh = 0

was derived as a modification of the wave equation in order to describe long water waves of
height h propagating on the surface of a shallow river, of depth H , under the gravity g . Since
then, generalised Boussinesq equations

(14) ∂2
t h + ∂2

xπ(h) + κ∂4
xh = 0

have been considered [20]. We speak of the ‘good Boussinesq’ equation when κ> 0, because
the linear operator ∂2

t + κ∂4
x yields well-posed Cauchy problems in that case. As in [20], one

may consider the associated system

(15)

{
∂t h = ∂xu ,
∂t u + ∂xπ(h) = −κ∂3

xh ,

(If (h,u) is a smooth enough solution of (15) then h is a solution of (14).) Now, it is remarkable
that the Euler–Korteweg equations in one space dimension

(16)

{
∂tρ + ∂x(ρu) = 0,
∂t (ρu) + ∂x(ρu2 +p0(ρ)) = ∂x(ρK ∂2

xρ + 1
2 (ρK ′

ρ − K ) (∂xρ)2) ,

give rise to a generalised version of (15) when reformulated in Lagrangian coordinates. More
precisely, if (ρ,u) is a smooth enough solution12 of (16) with ρ > 0, if we denote by v = 1/ρ
the specific volume of the fluid, and y the mass Lagrangian coordinate, characterised by
dy = ρdx − ρu dt , we find that (see details in the appendix) (v,u) satisfies

(17)

{
∂t v = ∂y u ,
∂t u + ∂y p0 = −∂y (κ∂2

y v + 1
2 κ

′
v (∂y v)2) ,

with κ := ρ5 K . In particular when κ is constant, that is K ∝ ρ−5 (even though it is not clear
what this should mean physically), (17) reduces to (15) with h = v and π(h) = p0(ρ).

Another asymptotic model for water waves is known as the Saint-Venant13 system (at
least by the French; otherwise it is called the shallow water equations), which coincides with
the Euler equations for a quadratic ‘pressure’ (the height of the waves playing the role of
density). When surface tension is taken into account, higher order terms are involved that
are similar to those in the Korteweg tensor, see [24, 25] for more details.

Finally, the complete (incompressible Euler) equations for water waves with surface ten-
sion are also close to the Euler–Korteweg equations, and some of the techniques used in
the recent work by Alazard, Burq and Zuily[1] are to some extent similar to those we shall
describe later on.

11Joseph Valentin Boussinesq [1842–1929]
12For Euler equations, it is known that the two formulations are equivalent also for weak solutions [75], but

for Euler–Korteweg equations we refrain from talking about weak solutions because their meaning is not clear.
13Adhémar Jean-Claude Barré de Saint-Venant [1797–1886] (advisor of Boussinesq)
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1.6 Hamiltonian structures

From now on, we concentrate on the (compressible) Euler–Korteweg equations. Let us more
specifically look at these equations written (for smooth motions) as in (1)(7), which we recall
here for convenience

(18)

{
∂tρ + div(ρu) = 0,
∂t u+u ·∇u = ∇(−g0 + 1

2 K ′
ρ |∇ρ|2 + K ∆ρ) .

A remarkable fact about this system is that it admits a Hamiltonian structure, associated with
the total energy (including kinetic energy)

H :=
∫

H dx , H(ρ,∇ρ,u) := F (ρ,∇ρ) + 1
2 ρ |u|2 = F0(ρ) + 1

2 K (ρ) |∇ρ|2 + 1
2 ρ |u|2 .

The expression of H is formal if the integral is taken on the whole space, because H does not
need being integrable (it may even not tend to zero at infinity). However, we shall see later
on that we can modify H in a suitable manner, at least in one space dimension, to ensure the
integral is well-defined. The variational gradient of the functional H is the vector-valued
function δH (at least formally) defined by

d

dθ
H [ρ+θρ̇,u+θu̇]|θ=0 =

∫
δH [ρ,u] ·

(
ρ̇

u̇

)
dx

for perturbations (ρ̇, u̇) vanishing sufficiently rapidly on the boundary of the domain or at
infinity in the whole space. Equivalently (see for instance [60, p. 244–247]), the components
of δH are EρH , Eu1 H , . . . ,Eud H where the Euler operators are defined by

EρH := ∂H

∂ρ
−

d∑
i=1

Di

(
∂H

∂ρ,i

)
, Eu j H := ∂H

∂u j

(the latter being simpler than the former because H does not depend on the derivatives of
u). Here above (as in the appendix, first paragraph), Di stands for the total derivative with
respect to xi ∈Rd . Therefore, recalling that g0 = (F0)′ρ, we find that

δH [ρ,u] =
( 1

2 |u|2 + g0(ρ) − 1
2 K ′

ρ |∇ρ|2 − K ∆ρ
ρu

)
.

Let us now introduce the differential operator

J :=
(

0 −div
−∇ 0

)
.

It is skew-adjoint on L2(Rd ) (with domain H 1(Rd )). Its skew-symmetry can be seen from the
identity, merely coming from integrations by parts,

∫
(ρ1divu2 + u1 ·∇ρ2)dx = − ∫

(ρ2divu1 +
u2 ·∇ρ1)dx ). Another way is to remark that its symbol

J(ξ) :=
(

0 −i ξT

−i ξ 0

)
10



is skew-symmetric. Then we readily see that (18) is equivalent to

(19) ∂t

(
ρ

u

)
= J δH [ρ,u] ,

provided that (u ·∇)u = ∇( 1
2 |u|2), which is the case in particular (see (61) in the appendix) if

the velocity field u is irrotational (that is, ∂i u j = ∂ j ui for all indices i , j ∈ {1, . . . ,d}).

Remark 1. By Poincaré’s lemma, a vector field is irrotational (or curl-free) in a simply con-
nected domain if and only it is potential, which means that it is the gradient of a potential
function. Of course this is always the case in one space dimension. Observe also that for the
Gross–Pitaevskiı̆ equation (13), the ‘velocity’ field is potential by construction.

System (19) is the prototype of an infinite dimensional hamiltonian system (the infinite
dimensions being due to the fact that J and H act on functions of x). It is associated with
the Poisson bracket {

Q , R
}

:=
∫
δQ ·J δR dx

for functionals Q and R. The skew-symmetry of { , } readily follows from the skew-symmetry
of J . Furthermore, { , } automatically satisfies the Jacobi identity

{Q, {R,S }}+ {R, {S ,Q}}+ {S , {Q,R}} = 0

because J has constant coefficients (see [60, p. 438]).

Remark 2. The Hamiltonian formulation in (19) is in fact not specific to the energy as in (4).
Going back to the definition of the Euler operator Eρ we see that in general

δH [ρ,u] =
( 1

2 |u|2 + g (ρ,∇ρ) − divw
ρu

)
,

and the system (6) is indeed (19) with this expression of δH .

In three space dimensions (d = 3), it turns out that (18) admits another Hamiltonian
formulation associated with the Hamiltonian H , with a constant skew-symmetric operator
J instead of J , for general flows (i.e. without the assumption ∇×u = 0). This is even true
for the more general system (6). We follow here the approach described by Benjamin [7,
§7.2] (also see references to much earlier work therein, in particular the original paper by
Clebsch14[27] and the book by Lamb15[51, §167]). The idea is to make use of the Clebsch
transformation and write the velocity field as

u = ∇ϕ + λ∇µ ,

14Rudolf Friedrich Alfred Clebsch [1833-1872]
15Sir Horace Lamb [1849–1934]
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where ∇ϕ is clearly potential (and thus irrotational), and λ, µ have some degrees of free-
dom we shall not discuss here. Note however that λ∇µ is not solenoidal 16 in general, its
divergence being equal to λ∆µ+∇λ ·∇µ, so this way of decomposing the velocity field is not
directly linked to the Leray–Helmholtz projector onto divergence-free vector fields. Note also
that all the information on the vorticity, defined as the curl of the velocity

ω :=∇×u ,

is then contained in λ and µ:
ω = ∇λ×∇µ .

Let us compute the variational gradient of H when H is viewed as a function of (ρ,∇ρ,Λ,∇ϕ,∇µ)
withΛ := ρλ, that is

H = F (ρ,∇ρ) + 1
2 ρ |∇ϕ + (Λ/ρ)∇µ|2 .

The components of δH are

EρH := ∂H

∂ρ
−

3∑
i=1

Di

(
∂H

∂ρ,i

)
= −λu ·∇µ + 1

2 |u|2 + g (ρ,∇ρ) − divw ,

EΛH := ∂H

∂Λ
= u ·∇µ ,

EϕH := −
3∑

i=1
Di

(
∂H

∂ϕ,i

)
= −div(ρu) ,

EµH := −
3∑

i=1
Di

(
∂H

∂µ,i

)
= −div(Λu) .

Let us consider the Hamiltonian system

(20) ∂t


ρ

Λ

ϕ

µ

 = JδH [ρ,Λ,ϕ,µ] , J :=


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 .

The first row in (20) is nothing but the conservation of mass (1), and the third row reads

∂tϕ − λu ·∇µ + 1
2 |u|2 + g (ρ,∇ρ) − divw = 0,

which can be combined with the fourth row

∂tµ + u ·∇µ = 0

to give

(21) ∂tϕ + λ∂tµ + 1
2 |u|2 + g (ρ,∇ρ) − divw = 0.

16By Poincaré’s lemma, a field is solenoidal, which means divergence-free, in a simply connected domain if
and only if it can be written as the curl of a vector potential.
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Finally, the fourth row
∂tΛ + div(Λu) = 0

combined with the conservation of mass (1) shows that

∂tλ + u ·∇λ = 0,

which means thatλ, likeµ, is transported by the flow. This implies, together with the identity
(see (61) in the appendix)

∇(1
2 |u|2

) = u× (∇×u) + (u ·∇)u ,

that (21) is an integrated version of the velocity equation in (6). More precisely, we can derive
the velocity equation by applying the gradient operator ∇ to (21) and by using that (see (62)
the appendix)

u× (∇λ×∇µ) − (u ·∇µ)∇λ + (u ·∇λ)∇µ = 0.

2 Well-posedness issues for the Euler–Korteweg equations

2.1 Nature of the equations

To discuss well-posedness for classical solutions we can either consider (18) or the conser-
vative form of the Euler–Korteweg equations, which in view of the expression of p in (10)
reads

(22)

{
∂tρ+div(ρu) = 0,

∂t (ρu)+div(ρu⊗u) = ∇
(
−p0 + ρK ∆ρ + 1

2 (K +ρK ′
ρ) |∇ρ|2

)
− div(K ∇ρ⊗∇ρ) ,

with p0 = p0(ρ) and K = K (ρ). Clearly, (18) looks nicer than (22). However, both are third
order systems with no parabolic smoothing effect, even though we expect some smoothing
on the density thanks to the conservation of the total energy

H =
∫

(F0(ρ) + 1
2 K (ρ) |∇ρ|2 + 1

2 ρ |u|2)dx .

This conservation property readily follows from the Hamiltonian structures evidenced in
§1.6. It can also be deduced from the local conservation law for the energy

∂t
(
F0 + 1

2 K |∇ρ|2 + 1
2 ρ |u|2

) +
div

((
F0 + p0 − ρK ∆ρ − 1

2 (K +ρK ′
ρ) |∇ρ|2 + 1

2 ρ |u|2
)

u + K div(ρu)∇ρ
)
= 0,

which is a special case of

∂t
(
F + 1

2 ρ |u|2
) + div

(
(F + 1

2 ρ |u|2)u
) = div(Σu − (ρdivu)w) ,

where Σ = (−p + ρdivw)I − w⊗∇ρ is the stress tensor (as in (3)) and the additional term
− (ρdivu)w has been called interstitial working by Dunn and Serrin [33].
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If one wants to understand the mathematical nature of (18) or (22), the first thing to do
is to examine the linearised equations about constant states (which are obvious solutions).
Linearising (18) about (ρ,u) = (ρ− ,u), we get

(23)


∂t ρ + u ·∇ρ + ρ− divu = 0,

∂t u + (u ·∇ )u + γ∇ρ = K ∇∆ρ ,

where we have used the notations γ = g ′
0(ρ−) and K = K (ρ−) for simplicity. We can write (23)

under the abstract form

(24) ∂t

(
ρ

u

)
= A(∇)

(
ρ

u

)
,

where the symbol of the differential operator A(∇) is

(25) A(iξ) = −
(

i u ·ξ i ρ−ξ
T

i (γ+K |ξ|2)ξ i (u ·ξ)Id

)
,

of which the characteristic polynomial is

(26) χ(τ;ξ) = (τ + i u ·ξ)d−1
(
(τ + i u ·ξ)2 + ρ− |ξ|2 (γ + K |ξ|2 )

)
.

A necessary and sufficient condition for χ(·;ξ) to have only purely imaginary roots τ is

(27) ρ− |ξ|2 (γ + K |ξ|2 ) ≥ 0.

For K = 0 we would be left the usual hyperbolicity condition for the (pure) Euler equations,
namely ρ− γ = p ′

0(ρ−) ≥ 0. This condition means that F0 is convex at ρ− , and if it is the case, the

sound speed is well defined at ρ− by c(ρ−) :=
√

p ′
0(ρ−). If we are to consider fluids for which F0

is not convex, in particular those for which F0 is a double-well potential, there are states ρ−
in between the Maxwell points violating the hyperbolicity condition for the Euler equations
(this is a well-known drawback of the Euler equations when applied to van der Waals fluids
below critical temperature for instance). For K > 0, those states also violate (27) but only for
‘small’ frequencies, that is, for

|ξ|2 <
−γ
K

= −p ′
0(ρ−)

ρ−K
.

This leaves hope that the Cauchy problem be well-posed for the Euler–Korteweg equations
even with initial data containing unstable states, where p ′

0 is negative. As we shall see, this is
far from being trivial though.

Sticking for the moment to the constant-coefficient linearised problem (23) about a strictly
hyperbolic state, that is where p ′

0 > 0, we can convince ourselves that the Cauchy problem is
well-posed in H 1 × L2 by using semi-group theory. Indeed, the operator A(∇) (where A is

14



the matrix-valued symbol defined in (25)) turns out to be skew-adjoint for the inner product
associated with the rescaled norm defined by

‖(ρ,u)‖2 =
∫

(γρ2 + K |∇ρ|2 + ρ− |u|2)dx

on H 1(Rd )×L2(Rd ;Rd ). Therefore, by Stone’s theorem [61, p. 41], A(∇) is the infinitesimal
generator of a semi-group of unitary operators. In the degenerate case when γ= 0 (as though

the fluid were ‘pressureless’), we can in fact solve (24) by hand on the whole space Rd thanks
to Fourier transform. As a consequence, we find a priori estimates in the form of dispersion
inequalities for ρ, ∇ρ, and Qu, where Q denotes the Leray–Helmholtz projector onto curl-
free fields orthogonally to divergence-free fields, defined in Fourier variables by

Q̂u(ξ) = ξ · û(ξ)

|ξ|2 ξ .

Those dispersion inequalities read

‖ρ(t )‖L∞ ≤ C t−d/2 (‖ρ(0)‖L1 + ‖∇−1Qu(0)‖L1

)
,

‖∇ρ(t )‖L∞ ≤ C t−d/2 (‖∇ρ(0‖L1 + ‖Qu(0)‖L1

)
,

‖Qu(t )‖L∞ ≤ C t−d/2 (‖∇ρ(0‖L1 + ‖Qu(0)‖L1

)
,

where C ∝ a−d , a :=√
ρ−K (this notation is chosen on purpose for later use). They mean that

for sufficiently ‘localised’ initial data (namely, (ρ0,Qu0 = ∇ϕ0) with (ρ0,ϕ0) ∈ W 1,1(Rd ;R2)),
the solution (ρ,∇ρ,Qu) decays algebraically to zero in L∞ norm as t goes to infinity: this
is the property usually required from what is called a dispersion inequality in the theory of
dispersive PDEs. As to the divergence-free part of u, if not zero initially it remains bounded
away from zero, since it is only transported by u:

‖(u−Qu)(t )‖L∞ = ‖(u−Qu)(0)‖L∞ .

See [12, § 3.1] for the technical details. These partial dispersive features are linked to the
so-called Kato smoothing effect that will be discussed in § 2.2.4 below.

Dispersion is also (more directly) visible on the characteristic polynomial χ (defined in
(26)), which admits two roots τ = iW (ξ) such that the associated group velocities ∇ξW are
not phase velocities if ρ−K is nonzero. Indeed, for

W (ξ) = −u ·ξ ± |ξ|
√
ρ−(γ+K |ξ|2) ,

∇ξW = −u ±
ρ−(γ+2K |ξ|2)√
ρ−(γ+K |ξ|2)

ξ

|ξ| ,

ξ ·∇ξW − W (ξ) = ± ρ−K√
ρ−(γ+K |ξ|2)

|ξ|3 ,

which is nonzero unless ρ−K = 0 (for Euler equations it is well-known that group velocities
are phase velocities) or ξ= 0.

To be retained from this paragraph is that the Euler–Korteweg equations display both
hyperbolic and dispersive features.
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2.2 Cauchy problem

2.2.1 Extended systems

At present day it is not known how to deal with well-posedness directly on the system (22)
(nor on its nonconservative form (18)). We have to consider an extended one.

As far as smooth solutions are concerned, if (ρ,u) is one of them, by taking the gradient
of the mass conservation law (1) in (22) we can always write the following equation for ∇ρ:

(28) ∂t (∇ρ) + ∇(u ·∇ρ) + ∇(ρdivu) = 0.

When F0 is strictly convex (that is, F ′′
0 > 0), if K > 0 satisfies the further condition K K ′′ ≥

2K ′2, it turns out (see appendix) that the total energy density

H = F0 + 1
2 K |∇ρ|2 + 1

2 ρ |u|2

is a strictly convex function of (ρ,ρu,∇ρ), and that the Euler–Korteweg equations (22) sup-
plemented with the equation (28) for ∇ρ are symmetrizable by means of the Hessian of H .
More precisely, writing (ρ,ρu,∇ρ) as a column vector W, the system (22)(28) can be written
in abstract form as a non-dissipative second order system (using Einstein’s convention on
repeated indices)

(29) ∂t W + Ak (W)∂k W + ∂k

(
Bk,`(W) ∂`W

)
= 0,

where the matrices Ak (W) and Bk,`(W) are such that

S(W)Ak (W) is symmetric for all k ∈ {1, . . . ,d} ,

and for all vectors X1, . . . , Xd in R×Rd ×Rd ,

(30) 〈Xk , S(W) Bk,`(W) X` 〉 = 0,

where S(W) := D2
WH . This was pointed out by Gavrilyuk and Gouin [38], see [12, § 2.1] for

more details. It is (30) that characterizes the lack of dissipativity. Up to our knowledge there
is no general theory of the Cauchy problem for such systems.

In fact, we can deal with the Cauchy problem for (18) with no convexity assumption on
F0. The analysis is based on another extended system, which is actually a reformulation of
(22)(28) in slightly differently variables. We write the velocity equation as in (9), where

a = √
ρK , v =

√
K

ρ
∇ρ ,

and we introduce ζ so that v = ∇ζ. Obviously this amounts to defining (up to a constant)
ζ = R(ρ) where R is a primitive of ρ 7→ √

K (ρ)/ρ, which is well defined away from vacuum
(that is, for ρ > 0) provided that K is continuous (in pratice, we assume K is C∞) and K (ρ) >
0. The equation satisfied by ζ is merely obtained by multiplying the mass conservation law
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(1) by
√

K (ρ)/ρ, and by differentiation in x we obtain an equation for v (equivalently, we can
multiply (28) by

√
K (ρ)/ρ). The resulting extended system reads

(31)


∂tζ + u ·∇ζ + a divu = 0,

∂t u+ (u ·∇)u − ∇( 1
2 |v|2) − ∇(a divv) = −∇g0 ,

∂t v + ∇(u ·v) + ∇(a divu) = 0.

The gradient term ∇g0 has been put into the right-hand side because it can be written - and
will be considered - as a term of order zero. Indeed, viewing g0 as a function of ζ instead of ρ
we have

∇g0 = (g0)′ζv .

Clearly, if (ζ,u,v) is a smooth solution of (31) for which v is curl-free initially (which will be the
case if we take ∇ζ0 as initial condition for v), it remains so for all times (by applying the curl
operator to the third equation we see that ∂t∇×v = 0). So we may manipulate the equation
for v under the compatibility assumption ∂ j vk = ∂k v j . This allows us to write

∇(u ·v) = (u ·∇)v + (∇u)v .

So the final form of the extended system is

(32)


∂tζ + u ·∇ζ + a divu = 0,

∂t u+ (u ·∇)u − ∇( 1
2 |v|2) − ∇(a divv) = q v ,

∂t v + (u ·∇)v + (∇u)v + ∇(a divu) = 0,

with a = a(ζ) and q = q(ζ) := − (g0)′(ζ). Note that in this form it is no longer obvious that
curl-free fields are preserved by the equation on v. Nevertheless, this is true thanks to the
transport equation satisfied by the curl of v (i.e. ∇×v in three space dimensions) along the
fluid flow, which is more safely found by using coordinates. For, the j -th component of the
third equation in (32) is

∂t v j + uk∂k v j + vk∂ j uk + ∂ j (a∂k uk ) = 0,

which implies by differentiation that for any i , j ∈ {1, . . . ,d},

∂t (∂i v j −∂ j vi ) + uk∂k (∂i v j −∂ j vi ) + (∂i uk ) (∂k v j −∂ j vk ) + (∂i vk −∂k vi ) (∂ j uk ) = 0.

So the matrix-valued functionΩ= curlv := (∂i v j −∂ j vi )i , j solves the transport equation

∂tΩ + (u ·∇)Ω + (∇u)Ω +Ω (∇u)T = 0.

Therefore, integrating by parts we have

1

2

d

dt

∫
Rd

|Ω|2 dx − 1

2

∫
Rd

(divu) |Ω|2 dx +
∫
Rd

(∇u)Ω +Ω (∇u)T ) :Ωdx = 0,
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hence
‖Ω(t )‖2

L2 ≤ ‖Ω(0)‖2
L2 e

∫ t
0 (‖divu(s)‖L∞ +4‖∇u(s)‖L∞ )ds

as long as u belongs to L1
t W 1,∞

x . This shows thatΩ remains null if it is so initially.
The advantage of (32) over (31) lies in the observation that for a solution of (31) the

complex-valued field z := u+ i v satisfies a (degenerate) Schrödinger-like equation, namely

(33) ∂t z + (u ·∇)z + i (∇z)v + i ∇(a divz) = q v .

To be more explicit (33) reads, using coordinates,

(34) ∂t z j + uk ∂k z j + i vk ∂ j zk + i ∂ j (a∂k zk ) = q v j , j ∈ {1, . . . ,d} .

Would u, v, a, and q be fixed functions of x, Eq. (34) could be seen, at least in the case d = 1,
as a (generalised) Schrödinger equation. It is to be noted though that the first order terms in
(34) are more ‘complex’ than usual (if one compares with the equations considered in [66] for
instance, the complex-valued coefficient i v in the first order part is nonstandard). In fact, it
is well-known that we can get into trouble with such terms, even with constant coefficients.
As pointed out for instance in [50, ch. 2], the generalised Schrödinger equation

(35) ∂t z + i v ∂x z + i ∂2
x z = 0

does not satisfy the Petrowsky condition if v > 0 (by Fourier transform we find that ẑ(t ,ξ) =
et (vξ+iξ2)ẑ(0,ξ) is exponentially growing in time t ), and thus the Cauchy problem is ill-posed
in all Sobolev spaces.

Furthermore, in several space dimensions (d ≥ 2), the higher order coupling in the sys-
tem (34) is somewhat degenerate. A less degenerate situation would be if we had div(a∇z) in
(33) instead of ∇(adivz).

2.2.2 Main well-posedness result

We are concerned here with the Cauchy problem for (18) in the whole space Rd , from the
point of view of ‘smooth’, classical solutions, and more precisely of solutions whose differ-
ence with a reference one (e.g. a constant but not only) are in Sobolev spaces H s(Rd ) (to be
more correct, velocities are in H s and densities are in H s+1) . The main result, stated below in
detail, contains local-in-time well-posedness for s > d/2+1, together with a blow-up criterion

lim
t↗T∗

‖(∇2ρ,∇u)‖L1(0,t ;L∞(Rd )) = +∞

for maximal solutions defined only on [0,T∗), as though (∇ρ,u) were solution of a symmetriz-
able hyperbolic (first order) system (see for instance [13, 57]).

We assume that (ρ− ,u) is a special, smooth solution of (18) on a fixed time interval [0,T ]
having the following properties

• the density ρ− is bounded away from zero, and we denote by I an open interval such
that

ρ−([0,T ]×Rd ) b I ,
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• both ∇2ρ− and ∇u belong to C ([0,T ]; H s+3(Rd ;Rd×d )) with s > d/2+1.

Constants are obviously admissible, and we shall see in § 3 that travelling waves provide less
trivial examples (with T arbitrarily large).

For simplicity, we introduce the notation

Hs := H s+1(Rd )×H s(Rd ;Rd ) .

Theorem 1 ([10]). Existence and uniqueness For all initial data (ρ0,u0) ∈ (ρ− ,u)(0)+Hs such
that

ρ0([0,T ]×Rd ) b I ,

there exists T ∈ (0,T ] and a unique solution (ρ,u) of (18) on the time interval [0,T ] such
that

(ρ,u) ∈ (ρ− ,u) + C ([0,T ]; Hs)∩C 1([0,T ]; Hs−2) .

Well-posedness There exists a neighbourhood of (ρ0,u0) in (ρ− ,u)(0) + Hs such that the exis-
tence time is uniform for initial data in this neighbourhood, and the solution map

(ρ− ,u)(0) + Hs −→ (ρ− ,u) + C ([0,T ]; Hs)∩C 1([0,T ]; Hs−2)
(ρ0,u0) 7→ (ρ,u)

is continuous.

Blow-up criterion If the maximal time of existence T∗ is finite, then one of the following con-
ditions fails (in the case of a potential flow, one of the first two must fail):∫ T∗

0
(‖∆ρ(t )‖L∞ + ‖curlu(t )‖L∞ + ‖divu(t )‖L∞ dt < +∞ ,(36)

ρ([0,T∗)×Rd ) b I ,(37)

∃α ∈ (0,1) , sup
t∈[0,T∗)

‖ρ(t )‖Cα < +∞ ,(38)

where Cα denotes the Hölder space of index α.

The proof is rather long and technical. It is based on the extended system in (32), and the
main ingredients are the following.

• A priori estimates without loss of derivatives. These are the crucial part and require
a lot of care. At the energy level (i.e. in H0), they are rather easy to obtain thanks to
an L2 estimate for

p
ρz in (33). Note however that a brutal L2 estimate of z (withoutp

ρ in factor) would not work, because of the first order terms in (33). So we already
see that we need use some weighted norms, the ‘weight’ (or gauge function, using the
same term as in [54]) being

p
ρ at the first level. This is also true for the higher order

estimates (in Hs , s > 0), all the more so that, at least for non-constant a, the second
order term in (33) yields bad commutators. The fix lies in the use of two weights, one
(
√
ρ as) for the curl-free part of z, and the other one (more complicated in general but

degenerating to a constant if a is constant) for the divergence-free part of z.
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• Construction of approximate solutions by means of a regularised system. Using the
semi-group associated with the biharmonic operator −ε∆2 and a great deal of a priori
estimates (obtained using the weights introduced for the ε = 0 case), it is possible to
construct (by means of the contraction method) approximate solutions (ρε,uε) on a
time interval independent of ε> 0, which depend Lipschitz-continuously on the initial
data and satisfy the blow-up criterion announced for the ε= 0 case.

• Uniqueness proof and blow-up criterion are obtained by means of a priori estimates
and Gronwall’s inequality. Tricky inequalities involving the homogeneous Besov space
Ḃ 0∞,∞ are used to obtain the sharp criterion in (36) - which may be viewed as the ana-
logue of the celebrated Beale–Kato–Majda criterion [6] for Euler equations. A cruder
and easier to obtain one is

∫ T∗
0 ‖∇z(t )‖L∞ dt < +∞.

• Existence proof is by solving the regularised system for mollified initial data, with a
Friedrichs mollifier parametrised by a suitably chosen fractional power of ε - which
is actually part of the so-called Bona–Smith method [21]. The resulting family of ap-
proximate solutions is then shown to satisfy the Cauchy criterion, and the limit is the
sought, exact solution.

• Continuity of the solution map is shown by using the Bona–Smith method mentioned
above.

In addition, provided that (ρ− ,u)(t ) is defined for all t ≥ 0 and has constant Sobolev and
Hölder norms (e.g. (ρ− ,u) is constant or is a travelling wave), there exists a lower bound for
the maximal time of existence depending continuously on η := ‖(ρ0,u0)− (ρ− ,u)(0)‖Hs , that
bound being at least of the order of− logη for small η. This is a by-product of the lower bound
for the existence time of approximate solutions.

2.2.3 A priori estimates and gauge functions

Let us focus on the first step in the proof of Theorem 1, namely the derivation of a priori
estimates without loss of derivatives by means of suitably chosen weights (gauge functions).
In fact, the key ingredient lies in a priori estimates for a linear version of (33) with arbitrary
right-hand side, namely

(39) ∂t z + (u ·∇)z + i (∇z)v + i ∇(a divz) = f ,

where z is independent of the coefficients u, v, and a. As remarked above about the failure of
the Petrowsky condition for (35), the first order terms, and especially i (∇z)v, forbid a priori
estimates in general. Nevertheless, we can derive a priori estimates under appropriate as-
sumptions, which happen to fit the actual construction of solutions to (32). We start with the
estimates of order 0. Recall that, as a primitive of ρ 7→√

K (ρ)/ρ, R defines a diffeomorphism
from I to another interval of R, and thus a =√

ρK can be seen as a function of ζ= R(ρ).
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Lemma 1. If z ∈ C 1([0,T ];L2(Rd ;Cd ))∩C ([0,T ]; H 2(Rd ;Cd )) satisfies (39) with (u,v, f) such
that

v = ∇ζ , ζ = R ◦ρ , ‖(∂tρ + div(ρu))/ρ‖L∞(Rd×[0,T ]) ≤ C , ρ(Rd × [0,T ]) b I ,

and
p
ρf ∈ L∞([0,T ];L2(Rd ;Cd )) then

‖pρ z(t )‖L2 ≤ eC t‖pρ z(0)‖L2 +
∫ t

0
eC (t−τ)‖pρ f(τ)‖L2 dτ

for all t ∈ [0,T ].

Proof. Multiplying (39) by ρ z̄ j and summing on j we get

d

dt

∫
ρ z j z̄ j =

∫
(∂tρ) z j z̄ j − 2Re

∫
ρ z̄ j (uk ∂k z j + i vk ∂ j zk + i ∂ j (a(ζ)∂k zk )

+2Re
∫
ρ z̄ j f j .

Integrating by parts we find that

2Re
∫
ρ z̄ j uk ∂k z j = −

∫
∂k (ρuk ) z j z̄ j ,

2Re
∫

i ρ z̄ j vk ∂ j zk =
∫

i ρ vk (z̄k ∂ j z j − zk ∂ j z̄ j ) ,

2Re
∫

i ρ z̄ j ∂ j (a(ζ)∂k zk ) = −
∫

i a(ζ) (∂kρ) (z̄k ∂ j z j − zk ∂ j z̄ j )

In the last but one equality here above we have used that ρv is a gradient (as a function of ρ
times ∇ρ, by assumption), hence ∂ j vk = ∂k v j for all indices j , k. In addition, we have

ρ vk = a(ζ)∂kρ ∀k ∈ {1, . . . ,d} .

Therefore there is a cancellation between two integrals, we obtain

d

dt

∫
ρ z j z̄ j =

∫
(∂tρ+∂k (ρuk ) ) z j z̄ j + 2Re

∫
ρ z̄ j f j .

The conclusion follows in a standard way from Cauchy-Schwarz inequality and Gronwall’s
lemma.

For higher order estimates, we are going to make intense use of the Fourier multipliers
Λs in Rd , of symbol λs(ξ) := (1+|ξ|2)s/2. In particular, the H s norms are easily defined by

‖u‖H s (Rd ) = ‖Λsu‖L2(Rd ) .
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ApplyingΛs to (39) we obtain

(40) ∂tΛ
s z j + uk ∂kΛ

s z j + i vk ∂ jΛ
s zk + i ∂ j (a∂kΛ

s zk ) =

Λs f j + [uk∂k ,Λs] z j + i [vk∂ j ,Λs] zk + i [∂ j a∂k ,Λs] zk .

Here above, to simplify the writing, we have denoted a for a◦ζ: this abuse of notation will be
used repeatedly in what follows. The left-hand side in (40) consists of the same operator as
in (39), applied to Λsz instead of z. In the right-hand side, there are several commutators17.
Those involving uk and vk are basically of order s in z (as we learn from pseudodifferential
calculus, the commutator of operators of order s and r is of order s + r −1, see for instance
[3]), which is good because s is less than the order of operators on the left-hand side. But the
last commutator is too demanding (being of order s+1) in general. It is its principal part that
will dictate the appropriate choice of a weight for s > 0. To compute it, we can use symbolic
calculus (see again [3]), and we see that the principal part of [a,Λs] is s (∂m a)Λs−2∂m (with
again Einstein’s convention of summation over repeated indices). Therefore, since the op-
erators Λs , ∂ j and ∂k commute with each other, the main contribution of the commutator
term [∂ j a∂k ,Λs] zk should be contained in

s ∂ j ( (∂m a)Λs−2∂m ∂k zk ) .

This expression is not quite nice in general. Remarkably enough, it simplifies when z is po-
tential, because then Rez and Imz are both curl-free, which implies

Λs−2∇∂k zk = Λs−2∆z

and thus, by writing ∆=−Λ2 +1,

Λs−2∇∂k zk = −Λsz + Λs−2z .

Therefore, in the case of a potential field z, the expected main contribution of [∂ j a∂k ,Λs] zk

is
− s (∂m a)∂ j (Λs zm ) .

Thanks to this observation, the appropriate weight for the H s estimate of a potential z turns
out to be

√
ρas , as stated in the following.

Lemma 2. If z ∈C 1([0,T ]; H s(Rd ;Cd ))∩C ([0,T ]; H s+2(Rd ;Cd )) is such that

∂ j zk = ∂k z j

for all indices j , k ∈ {1, . . . ,d} and satisfies (39) with (u,v, f) such that

v = ∇ζ , ζ = R ◦ρ , ‖(∂tρ + div(ρu))/ρ‖L∞(Rd×[0,T ]) ≤ C , ρ(Rd × [0,T ]) b I ,

17The notation [A,B ] for two operators that can be composed with each other means A ◦B −B ◦ A.
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and
√
ρasΛsf ∈ L∞([0,T ];L2(Rd ;Cd )) then

‖z(t )‖s ≤ eCs t‖z(0)‖s +
∫ t

0
eCs (t−τ)‖ f(τ)‖s dτ

for all t ∈ [0,T ], where ‖ ·‖s stands for the norm defined by

‖z‖s = ‖√
ρasΛsz‖L2 ,

and

Cs = C + ‖(∇2a,∇u,∇v)‖L∞([0,T ];Es ) , Es =
{

H d/2 ∩L∞ if s ≤ d/2+1,
H s−1 if s > d/2+1.

Sketch of proof. Similarly as in the case s = 0, the aim is to estimate

d

dt

∫
ρ as (Λs z j ) (Λs z̄s

j ) .

For this we rewrite (40), as suggested by the observation made above, in the equivalent form

(41) ∂tΛ
s z j +uk∂kΛ

s z j + i vk∂ jΛ
s zk + i ∂ j (a∂kΛ

s zk )+ i s(∂k a)∂ j (Λs zk ) = Λs f j + r s
j ,

the remainder term being given by

r s
j := [uk∂k ,Λs] z j + i [vk∂ j ,Λs] zk + i [∂ j a∂k ,Λs] zk + i s (∂k a)∂ j (Λs zk ) .

A preliminary task would be to estimate r s
j . We skip this (very) technical part here, and refer

the interested reader to [10].
In what follows, we use the simplifying notation

zs
j = Λs z j .

Multiplying (41) by ρ as z̄s
j and summing on j we get, after integration by parts (similar as

those performed in the proof of Lemma 1),

d

dt

∫
ρ as zs

j z̄s
j =

∫
(∂t (ρ as) + ∂k (ρ as uk ) ) zs

j z̄s
j

−
∫

i ρ as vk (z̄s
k ∂ j zs

j − zs
k ∂ j z̄s

j ) +
∫

i a∂k (ρ as) (z̄s
k ∂ j zs

j − zs
k ∂ j z̄s

j )

−
∫

i sρ as (∂k a) (z̄s
j ∂ j zs

k − zs
j ∂ j z̄s

k ) + 2Re
∫
ρ z̄ j ( f s

j + r s
j ) .

Using once more that ρ vk = a∂kρ, and integrating by parts in the penultimate integral, we
see that three middle integrals cancel out, hence

d

dt

∫
ρ as zs

j z̄s
j =

∫
(∂t (ρ as) + ∂k (ρ as uk ) ) zs

j z̄s
j + 2Re

∫
ρ z̄ j ( f s

j + r s
j ) .

The conclusion follows from the estimate of the remainder r s
j (which has been omitted here),

Cauchy-Schwarz’ inequality and Gronwall’s lemma.
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For nonpotential fields z, the derivation of a priori estimates without loss of derivatives
is even trickier, and in general necessitates different weights for the potential part Qz and
for the divergence-free part Pz := z − Qz of z. More precisely, it turns out that it is possible
to estimate ‖Q(

√
ρasΛsz)‖L2 (similarly as above), as well as ‖P(

p
AsΛsz)‖L2 , where As is a

primitive of

ρ 7→ a(ρ)s − ρ
d

dρ
a(ρ)s .

Note that in the special case a ≡constant (which means K ∝ 1/ρ), both weights can be taken
equal to

p
ρ, the weight of estimates of order 0. To get final H s estimates, we then invoke the

following equivalence inequalities

‖Q(
√
ρasΛsz)‖2

L2 +‖P(
p

AsΛsz)‖2
L2 . ‖z‖2

H s ,

‖z‖2
H s . ‖Q(

√
ρasΛsz)‖2

L2 +‖P(
p

AsΛsz)‖2
L2 + ‖∇ρ‖2

C−α ‖z‖2
H s−1+α ,

for α ∈ [0,1). To complete this (very) sketchy description, the reader is referred to [10].

2.2.4 Kato smoothing effect

After the work of Kato [47] on the Korteweg–de Vries equation, we usually call Kato smoothing
effect for an evolution PDE

∂t u = P (∇)u ,

the property that for any cut-off function

χ(t ,x) =χ0(t )χ1(x1) . . .χd (xd ) , χ j ∈C∞
0 (R) ,

there exists C > 0 so that the solutions u(t ) = etP (∇)u0 satisfy the space-time estimates

‖χΛs+εu‖L2(Rd+1) ≤ C ‖u0‖H s (Rd )

for some ε > 0 independent of s ∈ R (in general ε depends only on the order of P ), where
Λs+ε operates in the space Rd only. Recall that for all s > 0, Λs plays the role of a (fractional)
‘differentiation’ operator of order s, and that

‖v‖H s (Rd ) = ‖Λs v‖L2(Rd )

(even for nonpositive s). Thus the Kato smoothing effect as described above means a (local)
gain of ε derivatives. It was proved by Constantin and Saut [28] to hold true for a rather large
class of dispersive PDEs, namely for operators P of symbol P (iξ) ∈ iR such that i P (iξ) ∼ |ξ|m
for |ξ| À 1, with ε = (m − 1)/2 (if m > 1). Since then, there have been important efforts to
derive micro-local smoothing effects for variable-coefficient operators, see in particular the
seminal work by [29]. As far as the Euler–Korteweg equations are concerned, smoothing ef-
fects are not well understood yet (even though recent results on the water wave equations
with surface tension [1] give promising insight). However, it is possible to show a partial
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smoothing effect for the linearised system about constant states. More precisely, let us con-
sider the extended version of (23),

(42)


∂tζ + u ·∇ζ + a divu = 0,

∂t u+ (u ·∇)u − ∇(a divv) = q− v ,

∂t v + (u ·∇)v + ∇(a divu) = 0,

which must be satisfied by ζ := R ′(ρ−)ρ, u, and v := ∇ζ for (ρ,u) to be solution to (23). (Al-
ternatively, (42) may be viewed as the linearisation of (32) about ζ := R(ρ−), v = 0.) Up to the
change of Galilean frame x 7→ x−ut , we may assume without loss of generality that u = 0.
Then we are left with the degenerate Schrödinger system

(43)

 ∂t u − ∇(a divv) = q− v ,

∂t v + ∇(a divu) = 0,

which turns out to have a smoothing effect on potential parts of (u,v).

Theorem 2 (Audiard[5]). Assuming that a > 0, if u0, v0 ∈ H s(Rd ) are curl-free, then for any
cut-off function

χ(t ,x) =χ0(t )χ1(x1) . . .χd (xd ) , χ j ∈C∞
0 (R) ,

there exists C > 0 so that the solution (u,v) of (43) satisfies the space-time estimates

‖χΛs+1/2 (u,v)‖L2(Rd+1) ≤ C ‖(u0,v0)‖H s (Rd ) .

2.3 Initial-boundary value problem

Physically, flows hardly ever occur in the whole space. Moreover, if applied scientists want
to make numerical simulations, they also need boundaries even for the Cauchy problem,
just because computers can only handle a finite number of data. We then speak of artificial
boundaries . This makes at least two reasons for investigating not only the Cauchy problem
inRd but also mixed problems, involving both initial data (at t = 0) and boundary data, on the
boundary of the spatial domain in which the fluid flows. This boundary can be ‘physical’ (a
solid one like a wall, or an immaterial one like the entrance/exit of a tube), in which case we
are interested in physically achievable boundary data (thermodynamical ones like pressure
or temperature for instance, or fluid flow, etc.). If it is artificial (for numerical purposes) then
the important topic is to find appropriate boundary conditions that do not alter too much
the expected solution on the whole space. We speak of transparent boundary conditions if
they do not affect at all the solution, and of absorbing boundary conditions if they affect it
moderately (i.e. with few, or small, reflected waves inside the domain). In fact, the two situa-
tions can be mixed together, as is well-known in the theory of hyperbolic PDEs: for example
in the case of Euler equations, depending on the nature of the flow, we cannot prescribe all
the unknowns at the entrance or exit of a tube, otherwise the initial-boundary value problem
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would be ill-posed from a mathematical point of view; but for numerical experiments we do
need a full set of data on the boundary, and the extra data they had better be as transparent
as possible.

For hyperbolic PDEs, initial-boundary value problems are tough but already rather well
understood (see [13] and references therein). For dispersive PDEs, the mathematical analysis
of initial-boundary value problems is in its infancy, see for instance the articles [19, 34], and
the books [36, 41], also see [4] for the more focused topic of artificial boundary conditions
for the Schrödinger equation.

Regarding the Euler–Korteweg equations, we can first investigate the mixed problem for
the linearised system (23), which we recall here for convenience ∂t ρ + u ·∇ρ + ρ− divu = 0,

∂t u + (u ·∇ )u + γ∇ρ = K ∇∆ρ ,

on a half-space {x ∈ Rd ; xd > 0}. Following the usual method for initial-boundary value
problems we may take the Fourier–Laplace transform of this system, and more precisely its
Laplace transform in t and its Fourier transform in directions x1, . . . , xd−1. This yields the
ODE system for the Fourier–Laplace transforms of ρ, ǔ := (u1, . . . ,ud−1)T , u := ud , to which
we do not put hats for readability,

τρ + i (u ·η)ρ + u∂dρ + i ρ− η ·u + ρ− ∂d u = ρ0 ,

τ ǔ + i (u ·η) ǔ + u∂d ǔ + i γρ η̌ + i K (|η|2ρ − ∂2
dρ) η̌ = ǔ0 ,

τu + i (u ·η)u + u∂d u + γ∂dρ + K (|η|2∂dρ − ∂3
dρ) = u0 ,

where τ ∈C (of real part bounded by below) denotes the dual variable to t , η̌= (η1, . . . ,ηd−1)T ∈
Rd−1 is the dual variable to y := (x1, . . . , xd−1), and η= (η1, . . . ,ηd−1,0)T ∈Rd (so that we actu-
ally have |η|2 = |η̌|2, u ·η = ǔ · η̌, and similarly with the underlined, reference velocities). In
the system here above, ρ0, ǔ0,u0 stand for the initial values of ρ, ǔ,u in the space variables
(i.e. before Fourier transformation), whereas in the left-hand side, ρ, ǔ,u, are in the Fourier–
Laplace variables (recall that for readability we have refrained from putting hats). By change
of Galilean frame (y 7→ y−ǔ t ) or, equivalently, by changing τ into τ+i (u·η) - which obviously
does not change its real part -, we can assume that ǔ = 0. This simplifies a little bit the above
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system, which can be rewritten as the following first order system

B∂d U = A(τ,η)U + f ,(44)

B =


1 0 0 0 0
0 1 0 0 0
0 0 K 0 −u
0 0 0 uId1 0
0 0 0 0 ρ−

 , U =


ρ

∂dρ

∂2
dρ

i ǔ
u

 ,(45)

A =


0 1 0 0 0
0 0 1 0 0
0 0 (γ+K |η|2) 0 τ

(γ+K |η|2)η̌ 0 −K η̌ −τId1 0

−τ −u 0 −ρ−η̌T 0

 , f =


0
0

−ρ0

i ǔ0

u0

 .(46)

The boundary {xd = 0} is non-characteristic for (44) provided that B be invertible, which is
equivalent to ρ− K u 6= 0. From now on we assume this holds true, and more precisely that
ρ− > 0 (the reference state is away from vacuum), K > 0 (there is capillarity), u 6= 0 (in the
reference state, the fluid is moving transversally to the boundary). Then the characteristic
polynomial of B−1A(τ,η) is, unsurprisingly,

(47) π(ω;τ,η) = χ(τ; η̌,−iω) = (τ + uω)d−1
(
(τ + uω)2 + ρ− (|η|2 −ω2) (γ + K (|η|2 −ω2) )

)
,

where χ is the polynomial defined in (26) (in which |ξ|2 is really polynomial and equals
∑

j ξ
2
j ,

with no moduli when extended to complex components, hence the expression here above of
χ(τ;ξ) for ξ= (η1, . . . ,ηd−1,−iω)T ).

Proposition 1. We assume here that γ is nonnegative (which means that the reference density

ρ− is a thermodynamically weakly stable state). Then for all (τ,η) ∈ C×Rd−1 with Reτ > 0,
the matrix B−1A(τ,η) is hyperbolic, i.e. has no purely imaginary eigenvalue, and its stable
subspace Es(τ,η) is such that

Inflow case dimEs(τ,η) = d +1 if u > 0,

Outflow case dimEs(τ,η) = 2 if u < 0.

Proof. Obviously, the roots of π(·;τ,η) are

• if d ≥ 2, ω0 =−τ/u, which contributes to the stable subspace if and only if u > 0 (recall
that we have assumed u 6= 0),

• and the roots of the fourth order polynomial

π̃(ω;τ,η) = (τ + uω)2 + ρ− (|η|2 −ω2) (γ + K (|η|2 −ω2) ) ,

which has no purely imaginary root unless τ itself is purely imaginary (recall that we
have assumed ρ− K > 0, and γ ≥ 0). By a continuity/connectedness argument we can
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then count the number of roots of negative real parts by considering the special case
η = 0, |τ| À 1, for which we have asymptotically ω4 ∼ −τ2/(ρ−K ). Thus we find two of
them of positive real parts and two of negative real parts. This count is of course with
multiplicity.

Furthermore, the corresponding eigenvectors are of the form

U0(τ,η;v) =


0
0
0
τv

u η̌ ·v


with v ∈Rd−1, which clearly span an eigenspace of dimension d −1 for ω0, and

U(ω;τ,η) =



ρ−
ρ−ω
ρ−ω

2

τ+uω

ω2 −|η|2 η̌

− τ+uω

ω2 −|η|2 ω


for the roots of π̃(·;τ,η), at least when ω2 6= |η|2. When ω2 −|η|2 goes to zero with π̃(ω;τ,η) =
0, necessarily τ+uω goes to zero too - which means that ω goes to ω0 -, and we see that

(τ+uω)2

ω2 −|η|2 → ρ− γ ,

therefore

Ũ(ω;τ,η) := (τ+uω)U(ω;τ,η) →



0
0
0

ρ− γ η̌

ρ− γ
τ
u

 ,

which coincides with U0(τ,η;v) for v = ρ−γη̌/τ. Away from those points where ω and ω0

collide, the vectors U(ω;τ,η) are clearly independent of U0(τ,η;v). In addition, if ω1 and
ω2 are two distinct roots of π̃(·;τ,η), then by definition, U(ω1;τ,η) and U(ω2;τ,η) are also
independent. Therefore, the dimension of the stable subspace of B−1A(τ,η) only depends
on the sign of Reω0. It equals 2 if Reω0 > 0, and d −1+2 = d +1 if Reω0 < 0.

As a consequence of Proposition 1, we have the following.
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Corollary 1. For a boundary value associated with (44) to be well-posed, the number of pre-
scribed boundary conditions must equal either d +1 if u > 0, or 2 if u < 0, and there cannot
be nontrivial elements of dimEs(τ,η) meeting those conditions, or more precisely, being in the
kernel of the (linear or linearised) boundary operator.

If we compare with the usual Euler equations (which correspond to K = 0), this makes
one more condition for supersonic outflows, two more for subsonic outflows, one more for
subsonic inflows, and the same number for supersonic inflows (see for instance [13, pp. 411-
412]).

We can easily find examples of boundary operators satisfying the necessary conditions
given in Corollary 1. In particular, we can take either the Dirichlet or the Neumann operator
on (ρ,u) for inflows, and on (ρ,u) for outflows.

To obtain sufficient conditions is much more delicate. We must pay attention to a pri-
ori estimates. This is where the notion of (generalised) Kreiss symmetrizer can come into
play. However, many difficulties occur, in particular because of the non-homogeneity of the
equations, contrary to those in hyperbolic BVPs like for the Euler equations, conjugated with
very limited smoothing properties, contrary to what happens for hyperbolic-parabolic BVPs
dealt with by Métivier and Zumbrun [59]. We refer to the doctoral thesis of C. Audiard for
more details [5].

3 Traveling wave solutions to the Euler–Korteweg system

3.1 Profile equations

A traveling wave is characterized by a permanent profile propagating at a constant speed
in some direction. We shall in fact concentrate on planar traveling waves , whose profiles
depend on a single variable, and are governed by systems of ODEs in that variable.Among
them, we find in particular homoclinic profiles, heteroclinic profiles, and periodic profiles.
Homoclinic traveling waves are usually called solitary waves, or even solitons to account for
their remarkable stability, which makes them viewed as almost material things like elemen-
tary particles (hence the suffix ‘ton’). They occur in a variety of physical frameworks, the
most famous being the water wave described by Russel18 in 1844. His description is repro-
duced in many papers and textbooks on solitary waves, and was the motivation for the work
by Boussinesq [23], and later on by Korteweg and de Vries19 [48], who derived model equa-
tions nowadays bearing their names for the propagation of solitary water waves. We have
already met the Boussinesq equation in these notes, which can be viewed as a special case of
the Euler-Korteweg equations expressed in Lagrangian coordinates. The Korteweg–de Vries
is another celebrated dispersive PDE known to admit solitons together with a Hamiltonian
structure (in fact, an infinity of Hamiltonian structures, but we shall not enter into these
algebraic features here, we refer for instance to [60]).

18John Scott Russel [1808–1882]
19Gustav de Vries [1866–1934]

29



Let us derive the profile equations for the Euler–Korteweg equations in (18). Consider
a fixed direction n ∈ Sd−1 (the unit sphere of Rd ), a speed σ ∈ R, and assume that (ρ,u) =
(ρ,u)(x ·n−σt ) is a (smooth) solution of{

∂tρ + div(ρu) = 0,
∂t u+u ·∇u = ∇(−g0 + 1

2 K ′
ρ |∇ρ|2 + K ∆ρ) .

The first equation implies that j := ρ (u·n−σ) is a constant, i.e. is independent of ξ= x·n−σt .
The quantity j is well-known in compressible fluid dynamics, and corresponds to the mass
flux across the wave. It will be a parameter in the profile equations. From the remaining
equations in (18), we see that

(u ·n − σ)
du

dξ
= d

dξ

(
−g0 + 1

2 K ′
ρ

(
dρ

dξ

)2

+ K
d2ρ

dξ2

)
n ,

or equivalently
j

ρ

du

dξ
= d

dξ

(
−g0 + 1

2 K ′
ρ

(
dρ

dξ

)2

+ K
d2ρ

dξ2

)
n .

If j = 0 (no mass transfer across the wave), this readily implies an ODE for ρ,

K (ρ)
d2ρ

dξ2
+ 1

2
K ′(ρ)

(
dρ

dξ

)2

= g0(ρ) − µ ,

where µ is a constant. If j 6= 0, the equation above implies that u is constant in all directions
orthogonal to n. Then by change of Galilean frame we can always assume that u is zero in
all directions orthogonal to n. Now, denoting by u = u ·n the normal velocity of the fluid, we
have

u = j

ρ
+ σ , and

j

ρ

du

dξ
= d

dξ

(
−g0 + 1

2 K ′
ρ

(
dρ

dξ

)2

+ K
d2ρ

dξ2

)
,

which imply that

(48) K (ρ)
d2ρ

dξ2
+ 1

2
K ′(ρ)

(
dρ

dξ

)2

= g0(ρ) + j 2

2ρ2
− µ ,

where again µ is a constant. Observe that the ODE obtained above for j = 0 is just a special
case of this one. It turns out that the phase portrait of equation (48) does not depend on K .
Indeed, we can equivalently write (48) as the system

(49)


dρ

dξ
= 1p

K (ρ)
ψ ,

dψ

dξ
= 1p

K (ρ)
(g0(ρ) + j 2

2ρ2 − µ) ,

of which the phase portrait is the one of the vector field

ψ
∂

∂ρ
+

(
g0(ρ) + j 2

2ρ2
− µ

)
∂

∂ψ
.
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Figure 1: Double-well potentials and associated phase portraits: supersaturated (µ > µ0,
left), saturated (µ=µ0, center), subsaturated (µ<µ0, right).

Furthermore, recalling that g0 is the derivative of F0, we see that a first integral of (49) is

1

2
ψ2 − F0(ρ) +µρ + j 2

2ρ
,

so that the phase portrait of (48) can easily be obtained from the plotting of the function

ρ 7→ F0(ρ) −µρ − j 2

2ρ , see examples on Fig. 3.1 in the case j = 0. We can see orbits cor-
responding to each kind of wave mentioned at the beginning, namely homoclinic, hetero-
clinic, and periodic ones. In particular, the heteroclinic waves are prototypes of propagating
phase boundaries, the endpoints being in different phases (on Fig. 3.1, ρ− and ρ+ are exactly
the Maxwell points, and µ0 is the slope of the bitangent of F0 at those points). The phys-
ical interpretation of solitary and periodic waves is less clear, as far as capillary fluids are
concerned. (Nevertheless, for related models such as the Gross–Pitaevskĭı equation or the
Boussinesq equation, solitary waves are of special interest.) A theoretical classification of
solitary waves for van der Waals-like fluids has been given in [11] using Lagrangian coordi-
nates, in which it is slightly easier to take into account the fourth fixed point occurring when
j 6= 0 (on Fig. 3.1 there are only three fixed points because j = 0).

Eulerian vs Lagrangian coordinates. Even though this may not seem obvious at first glance,
there is indeed a one-to-one correspondance between travelling waves in Eulerian coordi-
nates and travelling waves in Lagrangian coordinates (for which ρ and v = 1/ρ are both
bounded). More precisely, to each wave with mass transfer flux j in Eulerian coordinates
corresponds a wave with “speed” − j in Lagrangian coordinates, see [11, p.386-387] for more
details.

Anyhow, the existence of travelling waves follows from the phase portrait analysis of (49),
which is easy since we have a first integral at hand. In fact, it is a general property that
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the governing ODEs for travelling profiles associated with Hamiltonian PDEs are themselves
Hamiltonian: this was pointed out by Benjamin [7], see Proposition 4 in appendix for more
details.

Abstract form of profile equations. From the computations made above, if a planar trav-
elling wave (ρ,u) of speed σ in the direction n is solution to the multi-dimensional Euler–
Korteweg equations then (ρ,u = u ·n) is a travelling wave solution to the one-dimensional
Euler–Korteweg equations

(50)

{
∂tρ + ∂x(ρu) = 0,
∂t u +u∂xu = ∂x(−g0 + 1

2 K ′
ρ (∂xρ)2 + K ∂2

xρ) ,

where x stands for x ·n. System (50) admits as a Hamiltonian structure, which is nothing but
the one-dimensional version of the one in (19), namely

(51) ∂t

(
ρ

u

)
= J δH [ρ,u] ,

with

J := −Dx

(
0 1
1 0

)
, H :=

∫
R

H dx , H(ρ,∂xρ,u) := F0(ρ) + 1
2 K (ρ) (∂xρ)2 + 1

2 ρu2 .

So another way to write the profile equations is

∂ξ

((
0 1
1 0

)
δH [ρ,u] − σ

(
ρ

u

))
=

(
0
0

)
,

with x replaced by ξ= x −σt in δH [ρ,u], or equivalently,

∂ξ

(
δH [ρ,u] − σ

(
u
ρ

))
=

(
0
0

)
.

Noting that (u,ρ)T = δI [ρ,u] with I := ∫
R(ρu)dx (formally20), the profile equations amount

to

(52) δH [ρ,u] − σδI [ρ,u] = constant.

The functional I is what has been called an impulse by Benjamin [7]. The fact that it is a
conserved quantity of the underlying PDEs (which can readily be seen here from the local
conservation law in (22)) is linked to their translation invariance. This can be seen in the
following, both elementary and abstract way. For simplicity we shall use the notation U =
(ρ,u). By definition of variational gradients we have

d

dt
I [U] =

∫
R
δI [U] ·∂t Udx

20We shall make H and I well defined, with convergent integrals, later on.
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Now, since δI [U] = JU where the matrix

J :=
(

0 1
1 0

)
is symmetric and such that J2 = I, if ∂t U =J δH [U] = −Dx JδH [U] then

d

dt
I [U] = −

∫
R

U ·DxδH [U]dx ,

which implies
d

dt
I [U] =

∫
R
δH [U] ·∂x Udx

after an integration by parts. Here comes into play the translation invariance. Indeed, (pro-
vided that we make rigourous the definition of H ) for all s ∈ R, H [U] = H [Us], where
Us : (x, t ) 7→ U(x + s, t ), so that by differentiation with respect to s at s = 0 we find∫

R
δH [U] ·∂x Udx = 0.

The abstract form (52) of the profile equations will be useful in their subsequent stability
analysis (by means of adapted versions of classical methods for Hamiltonian PDEs). Another
useful, more explicit remark is that the endpoints of either heteroclinic or homoclinic waves
correspond to saddle fixed points. In particular, saddles points of (49) are characterized as
follows. A pair (ρ∞,0) is a saddle point for (49) if and only if the Jacobian matrix of the vector
field

ψ
∂

∂ρ
+

(
g0(ρ) + j 2

2ρ2
− µ

)
∂

∂ψ

has real eigenvalues of opposite signs, which is clearly equivalent to

det

(
0 1

g ′
0(ρ∞) − j 2

ρ∞

)
< 0,

or, recalling that j = ρ∞(u∞−σ),

p ′
0(ρ∞) = ρ∞ g ′

0(ρ∞) > (u∞ − σ)2 .

In other words, saddles correspond to thermodynamically stable (p ′
0(ρ∞) > 0), subsonic states

(the relative speed of the fluid with respect to the wave is lower than the sound speed c(ρ∞) :=√
p ′

0(ρ∞)). This observation will be used in particular to localise essential spectra (a notion

that will be recalled in due time). As a consequence of the hyperbolicity21 of the endpoints,
we also have that the limits limx→±∞(ρ− ,u)(x) are attained exponentially fast.

21Recall that a fixed point of a system of ODEs, or equivalently of a vector field, is hyperbolic if the Jacobian
matrix of this field has no purely imaginary spectrum. Saddle points are particular types of hyperbolic fixed
points.
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3.2 Stability issues

The stability of travelling waves in large time is crucial to know whether they have any chance
to be observed experimentally. By stability we actually mean orbital stability, in say Sobolev
spaces on Rd . Indeed, both the equations and the Sobolev norms being invariant by spa-
tial translations, we cannot expect asymptotic stability (which would mean that solutions
starting close enough to a travelling profile tend to this very profile when time goes to in-
finity) but only that the solutions asymptotically approach the set of translates of travelling
profiles. This is what happens for instance to stable viscous travelling waves (of reaction-
diffusion equations or of second order conservation laws). In the absence of dissipation, we
can only prove a weaker stability, namely that solutions starting close enough to a travelling
profile remain arbitrarily close to the set of translated profiles. In our framework, this is what
we shall call orbital stability.

As we shall see, there are several ways to tackle stability. The most efficient, when appli-
cable, is the Lyapunov method: the energy functional H conserved by our equations being
a good candidate for a Lyapunov function22, the main difficulty is then to identify profiles
that are local minimizers, up to translations23, of that functional. This is hopeless, however,
in several space dimensions because planar travelling waves do not fit the nice, variational
interpretation (as critical points of H under constraints) they have in one dimension, and
the functionals H , I are not even well defined along those travelling waves (the integrals
diverge in transverse directions).

In one space dimension, the variational approach does work.

• For heteroclinic profiles, it was successfully applied in [11], see §3.3 below for more
details; the stability result obtained there is not complete though, because the energy
does not control enough derivatives to ensure global existence in general (by contrast,
global existence - and thus genuine orbital stability - was obtained for the Boussinesq
solitary waves in [20], using the fact that the principart of the Boussinesq equation has
constant coefficients).

• For homoclinic profiles, by (slightly) adapting the method of Grillakis, Shatah and
Strauss [42] to nonzero endstates, we can characterize orbital stability by means of
the so-called moment of instability of Boussinesq [11, 78, 9], see §3.4 below.

An alternative, and often complementary approach is to investigate the spectral stabil-
ity of waves, which means that the linearised equations about the waves (in Galilean frames
attached to them) do not admit exponentially growing modes. Sometimes spectral stabil-
ity can be achieved by means of a priori estimates. This is the case, together with Sturm–
Liouville arguments, for the heteroclinic, monotone profiles of the Euler–Korteweg equa-
tions [8] (see § 3.3). Another useful tool, introduced for solitary waves by Pego and Wein-
stein [62], is the so-called Evans function. This is basically a Wronskian D = D(τ;η) for the

22By definition, a Lyapunov function for a given dynamical system is monotone along its orbits. It can be used
to prove stability of states that are local minimisers of that function. When in addition it is strictly monotone,
it yields asymptotic stability.

23We shall make this statement more precise below.
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eigenvalue ODEs, obtained by Fourier–Laplace transformation of the linearised equations
(Fourier transform in the transverse variables y ⊥ n, and Laplace transform in time, the dual
variable τ then being a candidate for an unstable eigenvalue). For one dimensional Hamil-
tonian PDEs, it has been pointed out in several frameworks that the low-frequency (τ→ 0)
behavior of Evans functions D = D(τ) associated with solitary waves is linked to the moment
of instability of Boussinesq [9, 26, 62, 78].

Evans functions are especially useful to prove spectral instability. In one space dimen-
sion, this is usually done by using the mean value theorem (if the real valued Evans function
D(τ) is negative near zero and positive at infinity then it must vanish somewhere). Further-
more, as was shown by Zumbrun and Serre [77] for viscous travelling waves, a Rouché-type
argument can also serve to prove instability in several space dimensions (when one has one-
dimensional stability). This is how the spectral instability to transverse perturbations of soli-
tary wave solutions to the Euler–Korteweg equations has been shown in [9] (see § 3.4).

A different way of deriving spectral instability was pointed by Rousset and Tzvetkov [70]
for rather general Hamiltonian PDEs, which happen to include the Euler–Korteweg equa-
tions. Besides, these authors have also done a series of work showing that spectral instability
to transverse perturbations implies nonlinear instability [68, 69] for dispersive/Hamiltonian
PDEs.

Before stating more detailed results, let us summarise what is known concerning planar
travelling waves for the Euler–Korteweg equations.

Propagating phase boundaries (heteroclinic, monotone profiles). In several space dimen-
sions, propagating phase boundaries are spectrally (neutrally) stable [8]. In one space
dimension, they are orbitally stable (in finite time).

Solitary waves (homoclinic profiles, one bump). In one space dimension, there are stable
ones and unstable ones (depending on their speed σ, on the mass transfer j , and on
the constant µ). Stable ones are destabilised in several space dimensions by transverse
perturbations (of intermediate to large wavelength).

Periodic waves They are unstable in one space dimension.

For later use, let us write the linearised equations. In a Galilean frame attached to a wave
of speed σ in the direction n, the Euler–Korteweg equations (22) read

(53)

{
∂tρ + div(ρ (u−σn)) = 0,
∂t u+ (u−σn) ·∇u = ∇(−g0 + 1

2 K ′
ρ |∇ρ|2 + K ∆ρ) ,

of which the wave is a stationary solution depending only on x = x ·n = xd if we assume,
without loss of generality, that n is the d-th basis vector in Rd . From now on, we denote by
(ρ− ,u) = (ρ− ,u)(x) a profile of this wave. Since ǔ is constant (at least for dynamical waves, as
we have seen above), we may also assume (by a further Galilean change of frame in trans-
verse directions) that ǔ equals zero24. Then, linearising about (ρ− ,u) we get an evolution

24The symbol ˇ has the same meaning as in §2.3: its stands for the projection onto Rd−1 'Rd−1 × {0} in Rd .
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system ∂t U = LσU with

(54) U =
 ρ

ǔ
u

 , LσU := −


∇̌ · (ρ− ǔ) + ∂x(ρ− u + ρ (u −σ))

(u −σ)∂x ǔ + ∇̌(αρ − K ′∂xρ − K ∆ρ )

∂x( (u −σ)u + αρ − K ′∂xρ − K ∆ρ )

 ,

where

K = K (ρ−) , K ′ := K ′(ρ−) , α := g ′
0(ρ−) − K ′(ρ−)∂2

xρ − 1

2
K ′′(ρ−) (∂xρ−)2 .

In one space dimension, the definitions above reduce to

(55) U =
(
ρ

u

)
, LσU := −

(
∂x(ρ− u + ρ (u −σ))

∂x( (u −σ)u + αρ − K ′∂xρ − K ∂2
xρ )

)
.

Remarkably enough, we have in this case

(56) Lσ = J (HessH − σHessI )[ρ− ,u] ,

where J , H , and I are respectively the differential operator and the functionals consid-
ered on p. 32, and the Hessians of these functionals are the differential operators defined (at
least formally) by the general formula

d2

dθ2
H [ρ− +θρ,u +θu]|θ=0 =

∫ (
ρ

u

)
·Hess[ρ− ,u]

(
ρ

u

)
dx ,

which gives that

HessH [ρ− ,u] =
(

M u
u ρ−

)
, M := −∂xK∂x + α , HessI [ρ− ,u] =

(
0 1
1 0

)
.

The expression of the linearised operator Lσ in (56) is of course not a coincidence, since the
abstract, Hamiltonian form of the equations in (51) (on p. 32 again) becomes

∂t

(
ρ

u

)
= J (δH − σδI )[ρ,u] ,

after change of Galilean frame, and thus, by linearisation about (ρ− ,u),

∂t

(
ρ

u

)
= J (HessH − σHessI )[ρ,u]

(
ρ

u

)
,

since J has constant coefficients. Now, we can state crucial facts about the differential
operator

L σ := (HessH − σHessI )[ρ− ,u] =
(

M u −σ
u −σ ρ−

)
.

Lemma 3. Let (ρ− ,u) be a saddle-saddle connecting profile (thus with subsonic endstates).
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• If ρ− is monotone (that is, for a heteroclinic connection), then L σ is a monotone opera-
tor, which means that

〈U,L σU〉 ≥ 0

for all U = (ρ,u)T ∈ H 1 ×L2 and more precisely there exists c > 0 so that

〈U,L σU〉 ≥ c (‖ρ‖2
H 1 + ‖u‖2

L2 )

for all U = (ρ,u)T ∈ H 1 ×L2 such that
∫
Rρ∂xρ− dx = 0.

• If ρ− is nonmonotone, and more precisely if ∂xρ− vanishes exactly once, then there exists
U = (ρ,u)T ∈ H 1 ×L2 such that 〈U,L σU〉 < 0 with ρ > 0 and j u < 0 everywhere (recall
that j = ρ−(u −σ)).

Sketch of proof. By direct computation we have

〈U,L σU〉 = 〈ρ,M σρ〉L2 + (1/ρ−)‖ρ−u + ρ(u −σ)‖2
L2 ,

with
M σ := M − (u −σ)2/ρ− .

The operator M σ is (like M ) a Sturm–Liouville operator (that is, a formally self-adjoint, sec-
ond order, differential operator). The subsonicity of the endstates limx→±∞ρ−(x) implies that
the constant-coefficient operators obtained in the limits, and thus also M σ, have positive es-
sential spectrum.25 Furthermore, ∂xρ− is in the kernel of M σ. This can be seen on the abstract
form of the profile equation in (52). Differentiating with respect to x we find indeed that

L σ

(
∂xρ−
∂xu

)
=

(
0
0

)
,

of which the first row implies M σ∂xρ− = 0 by elimination of ∂xu thanks to the second row. By
the classical Sturm–Liouville theory (see [32, pp. 1479–1481]), if ∂xρ− does not vanish then 0
must be the lowest eigenvalue of M σ, while if ∂xρ− vanishes once then 0 must be the second
lowest eigenvalue of M σ .

In the first case (that is, ρ− strictly monotone), we can obtain the claimed lower bound
for 〈U,L σU〉L2×L2 by noting that (since ρ− and u are bounded, and ρ− is bounded away from
zero)

‖ρ‖2
L2 + (1/ρ−)‖ρ−u + ρ(u −σ)‖2

L2 & ‖ρ‖2
L2 + ‖u‖2

L2 ,

25Several definitions of the essential spectrum are available in the literature. We define here the essential
spectrum of a differential operator M , viewed as an unbounded operator on L2(R) with domain H m(R) if it is
of order m, as the setσess(M ) of complex numbers z such that M −zI is not a Fredholm operator of index zero,
which means that one of the following properties must fail: the kernel ker(M − zI) = { f ∈ H m ; M f = z f }
is finite-dimensional; the range R(M − zI) = {M f − z f ; f ∈ H m} is closed and has finite co-dimension;
dimker(M − zI) = codimR(M − zI). Note that if z ∉ σess(M ) is not an eigenvalue, then (M − zI) is an iso-
morphim from H m to L2, which means that z belongs to the resolvent set of M . As far as we are concerned,
the essential spectrum of our variable-coefficient differential operators is given by the union of the essential
spectra of the constant-coefficient operators obtained in the limits x →±∞, the latter being easily localised by
means of Fourier transform.
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and by showing that
〈ρ,M σρ〉& ‖ρ‖2

H 1

for all ρ ∈ (∂xρ−)⊥ (subspace of the domain H 1, orthogonal to the line generated by ∂xρ− with
respect to the L2-inner product). The latter estimate can be obtained by using that

• the derivative of the profile, ∂xρ− spans the (generalised) kernel of M σ,

• the ‘restriction’26 of M σ to (∂xρ−)⊥ has it spectrum27 in some interval [m,+∞) with
m > 0,

• because K , α, ρ− and u are bounded, for λ large enough, 〈ζ, (M σ+λI)ρ〉 defines an
inner product on H 1 in such a way that the associated norm is equivalent to the usual
one, and that (∂xρ−)⊥ coincides (precisely because M σ∂xρ− = 0) with the orthogonal to
the line generated by ∂xρ− in H 1 with respect to that modified inner product.

In the second case (when ∂xρ− vanishes exactly once), there exists a unique negative
eigenvalue ω of M σ, associated with a positive-valued eigenfunction ρ. Then taking u :=
−ρ(u −σ)/ρ− , we get

〈U,L σU〉 = ω‖ρ‖2
L2 < 0.

Another result of general interest is the following, which makes clearer how to ‘factor out
translation invariance’. Its proof is merely based on the implicit function theorem, see [11,
p. 407], or its original versions in[22, 42].

Lemma 4. For any non-constant function ρ− tending exponentially fast to ρ± at ±∞, for all
k ≥ 0, there exists ε > 0 and a smooth function

Sk : Cε =
{
ρ ∈ ρ− + H k (R) ; inf

s∈R
‖ρs − ρ−‖H k (R) < ε

}
→ R

such that

• for all ρ ∈ Cε,
∫
R

(ρSk (ρ) − ρ− )∂xρ− dx = 0,

• and Sk (ρr ) = Sk (ρ) − r for all r ∈R.

This result quantifies how much we have to translate a function ρ to pull it back to the
orthogonal subset (∂xρ−)⊥ (in which we expect good estimates, by Lemma 3).

26In the sense of the decomposition of a symmetric operator according to orthogonal subspaces, as defined
for instance by Kato [47, p. 277].

27See [47, p. 178] on the separation of the spectrum.
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3.3 Propagating phase boundaries

We have two main results regarding the stability of propagating phase boundaries.

Theorem 3 (Spectral stability [8]). Propagating phase boundaries are spectrally neutrally sta-
ble, in that the spectrum of operator Lσ defined in (54) for a monotone28profile (ρ− ,u) is purely
imaginary.

Theorem 4 (Orbital stability in one space dimension [11]). Propagating phase boundaries
are orbitally stable in one space dimension in the following sense. Given a monotone profile
(ρ− ,u) , for all (small enough) ε > 0, there exists δ > 0 so that if (ρ,u) is a smooth solution of
(50) such that

‖(ρ(0)−ρ− ,u(0)−u)‖H 1×L2 < δ and ‖(ρ(0)−ρ− ,u(0)−u)‖(L∞∩L1)×L1 < δ ,

then
inf
s∈R

‖(ρs(t )−ρ− ,us(t )−u)‖H 1×L2 < ε

for all t as long as the solution exists.

The proof of Theorem 3 is mostly based on algebraic arguments. For, by Fourier trans-
form in transverse directions we are left with a family of differential operators Lσ(η) parame-
trised by the wave vector η ∈ Rd−1. The essential spectrum of Lσ(η) is found to be i R by
Fourier transform in x = xd , using the observation made at the end of § 3.1 (on p. 34). That
Lσ(η) has no point spectrum (that is, eigenvalues) outside i R relies on the following identity
(for nonzero η, otherwise it is even simpler, even though we cannot brutally set η= 0 in what
follows)

τ2 〈N (η)−1ρ ,ρ〉 + i τ Im〈ρ, N (η)−1∂x(ρ(u −σ))〉 + 〈(M(η)+ (u −σ)P (η) (u −σ))ρ ,ρ〉 = 0

for a possible eigenvalue τ, and for ρ, u, respectively the first and last components of an
associated eigenvector in Cd+1, where

M(η) := −∂xK∂x + α + K ‖η‖2 , N (η) := −∂xρ−∂x + ρ− ‖η‖2 , P (η) := ∂x N (η)−1∂x .

It turns out that the the monotonicity of M σ (see the proof of Lemma 3) implies the mono-
tonicity of M(η)+ (u −σ)P (η) (u −σ) (see [8, p. 247]). Therefore, τ solves a second-order
polynomial equation aτ2 + bτ + c = 0 with a ∈ R+∗ (because the Sturm–Liouville operator
N (η) itself is monotone and ρ is nonzero), b ∈ i R, and c ∈R+, which implies τ ∈ i R.

The proof of Theorem 4 uses the following ingredients. First of all, in the chosen func-
tional setting, the Hamiltonian structure in (51) is fully justified if H is defined by

H :=
∫
R

(H(ρ,∂xρ,u) − H(ρ− ,∂xρ− ,u))dx .

28The monotonicity referring to ρ− , and in fact also to u since ρ− (u −σ) =constant.
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Then the abstract form of the profile equations in (52) is equivalent to the fact that (ρ− ,u) is a
critical point of H under constraints on the functionals

I :=
∫
R

(ρu − ρ−u)dx , R :=
∫
R

(ρ − ρ−)dx , U :=
∫
R

(u − u)dx ,

the Lagrange multipliers being respectively σ, the first component say λ and the second
component say µ of (δH −σδI )[ρ− ,u]. Once these notations are fixed, we can enumerate
four crucial properties thanks to which the proof of Theorem 4 is a generalisation (using in
particular Lemma 4) of the usual Lyapunov method.

1. the endpoints (ρ±,u±) of (ρ− ,u) are hyperbolic fixed points of the profile equations,
which read

(57) δ(H −σI − λR − µU )[ρ− ,u] = (0,0)T ,

2. all solutions of (57) tending to (ρ±,u±) at ±∞ are translates of a reference profile (ρ− ,u),

3. the functional F :=H −σI − λR − µU vanishes on all translates of (ρ− ,u), and it is
conserved along solutions of (50),

4. the Hessian HessF [ρ− ,u] = L σ is monotone and is bounded below on (∂xρ−)⊥ (see
Lemma 3).

3.4 Solitary waves

We start by discussing one-dimensional stability of solitary waves. By the second statement
of Lemma 3 we see that when ρ− is not monotone, the profile (ρ− ,u) has no chance to be a
local minimiser of H without further constraints. However, it can be so under the (natural)
constraint dictated by I , provided that a further stability condition encoded by the moment
of instability of Boussinesq is satisfied. To define properly this ‘moment of instability’, let
us first make the Hamiltonian structure in (51) rigorous in functional settings suitable to
perturbations of a solitary wave with endstate (ρ∞,u∞). The following choice of functionals

H :=
∫
R

(H(ρ,∂xρ,u)−H(ρ∞,0,u∞)−∂ρH(ρ∞,0,u∞)(ρ−ρ∞)−∂u H(ρ∞,0,u∞)(u−u∞) )dx ,

I :=
∫
R

(ρ−ρ∞)(u −u∞)dx ,

has the advantage of implying that the endstate itself is a critical point of both H and I ,
which simplifies the abstract form of the profile equations. They become indeed (57) with
λ= µ= 0. Then we define the moment of instability of Boussinesq at a travelling of speed σ
and profile (ρ− ,u) as

m(σ) := H [ρ− ,u] − σI [ρ− ,u] .
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This is indeed a function ofσ (and of the endstate (ρ∞,u∞), which is fixed in all what follows),
which does not depend on the chosen, possibly translated profile. Indeed,

d

ds
(H [ρ−s ,us] − σI [ρ−s ,us]) =

∫
R
δ(H [ρ− ,u] − σI [ρ− ,u]) ·∂x(ρ− ,u)T dx = 0.

(This was for the very same reason that F in §3.3 was taking the same value on all translated
profiles.) As was in particular pointed out by Grillakis, Shatah and Strauss [42], the convexity
of m (or not) is linked the variational properties of H under the constraint I . Using Lemma
3 and the implicit function theorem, we can indeed show the following (see [11, p. 399]).

Proposition 2. If m′′(σ) ≤ 0, then the profile (ρ− ,u) is not a local minimiser of H under the
constraint I , in that there exist (a curve of) functions (ρ,u) close to (ρ− ,u) such that I [ρ,u] =
I [ρ− ,u] and H [ρ,u] <I [ρ− ,u].

This gives a hint, even though not a proof, that profiles for which m′′(σ) ≤ 0 are unstable.
What we can actually prove is the following.

Theorem 5.

(Sufficient condition) A solitary wave for which m′′(σ) is positive is orbitally stable.

(Necessary condition) A solitary wave for which m′′(σ) is negative is linearly unstable.

The proof of the sufficient part follows from an adaptation to nonzero endstates of the
main result of Grillakis, Shatah and Strauss in [42]. This result shows indeed that the ‘unsta-
ble’ directions of L σ = Hess(H −σI ) (that this, the U satisfying 〈U,L σU〉 < 0 as in Lemma
3), can be ruled out since they are transverse to the manifold defined by the constraint asso-
ciated with I , unlike what happens when m′′(σ) ≤ 0 as in Proposition 2 above. This is linked
to the identity

〈∂σU , L σ∂σU〉 =
∫
R
δI [U] ·∂σUdx = −m′′(σ) ,

which shows that if m′′(σ) > 0 then ∂σU is an unstable direction and does not belong to
(δI [U])⊥.

The proof of the necessary part does not directly follow from the method in [42], because
the operator J is not onto (the same problem occurs for the Hamiltonian structure of the
Korteweg–de Vries equation, and it was fixed almost at the same time by Bona, Souganidis
and Strauss [22] for that specific equation). A general way to overcome the problem is to use
Evans functions techniques, as what pointed out by Zumbrun [78]. The starting point is that
the linearised operator L has a Jordan block at τ = 0. Indeed, as already noted in the proof
of Lemma 3, the derivative ∂x U of the profile is an eigenvector of L σ for the eigenvalue 0,
which also implies that it is an eigenvector of Lσ =J L σ for the eigenvalue 0. Furthermore,
as used to get the identity above, we have

L σ∂σU = δI [U] ,
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which implies that
Lσ∂σU = J δI [U] = −∂x U

(the last equality is exactly the reason why I has been called an impulse associated with
translation invariance). This means that 0 is an eigenvalue of Lσ of at least 2 as algebraic
multiplicity. Without trying to construct here the Evans function (see [9] and references
therein for more details), this implies that D(0) = D ′(0) = 0. More precisely, we can show
the following (see [9, Lemma 1]).

Lemma 5. In one space dimension, the essential spectrum of the linearised operator Lσ about
a solitary wave of speed σ is purely imaginary. The nonnegative real point spectrum of Lσ

consists of the zeros of an analytic function D : τ ∈ [0,+∞) 7→ D(τ) ∈R such that

D(0) = D ′(0) = 0, D(λ) > 0 for λÀ 1, sgnD ′′(0) = sgnm′′(σ) .

With this lemma, the end of the proof of Theorem 5 merely follows from the mean value
theorem: if m′′(0) < 0 then D is negative near 0 and positive at infinity, and thus must vanish
somewhere.

Remark 3. We can give a more explicit expression of m, namely

m(σ) :=
∫
R

K (∂xρ−)2 dx .

Would ρ− be a phase transition profile, any specialist in phase transitions would recognise
m(σ) as being the surface tension across the ‘interface’. It is not clear though if this is mean-
ingful for solitary waves. Anyhow, it can be computed up to a quadrature, without actually
solving the profile ODEs. In this way it is easy to test numerically the convexity of m. This was
done in [11], where both cases of convexity and concavity were shown.

Let us now turn to the multi-dimensional stability question of solitary waves, at least
those known to be stable in one space dimension, that is, for which m′′(σ) is positive. By
Fourier transform in transverse directions we are led to consider (as for phase boundaries) a
family of operators Lσ(η) parametrised by the wave vector η ∈ Rd−1. Their essential spectra
are still purely imaginary. Furthermore, we can show the following (see again [9, Lemma 1]).

Lemma 6. The point spectrum of Lσ(η) in the half-plane {τ ; Reτ > 0} consists of the zeros of
a function D = D(τ,η), which is analytic along rays {(λτ,λη) ; λ> 0} for Reτ> 0, and has the
asymptotic behavior for low frequencies (λ→ 0)

D(λτ,λη)∼λ2 P (τ,η) , P (τ,η) = m′′(σ)τ2 − r 2‖η‖2 , r > 0.

As a consequence, if m′′(σ) > 0 we find by a Rouché argument that for small ‖η‖, there
exists τ ' r‖η‖/

p
m′′(σ) > 0 for which D(τ,η) = 0.

This proves that solitary wave solutions to the Euler–Korteweg equations are linearly un-
stable in several space dimensions.This result was obtained in a much less technical/more
elegant way by Rousset and Tzvetkov in [70]. Applying a general method of theirs, they found
indeed (in two space dimensions, on the Bernouilli form of the equations for potential flows)
a specific nonzero η (not necessarily small, determined by a mean value argument) and a
small τ> 0 (by means of a Lyapunov–Schmidt reduction) that is an eigenvalue of Lσ(η).
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3.5 Periodic solutions

The stability analysis of periodic waves require different tools, which are out the scope of
these notes. As a by-product of a work of Serre (unpublished), periodic waves of the Euler–
Korteweg equations are known to be unstable.
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Appendix

Derivation of the Korteweg tensor

In what follows, we use variational arguments to derive the stress tensor of an isothermal
capillary fluid at rest, of stationary density ρ. We assume that its (free) energy density F de-
pends on ρ and ∇ρ. Then its total energy

∫
F (ρ,∇ρ)dx is invariant under space translations.

More specifically, its invariance under the vector field vk := ∂/∂xk implies, by Noether’s the-
orem (see for instance [60, p. 272]) that

(58) divP k −ρ,k E F = 0, where P k
i := δk

i F − ρ,k
∂F

∂ρ,i
and E F := ∂F

∂ρ
−

d∑
i=1

Di

(
∂F

∂ρ,i

)
.

Here above, the notation Di stands for the total derivative with respect to xi ∈Rd . If ρ were an
extremal of F , we would have by definition of the Euler operator E that (E F )(ρ) = 0 , and (58)
would imply the conservation law divP k = 0. However, physically ρ can only be an extremal
under mass constraint

∫
ρ. Hence (E F )(ρ) = λ, a Lagrange multiplier associated with this

constraint. Therefore, using that λ is indeed a constant, (58) implies the conservation law
divΣk = 0 with

Σk
i := δk

i (F − ρ (E F )(ρ) ) − ρ,k
∂F

∂ρ,i
,

or, more explicitely,

Σk
i := δk

i (F − ρ
∂F

∂ρ
+ ρdivw) − ρ,k

∂F

∂ρ,i
, where wi := ∂F

∂ρ,i
.

In another words, we have

divΣ= 0, with Σ :=
(
F − ρ

∂F

∂ρ

)
I + ρdivw I − w⊗∇ρ .

When F does not depend on ∇ρ, the stress tensor Σ reduces to −p I, where

(59) p := ρ ∂F

∂ρ
− F

is the usual pressure in the fluid. When F depends on ∇ρ, the modified tensor is

Σ=−p I + ρdivw I − w⊗∇ρ ,

where p defined by (59) is a generalised pressure (depending also on ∇ρ).

Calculus identities

With the notations a :=√
ρK and v :=√

K /ρ∇ρ we have

1
2 K ′

ρ |∇ρ|2 + K ∆ρ = a divv + 1
2 |v|2 .
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Proof. Observing that v =∇R(ρ) with R a primitive of ρ 7→√
K (ρ)/ρ, we have

divv =∆R(ρ) = R ′(ρ)∆ρ + R ′′(ρ) |∇ρ|2 .

The conclusion follows from the equalities

R ′ =√
K /ρ , R ′′ = 1

2 K ′
ρ/

√
ρK − 1

2

√
K /ρ3 .

The identity

div(ρ∇2 ln(ρ)) = 2ρ∇
(
∆
p
ρ

p
ρ

)
is a special case of

div(µ(ρ)∇2ξ(ρ)) = λ(ρ)∇ (
σ′(ρ)∆σ(ρ)

)
,

which is valid under the conditions

(60) µξ′ = λσ′2 ≡ constant, λ′σ′2 = µ′ξ′ , λ2σ′σ′′ ≡ constant,

these being satisfied if and only if there exist a,b, c, d ∈R with acd 6= 0 such that

σ=
√

aρ+b + constant, λ= 4c

a2
(aρ+b) , µ= d (aρ+b) , ξ = c

ad
ln(aρ+b) + constant.

(The special case above corresponds to a = c = d = 1 and b = 0.)

Proof. To simplify notations we use Einstein’s convention on repeated indices. By definition,
we have

div(µ∇2ξ) j = ∂i (µ∂2
i , jξ) ,

and by the chain rule we find that

∂i (µ∂2
i , jξ) = µξ′∂ j∆n + (2µξ′′+µ′ξ′) (∂iρ)∂2

i , jρ + µξ′′∂ j∆ρ + (µξ′′)′ |∇ρ|2∂ jρ ,

or, without indices,

div(µ∇2ξ) = µξ′∇∆ρ + (2µξ′′ + µ′ξ′)∇2ρ ·∇ρ + µξ′′∆ρ∇ρ + (µξ′′)′ |∇ρ|2∇ρ .

On the other hand, by the chain rule again we have that

∆σ = σ′∆ρ + σ′′ |∇ρ|2 ,

∇(σ′∆σ) = σ′2∇∆ρ + 2σ′σ′′∇2ρ ·∇ρ + 2σ′σ′′∆ρ∇ρ + (σ′σ′′)′ |∇ρ|2∇ρ .

Equating coefficients of the four terms, we find the following sufficient conditions for the
equality div(µ∇2ξ) = λ∇ (

σ′∆σ
)
,

µξ′ = λσ′2 , µξ′′ = 2λσ′σ′′ = 2µξ′′ + µ′ξ′ , (µξ′′)′ = λ (σ′σ′′)′ ,
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which are equivalent to

µξ′ = λσ′2 , (µξ′)′ = 0, λ′σ′2 = µ′ξ′ , 2λ′σ′σ′′ + λ (σ′σ′′)′ = 0,

themselves obviously equivalent to (60). Now a nontrivial solution (µ,ξ,λ,σ) of (60) is nec-
essarily such that σ′′/σ′3 ≡ constant, hence 1/σ′2 is an affine function of ρ, and then λ, µ,
and 1/ξ′ are affine as well. The explicit coefficients are easily found by inspection of the
equations.

Let us verify the identity

(61) ∇(1
2 |u|2

) = u× (∇×u) + (u ·∇)u .

Proof. By the chain rule,

∂ j
(1

2 |u|2
) = d∑

i=1
ui ∂ j ui = (u ·∇)u j +

d∑
i=1

ui (∂ j ui − ∂i u j ) .

When d = 3, we easily check that the sum (which comprises actually only two terms, since
the i = j term is null) is the j -th component of u× (∇×u).

The algebraic identity

(62) u× (v×w) = (u ·w)v − (u ·v)w

is in the same spirit.

Proof. The j -th component of both sides is easily identified with

3∑
i=1

ui (v j wi − vi w j ) .

Eulerian vs Lagrangian coordinates

Let κ := ρ5 K be viewed as function of v = 1/ρ. The system

(63)

{
∂tρ + ∂x(ρu) = 0,
∂t (ρu) + ∂x(ρu2 +p0(ρ)) = ∂x(ρK ∂2

xρ + 1
2 (ρK ′

ρ − K ) (∂xρ)2) ,

is (formally) equivalent to

(64)

{
∂t v = ∂y u ,
∂t u + ∂y p0(v) = −∂y (κ∂2

y v + 1
2 κ

′
v (∂y v)2) ,

in Lagrangian coordinates.
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Proof. Recall that the mass Lagrangian coordinate y is characterised by dy = ρdx − ρu dt .
Now, a conservation law in Eulerian coordinates

∂tϕ + ∂xψ = 0

is equivalent to the fact that the differential formϕdx −ψdt is closed, and since dx = v dy +
u dt , it is also equivalent the closedness of ϕdy + (uϕ − ψ)dt , which is itself equivalent to
the conservation law in Lagrangian coordinates

∂t (vϕ) + ∂y (ψ − uϕ) = 0.

For ϕ ≡ 1 and ψ ≡ 0, this yields the first equation in (64) (note that the first equation in (63)
has already served to define y). The second conservation law in (63) corresponds to

ϕ = ρu , ψ = p0 − ρK ∂2
xρ + 1

2 (−ρK ′
ρ + K ) (∂xρ)2 = p0 − ρ3 K ∂2

yρ − 1
2 ρ

2 (ρK ′
ρ + K ) (∂yρ)2 .

To eventually obtain the second equation in (64), we compute that

∂yρ = −ρ2∂y v , ∂2
yρ = 2ρ3 (∂y v)2 − ρ2∂2

y v ,

and
κ′v = −5ρ6 K − ρ7 K ′

ρ .

Convexity of the total energy density

Proposition 3. Assume that F ′′ > 0, K > 0, and K K ′′ ≥ 2K ′2 everywhere, then the total energy
density

H = F (ρ) + 1
2 K (ρ) |v|2 + 1

2 ρ |u|2
is a strictly convex function of (ρ,m := ρu,v).

Proof. A standard trick in the theory of Euler equations consists in noticing that the (strict)
convexity of the (volumic) energy density in the conservative variables (ρ,m) is equivalent
to the (strict) convexity of the specific energy in the variables (v = 1/ρ,u). This works for
the Euler–Korteweg equations too. Clearly (by characterising convex functions as upper en-
velopes of affine functions), H = H(ρ,m,v) is convex if and only if

h := H/ρ = f + 1
2 (ρK ) |w|2 + 1

2 |u|2

is a convex function of (v,u,w) with f = F /ρ, w = v/ρ. Since we have f ′′(v) = ρ3F ′′(ρ), the
(strict) convexity of F = F (ρ) is equivalent to the (strict) convexity of f = f (v). Since u 7→ |u|2
is obviously strictly convex, it remains to determine a convexity condition for the function
(v,w) 7→ κ(v) |w|2, with κ := ρK . By computation of its Hessian we find the sufficient con-
dition κ′′(v)κ(v) ≥ 2κ′(v)2. To show that this is equivalent to K ′′(ρ)K (ρ) ≥ 2K ′(ρ)2, we can
write

vκ(v) = K (ρ) , v2κ′(v) = − (K (ρ) + ρK ′(ρ)) , v3κ′′(v) = 2K (ρ) + 4ρK ′(ρ) + ρ2 K ′′(ρ) ,
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and thus see that
v4 (κκ′′ − 2(κ′)2) = ρ2 (K ′′ K − 2(K ′)2) .

Remark 4. The somewhat mysterious condition K K ′′ ≥ 2K ′2 is clearly satisfied (as an equality)
by constant functions K , and also by K ∝ 1/ρ. However, its is violated by K ∝ 1/ρ5, which
corresponds to a constant coefficient κ in Lagrangian coordinates.

Hamiltonian structure of travelling profiles ODEs for Hamiltonian PDEs

Proposition 4 (Benjamin). Let us consider a Hamiltonian system of PDEs in one space dimen-
sion

(65) ∂t u =J δH [u] ,

with J of the form J = Dx J, where J is a symmetric, invertible real matrix. We assume that
there exists a functional I : u 7→I [u] = ∫

I (u) such that

u =−J δI [u]

for all u ∈Rn , and that H depends only on u and ux (the first order derivative of u with respect
to x). For simplicity we also assume that δ(H −σI )[0] = 0. Then

• the (smooth) solutions of (65) satisfy a local conservation law of the form

It +Sx = 0,

where S depends only on u, ux et uxx ;

• the profile equations for solitary wave solutions to (65) of speedσ are the Euler–Lagrange
equations associated with the Lagrangian H −σI , and the corresponding Hamiltonian
is S −σI , which is therefore a first integral of the profile equations.

Remark 5. The functional I is linked to the invariance by translations in x, in that the (gen-
eralised) Hamiltonian vector field [60, p. 435]

v̂I :=
n∑

j=1
(J δI [u]) j

∂

∂u j
= −

n∑
j=1

(Dxu j )
∂

∂u j

is the so-called evolutionary representative [60, p. 291] of ∂
∂x , the infinitesimal generator of

the group of translations x 7→ x +a, a ∈R.

Proof. We first look for S, which must be such that

Sx =−It =−
n∑

j=1
u j ,t

∂I

∂u j
= −

n∑
j=1

u j ,t
∂I

∂u j
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along solutions of (65), that is of

u j ,t =
n∑

i=1
J j i (Ei H)x ,

where Ei denotes the Euler operator associated with the component ui of u. Since H de-
pends only on u and ux , we have

Ei H =−Dx
( ∂H

∂ui ,x

)+ ∂H

∂ui
.

By using the symmetry of J and the definition of I (through the one of I ) we infer that

Sx =
n∑

i=1
ui (Ei H)x ,

hence

S =
n∑

i=1
ui (Ei H)−H +

n∑
i=1

ui ,x
∂H

∂ui ,x

up to a constant, which can be taken to zero. Now the profile equations are

−σu′ = JδH [u]′ ,

or, using again the definition of I ,

Jδ(H −σI )[u]′ = 0.

Since J is invertible, we obtain for profiles that are homoclinic to zero that

δ(H −σI )[u] = 0,

which equivalently reads
Ei (H −σI ) = 0, i = 1, . . . ,n .

These are the Euler–Lagrange equation for the Lagrangian H−σI . The corresponding Hamil-
tonian is the Legendre transform of H −σI , namely (since I does not depend on ux),

P :=
n∑

i=1
ui ,x

∂H

∂ui ,x
− (H −σI )

in the variables ui et pi = ∂H
∂ui ,x

. To conclude that P = S−σI , we observe that from the profile
equations

Ei H =σEi I =σ ∂I

∂ui
,

hence
n∑

i=1
ui (Ei H) = σ

n∑
i=1

ui (Ei I ) = 2σI

since I is quadratic (by definition).
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