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The purpose of this note is to state and sketch the proof of Theorem B in [4]. For
the reader’s convenience we adopt the same notations as Chow, Mallet-Paret and Shen.
Their result concerns a general Lattice Dynamical System (LDS)

ẋ = F (x) , (1)

where F is a smooth function in X = `∞(Z,Rd) that commutes with the shift operator,

S : x 7→ Sx ; (Sx)j = xj−1 ,

and the fully discrete counterpart of (1) obtained by Euler discretization

xn+1 = xn + hF (xn) . (2)

This is called a Coupled Map Lattice, associated with the map

Gh : x 7→ Gh(x) := x + hF (x) .

The result of Chow, Mallet-Paret and Shen reported here shows that spectrally stable
traveling wave solutions to (1) give rise to traveling wave solutions to (2) for small enough
h. Their spectral stability requirement needs some explanation. Assume that x = p(t)
is a traveling wave solution of (1), of positive speed c, i. e. pj(t) = ϕ(j − c t) for every
j ∈ Z and t ∈ R. Introducing the “return time” T = 1/c, a traveling wave of speed c is
characterized by

p(t+ T ) = S p(t) ,

and the corresponding function ϕ is uniquely determined by

ϕ(y) = p0(−y T ) .

Given a traveling wave solution of (1), its derivative, ṗ, is a traveling wave solution of the
variational linear system

ẋ = DF (p) · x . (3)

Denoting by A(t, t0) the solution operator of (3), we thus infer that

A(T, 0) · ṗ = S ṗ .
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In other words, ṗ is an eigenvector of the operator

R := S−1A(T, 0) ,

associated with the eigenvalue 1. It is the operator R that encodes the spectral stability
of the wave p. This is rather natural, since we easily prove by induction that

Rm = S−m A(mT, 0) ,

and S is isometric in X .

Definition 1 The wave x = p(t) is said spectrally stable if and only if

• the spectrum of the operator R lies in { ζ ∈ C ; |ζ| < 1 } ∪ {1} ,

• the eigenvalue 1 is simple and isolated in the spectrum of R.

Theorem 1 (Chow, Mallet-Paret, Shen) Suppose that x = p(t) is a spectrally stable
traveling wave solution of (1) such that

lim inf
t→±∞

‖ p(t) − p(0) ‖ > 0 .

Then there is a positive h0 so that for 0 < h ≤ h0, there exists a smooth one-dimensional
manifold Mh, close to M := { p(θ) ; θ ∈ R} in X = `∞(Z,Rd), which is invariant under
the CML (2). Moreover, this manifold contains traveling wave solutions of (2), of speed
ρh close to c h.

It is remarkable that the speeds of the fully discrete waves obtained this way are either
rational or irrational. In the latter case, the result crucially relies on the smoothness
assumption on F . To be precise, it is required that F be C3, in order to apply Denjoy’s
theorem on C2 circle diffeomorphisms, as it should be clear from the sketch of the proof
below.

Sketch of proof.

Step 1 : change of coordinates. The proof is based on a change of coordinates
inspired from the study of periodic solutions in (finite dimensional) ODEs. Using the
connectedss of GL(X ), the authors first prove the following.

Lemma 0.0.1 If F is of class Cr, there exists Z ∈ Cr( R,GL(X ) ) such that

Z(0) = I , Z(θ + T ) = S Z(θ) , Z(θ) ṗ(0) = ṗ(θ)

for every θ ∈ R.

We shall not reproduce here the proof of this technical result. It is more interesting
to see how it can be used to compare the flow of (1) around p with the flow of (2).

A useful change of coordinates is obtained by choosing ν ∈ X ′ – the dual space of
X – normalized in such a way that

〈 ν , ṗ(0) 〉 = 1 .
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Then, considering Y = ν⊥ and the Cr map

Φ : R× Y → X
(θ, y) 7→ Φ(θ, y) := p(θ) + Z(θ) · y ,

we have local coordinates around the manifold M = { p(θ) ; θ ∈ R}.
In these coordinates the LDS (1) reads

dθ

dt
= Θ(θ, y) ,

dy

dt
= Y (θ, y) ,

(4)

where the functions Θ and Y are implicitly defined by

DΦ(θ, y) · (Θ, Y ) = F ( Φ(θ, y) ) ,

i. e.
Θ ṗ(θ) + ( DZ(θ) ·Θ ) · y + Z(θ) · Y = F ( Φ(θ, y) ) . (5)

We clearly have
Θ(θ, 0) = 1 and Y (θ, 0) = 0 ,

which expresses that (θ(t), y(t)) = (t, 0), the coordinates of the wave x = p(t), are
solution of (4). In the (θ, y) coordinates, the invariant manifold M is just the straight
line R× {0}.

We now call E the solution operator at time T of the (autonomous) system (4). Since
the map F commutes with the shift operator S, and

Z(θ + T ) = S Z(θ) , p(θ + T ) = S p(θ) ,

we readily see from (5) that

Θ(θ + T, y) = Θ(θ, y) and Y (θ + T, y) = Y (θ, y)

for every (θ, y) with y close to 0. This periodicity property means that E actually operates
on the manifold

R/TZ × Y ,
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and leaves invariant
V := R/TZ × {0} ,

(each point of V being a fixed point of E). Additionally, V is a normally hyperbolic
invariant manifold. Indeed, it is not difficult to see that DE(θ0, 0) is conjugated to R
since

DE(θ0, 0) = DΦ(θ0, 0)−1 S−1A(θ0 + T, θ0) DΦ(θ0, 0)

and
S−1A(θ0 + T, θ0)A(θ0, 0) = A(θ0, 0)S−1A(T, 0) = A(θ0, 0)R

by definition of R. Because of the spectral assumption on R, this shows that V is normally
hyperbolic for the map E.

Step 2 : Persistence of the invariant manifold. A recent work of Bates, Lu
and Zeng [2, 3] has extended to infinite dimensional settings the persistence of normally
hyperbolic invariant manifolds. Their result applies in particular to the map E and its
invariant manifold V . Every map close to E thus admits a unique invariant manifold
close to V .

Now the CML (2) can also be rewritten in the (θ, y) coordinates. Denoting

Γh = Φ−1Gh Φ ,

(2) is equivalent to
(θn+1, yn+1) = Γh(θ

n, yn) , (6)

where xn = Φ(θn, yn). Choosing N so that

N − 1 <
T

h
< N + 1 ,

standard estimates of the Euler method show that

ΓN
h − E = O(h)

in the Cr−1 topology. Therefore, for h small enough, there exists a manifold Vh that is
invariant for the map ΓN

h . Furthermore, by a classical uniqueness argument, Vh is invariant
under Γh itself. As a matter of fact, Γh(Vh) is also an invariant manifold, and it is close
to V because Γh is close to identity for small h, hence Γh(Vh) coincides with Vh.

Step 3 : Dynamics on the perturbed manifold. Being close to V , the manifold
Vh is the graph of some function ζh, i. e.

Vh = { (θ, ζh(θ) ; θ ∈ R } .

The invariance of Vh under Γh means there exists βh so that

Γh( θ, ζh(θ) ) = ( βh(θ), ζh(βh(θ)) ) .

The map βh is of class Cr−1 and is close to identity for small h. Therefore it is a circle
diffeomorphism

βh : R/TZ ∼→ R/TZ .
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Of course, coming back to the original coordinates, we find that

Mh := { p(θ) + Z(θ) · ζh(θ) ; θ ∈ R }

is invariant under Gh, and we have by definition of βh :

Gh(qh(θ)) = qh(βh(θ)) , qh(θ) := p(θ) + Z(θ) · ζh(θ) .

Therefore,
xn := qh(β

n
h (θ0)) (7)

is a solution of the CML (2) for every θ0.

Step 4 : (7) defines the searched traveling wave. The proof consists in showing
that (7) defines a traveling of speed equal to

ρh = lim
n→∞

βn
h (θ)

nT
,

which is independent of θ and called the rotation number of the circle (R/TZ) diffeomor-
phism βh. The fact that ρh is close to c h = h/T merely follows from the first order
Taylor expansion of βh :

βh(θ) = θ + hΘ(θ, ζh(θ)) + O(h2) = θ + h + O(h2) .

We shall repeatedly use the traveling wave identity satisfied by the map qh,

qh(θ + T ) = S · qh(θ) .

Rational case. If ρh = p/q, p ∧ q = 1, then there exists θ0 so that

βq
h(θ0) = θ0 + p T .

Choosing this point θ0 in (7), we see that

xn+q = qh(β
n
h (βq

h(θ0))) = qh(β
n
h (θ0 + pT )) =

= qh(β
n
h (θ0) + pT ) = Sp · qh(βn

h (θ0)) = Sp · xn .

Irrational case. This is the trickiest one. The smoothness of βh is here crucial. If r ≥
3, βh is at least C2 and thus, by a well-known theorem of Denjoy (see for instance [1, 5]), βh

is topologically conjugated to a rotation. More precisely, there exists a homeomorphism
ηh of R, with

η(θ + T ) = ηh(θ) + T

for every θ, such that

βh = η−1
h Rh ηh , Rh(θ) = θ + ρh T .

Defining
ψh : ξ 7→ ψh(ξ) := qh(η

−1
h ( ηh(θ0) − ξ T ) ) ,
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and
P : x = (xj)j∈Z 7→ x0 ,

some elementary computations show that the sequence defined in (7) satisfies the identity

xn
j = P · ψh(j − ρh n) .

As a matter of fact,

η−1
h ( ηh(θ0) − (j − ρh n)T ) = η−1

h ( ηh(θ0) + ρh nT ) − j T

= η−1
h (Rn

h(ηh(θ0)) ) − j T = βh(θ0) − j T ,

hence

ψh(j − ρh n) = qh( η
−1
h ( ηh(θ0) − (j − ρh n)T ) ) = qh( βh(θ0) − j T ) =

S−j · qh( βh(θ0) ) = S−j · xn .

The result thus follows from the obvious fact that

P · S−j · xn = xn
j .
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