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Introduction

We call Korteweg model a system of conservation laws governing the motion of liquid-vapor
mixtures, which takes into account the surface tension of interfaces by means of a capillarity co-
efficient; see [16] and [11] for the early developments of the theory of capillarity, and for instance
[18, 9] for the derivation of the equations of motion. In this kind of model, the interfaces are not
sharp fronts. Their width, even though extremely small for values of the capillarity compatible
with the measured, physical surface tension, is nonzero. We call them diffuse interfaces. We are
especially interested in non-dissipative isothermal models, in which the viscosity of the fluid is
neglected and therefore the (extended) free energy, depending on the density and its gradient,
is a conserved quantity.

From the mathematical point of view, the resulting conservation law for the momentum
of the fluid involves a third order, dispersive term but no parabolic smoothing effect. The
system made up with the conservation of mass and of momentum is thus the compressible
Euler system modified by the adjunction of the so-called Korteweg stress, and we call it the
Euler-Korteweg model. The well-posedness of the Cauchy problem for the Euler-Korteweg
model is a challenging issue, which has been addressed in [4] in the one-dimensional case by
reformulating the equations in Lagrangian coordinates. Here we consider the multi-dimensional
case (in Eulerian formulation). As in [4], we allow the capillarity coefficient K to depend (in a
smooth way) on the density p, which makes the system quasilinear and therefore more difficult
to apprehend than in the special case K = constant. However, the case K = constant appears
not to be the easiest one for the analysis. In fact, using a reformulation of the system involving
a variable coefficients (degenerate) Schrodinger equation, we point out that K proportional to
1/p is the most peculiar case, for which we have a standard, “flat” Schrédinger operator and the
derivation of a priori estimates greatly simplifies. It is remarkable that in a different physical
framework, namely in Quantum Hydrodynamics (QHD), the very same system of PDEs arises
(usually coupled with a Poisson equation), with precisely K proportional to 1/p. Our approach
(in fact its simplified version due to p K = constant) is thus applicable in that framework.
However, we do not address here problems due to vacuum, which is as far as we know a crucial
issue in QHD (related to singularities of the field associated with (p,u) through the Madelung’s
transformation), nor the coupling with other equations; recent references on this topic are [14, 8].
As this might be confusing, we draw the attention of the reader on the fact that the Schrédinger
equation which arises in our reformulation has nothing to do with the nonlinear Schrédinger
equation (known as the Gross-Pitaevskii equation) the QHD case comes from : ours involves
a non-linear Burgers-type first order term and the degenerate second order operator ¢V adiv
(with @ = /p K) whereas the Gross-Pitaevskii equation involves only ¢ A 4+ zeroth order term.

Our main purpose here is to prove the (local) well-posedness of the Euler-Korteweg model
in all Sobolev spaces of supercritical index. In fact, density and velocity, or more precisely, the



perturbations of density and velocity with respect to a reference state or a special solution, will
not have the same index of regularity. Rather, the velocity u and the gradient of the density
will have the same index. This is natural in view of the fact that (u, Vp) already satisfies a L2
estimate at the linearized level: by considering the pressure-linked term in the total energy as a
source term, the other term

Kool i= [ (bolal? + §K(p)IV?) ds

can be bounded a priori; equivalently, away from vacuum and for positive capillarity K > 0,
this gives a L? estimate for (u, Vp). Roughly speaking, we shall prove the local-in-time well-
posedness of the Euler-Korteweg model and a blow-up criterion, as though (u, Vp) were solution
of a symmetrizable hyperbolic system. For a precise statement, see Section 1. In passing, let us
emphasize that we do not need any assumption on the monotonicity of the pressure, which is
basically dealt with as a source term. This means that our result applies in the pure phases
(liquid or vapor, where the pressure law is monotone) and in the presence of (diffuse) interfaces
between liquid and vapor. Our method of proof is based on an extended formulation where Vp
is considered as an additional dependent variable. The extended system of conservation laws
is second order and non-dissipative. In particular, we have to handle bad commutators due to
second order terms. This is done by taking

K
w = 4/—Vp
p

instead of Vp as additional dependent variable and by estimating (u,w) in weighted Sobolev
spaces (with weights depending on the solution). Unsurprisingly, the zeroth order weight (also
named “gauge” function after Lim and Ponce [15]) is just \/p: note indeed that

Ve (u,w)|[i2 = Klp,ul

The higher order weights appear to depend on the product p K, which explains why the QHD
case (where p K is constant) is to some extent simpler. Once we have suitable a priori estimates,
without loss of derivatives, we basically have uniqueness. For proving existence, we use a fourth
order regularization of the non-linear system on (p,u, w). The regularized system involves the
operator €A%, where ¢ is a small parameter, and we show the time of existence is independent
of . Then, using an idea of Bona and Smith [6], we show that for suitably mollified initial data,
depending on ¢, the solution of the regularized problem converges to a solution of the original
problem. The continuous dependence on initial data uses the same kind of arguments.

In Section 1, we specify our notations, assumptions and state our main result. Section 2
introduces the extended formulation and the underlying Schrodinger equation. In Section 3
we derive a priori estimates for the linearized version of that equation, using suitable gauge
functions. Section 4 is devoted the regularized system: we prove there its local well-posedness
and derive a lower bound for the time of existence. The proof of our main result is given
in Sections 5 and 6. Some technical results needed (inequalities, commutator estimates and
mollifier properties) are stated and proved in the appendix for completeness.

1 Main result

1.1 Notations

For convenience, we introduce here the notations used repeatedly in the paper.



1.1.a Calculus

e For f:RY — C, we denote Df := (01f,--- ,0Onf) and Vf := (Df)! where 9; stands for
the partial derivative with respect to the space variable x;. For k£ € N*, the notation
DFf stands for the family of all partial derivatives of f of order k. And V2f denotes the
Hessian matrix of f.

e For f:RY — CV, we denote by Df the Jacobian matrix of f, with coefficient (Df);; =
ajfi on the i-th row and the j-column if f',..., fV are the components of f, and by
Vf := (Df)! the transposed matrix. The divergence divf of f is the trace of Df. The
traceless gradient is denoted by Vi , that is,

Vof = VFf — (divf) Ipn .

The curl (or rotational) of f is curlf := Df — Vf.

e For z a vector-field with complex valued components, we denote z* := (z!,- - - ,ZN ).

e For z and u two vector-fields with real or complex valued components, we denote by
(u* - V)z the vector-field with components Z;VZI w’ 0;z", which is also denoted w’/0;z"'
using Einstein’s convention of summation on repeated indices.

e For K:RY — CN*V divK is the row matrix made up with the divergence of the column
vectors of K.

1.1.b Pseudodifferential calculus

For all s € R, A® denotes the fractional derivative operator of symbol
N = L+, ¢eRY,

that is, A*> = FI\F, where F denotes the Fourier transform. The “standard” norm in the
Sobolev space H*(RY) thus reads

lullms = [[A%ull2 .

We shall also use the zeroth order operators Q@ and P = I;2 — Q, where Q is of symbol
£€* /1€, In other words, Q@ = — (—A)~1Vdiv is the L? orthogonal projector on potential (or
curl-free, or irrotational) vector-fields, and P is the L? orthogonal projector on solenoidal (or
divergence-free, or “incompressible”) vector-fields.

1.2 The Euler-Korteweg model

The model we consider takes the following form:

O p+ div(pu) = 0,
(1.1)
O(pu*) + div(puu* + pIzn ) = divK,

where p > 0 is the density of the fluid, u € RY is its velocity field, p is an “extended” pressure
depending on both p and Vp and K is the so-called Korteweg stress tensor, also depending on

p and Vp:
1 dK )
P, V0) = o) = 5 (o) = g ) IVP

K(p,Vp) = pdiv(K(p) Vp)Igx — K(p)Vp- Dp.



(See for instance [4] for more details.)  Both py and K are assumed to be given smooth
functions of p, with K positive and bounded away from zero on some open range for density
Jp:=(J,,J]) CR*. Combining the two equations in (1.1), we may equivalently rewrite this
system as

O p + div(pu) = 0,
(1.2)
du+ (u*-V)u=V(KAp + %Kl’) Vo> — g0),

where gg is the bulk chemical potential of the fluid, by definition such that

dpo _ dgo
dp pdp‘

This system is known to admit special smooth (that is, C°°) solutions: constant states of course,
but also planar traveling waves representing either diffuse interfaces or solitons. Indeed, the
system of differential equations governing planar traveling waves reduces to a planar Hamiltonian
system, for which a simple phase portrait analysis exhibits heteroclinic/homoclinic orbits; see
[5] for more details. This is why in what follows we consider a smooth reference solution (p,u)
whose derivatives have a sufficient decay at infinity * (see Theorem 6.1 for more details). Our
main result is the following, where C* stands for the Holder space of index «.

Theorem 1.1 Take N > 1. For initial data (po,uo) € (p,u) + HTI(RY) x HS(RY) with
s>1+ % and po taking its values in a compact subset of J,, there exists T > 0 and a unique
solution (p,u) of (1.1) such that (p,u) — (p,u) belongs to

ES = C([0, T); HTYRY) x H¥(RM)) n¢*([0, T]; H~HRY) x HS72(RY)).

Besides, (po, o) — (p,u) maps (continuously) (p,, uy) + H*t! x H* into (p,u) + E.
Finally, any solution (p,u) on [0,T*) x RN which belongs to ES. for all T < T* and satisfies
p([0,T*) x RYN) cC J,, supseio,r+) |P(t)lca < 00 for some a >0 and

T*
| 0 e w(O) v o)) bt < o0

may be continued beyond T™ .

Remark 1.1 The system (1.2) is obsviously time-reversible. Therefore a similar result may be
stated for megative times.

Remark 1.2 [t may be shown that for data which are perturbations of size 1 of a traveling
profile, the lifespan is of order (at least) —logn (see Remark 6.1).

2 An extended formulation for the Euler-Korteweg model

We expect the Euler-Korteweg system (1.2) to have smoother solutions that the Euler system
(corresponding to K = 0). However, this is far from being easy to prove, as the third order
terms do not imply a clear smoothing effect. Additionally, we also have to cope with the (high)
nonlinearity (for nonconstant K ) of those terms. Our strategy is to consider an extended system

!'Note that this reference solution might of course be merely a constant.



involving Vp as a new dependent variable. It appears that the “good” new dependent variable

is not the gradient of p itself but
K
W = N vp7
p

whose dimension is a velocity, like u. The corresponding extended system contains a (degen-
erate) Schrodinger equation for the complex valued vector-field z := u + ¢w, with variable

coefficients depending on
a:=+/pK.
This follows from easy manipulations on (1.2), as we show now.
Observing that w = VL with L := L(p) and £ being a primitive of the function p —
a(p)/p, we first write an equation for L. Multiplying the first equation in (1.2) by a/p, we

easily get
0L +u*-VL 4 adivu = 0.

By differentiation in space this readily gives
ow + V(u*-w) + V(adivu) = 0.

And since w = L/(p) Vp and K = pL'(p)?, we have
Lo 2 . Lo
KAp + §Kp Vol = adivw + i\w\ .
Substituting this equality in the second equation in (1.2), we end up with the following system

= _v.gOv

for (u,w):
gu + (uw-V)u-V (§wP) —V(adivw) =
{ ow  + V(iu*-w) +V(adiva) = 0.
Using that w is potential, we may rewrite
V(iu"-w) = (u*"-V)w + (Vu) - w,
V(W) = (w*-V)w + (VW) - w = 2(Vw) - W,

hence the above system reduces to the following equation for z = u + iw:

Oz + (0" -V)z+i(Vz)-w + iV(adivz) = —Vygp.
Finally, since we have assumed K positive, the function £ is invertible. So we can change the

dependent variable p into L, and introduce
—pgo(p)/alp) and gy =qoL™".

ag=ao LY, g(p) =
Eventually, the Euler-Korteweg system (1.2) is equivalent to the extended system

{ OtL +u* - VL + ay(L)divu =0,

(ES)
Oz + (u*-V)z +iVz-w + iV(adivz) = ¢(L)w,

together with the compatibility conditions Imz = VL =w and Rez = u.
In what follows we shall always assume that the functions ay and ¢y are smooth functions

defined on an open interval J := (J=,J%) C R with J* := [,(J;E).



3 A priori estimates for the linearized equations

Here we focus on the second line in (ES), and more specifically on a “linearized” version of that
equation. Namely, we consider real-valued vector-fields v and w such that w = a(p)V log p for
some function p which satisfies

(T) Op + div(pv) = pg,

and we look for a priori estimates on a complex valued vector-field z satisfying the linear
(degenerate) Schrodinger equation

(LS) Oz + (V*-V)z + iVz-w + iV(adivz) = f.

(Note that (LS) is genuinely linear, as we do not assume here the compatibility relation Imz =
w.) Of course we are interested in estimates without loss of derivatives on the source terms g
and f.

3.1 The energy equality

The “natural” method which would consist in trying to estimate ||z||;. by multiplying (LS) on
the left by z* fails because of the term Vz-w. In fact, it is most natural to estimate H\/f)z
recalling that

li2
Klpou) i= [ (olal? + “2190P) do = § [ plaf da.
Denoting ¢ := /p and using the fact that ¢ow = 2aV ¢y, one gets the following equation
for Z := ¢pz
DZ + iV (adivZ) = F + (Dy¢o)z + i(V(a Doy - z) + (adivz) Vg — 2aVz - V)

where F := ¢of and Dy := 9y + (v*- V).
On one hand, equation (T) insures that

1 .
(Dido)z = 5(g — divv)2,
on the other hand, easy computations yield
V(aDéy - z) + (adivz) Vo — 2aVz - Vo = ¢ V(aDo) - Z + (adivZ) Vog ¢ — aV'Z - V log ¢o.

We eventually get the following equation for Z:

V(GD¢0)
Po

To get an L2 estimate for Z, it now suffices to multiply (3.1) on the left by Z*, to take twice

the real part and integrate over RY . After integrating by parts, the left-hand side reduces to

(3.1) DiZ + iV (adivZ) = F + (g—divv)% —H’( > - Z —iaVoZ - Vlog ¢y.

d .9 .
— I1ZIIt2 —/|zy2d1vvd:c.

Since ¢ 'V (aDgy) is real symmetric (as a combination of V2p and Vp- Dp) one easily gathers
that

Tm /z* - ¢5'V(aDgy) - Z = 0.

Finally, one may apply the following lemma to the last term in (3.1).



Lemma 3.1 For all W € CY(RY;RY) and Z € C1(RN;CN) tending to 0 at infinity,
2i Im /Z* -VoZ - W dx = /Z>k ccurl W - Z dx.
Proof. Integrating by parts, we get

2iIm /z* VZ -Wdz = /(Zj(ajz’f) Wk — 73 (9;ZF) W*) da

= /((din) Z*W — (divZ) W*-Z) dx +/Zfzfc(ajW’“ — OW7) da,

where we have used Einstein’s convention on summation over repeated indices. O

Now, Lemma 3.1 applies to W = aVlog¢g = %w, which is curl-free by assumption.
Therefore, Egs (3.1) and (T) eventually imply the equality

d
yn 1Z|3. = /g|Z|2da§+2Re /Z*'Fda:.

This is reformulated in the following.

Proposition 3.1 Let z be a solution to (LS) with a = a(p), w = aVlogp for some function
p which satisfies Oyp + div(pv) = pg. Then we have

d
%H\/EZH; :/PQIZIQd:L“-I-?Re /pz*~fd9c.

3.2 Higher order estimates

In order to get H® estimates for z, we apply to (LS) the fractional derivative operator A®*. We
get

DNz + iVAz-w + iV(adivA®z) = A + [v7, A*]0;z + i[w’, A*]V27 + iV]a, A¥]divz,

where we have used again Einstein’s convention on summation over repeated indices, and de-
limiters [, | stand for commutators. Up to the three commutator terms in the right-hand side,
this equation for A®z resembles the one we have for z.

On the one hand, as far as v and w are smooth enough, we do not have to worry about
the first two commutators. Indeed, Lemma A.2 in the appendix insures that they are of order 0
with respect to A®z. On the other hand, the last commutator induces a loss of one derivative.

According to symbolic calculus (using the Poisson bracket of a and A, see for instance [1],
p. 38; also see Lemma A.3), we easily find that for a smooth enough, the principal part of the
commutator [a,A®] is s Da - A*~2V. Now, writing Vdiv = AQ where Q is the L? orthogonal
projector on potential vector-fields, we observe that

A*72Vdiv = A5 2AQ0 = —A°Q + A5 2Q.

Using that A*~2 commutes with V and div, we thus see that, up to a remainder term of order
0 with respect to A°z, we have

V]a, A]divz = —sV2a - QA®z — sV (QA®z) - Va.

Note that the first term sV2a - QA®z is also of order 0 (precise estimates will be given later).



Following the line of the previous section, we introduce the functions Zs := ¢gA°z and
F, := ¢poA°f. After a few calculations, we eventually get

(3.2) DyZg + iV (adivZ,) = Fy+ (g — divv)Z: +ig, ' V(aDey) - Zs
—iaVoZs - Vog oo — ispoV(QA®z) - Va + Ry,

with R := ¢g (R1 + iRy + iRg — isV2a - QA®z + isV2a - QA 2z + isVQA* 2z - Da) and

Ro = V(adivA®z) — A*V(adivz) — sV(Da - Vdiv A 2z),
R1 = [vj, AS]BjZ,
Ry = [w!,As]V2I.

Unfortunately, the last but one term in (3.2), G := V(QA®z)-Va induces a loss of one derivative.
However, one can try to cancel out this bad term by estimating ¥;Zs; with ©¥s; a convenient
positive function of p (that we shall call a gauge after the one-dimensional case treated in [4]).

Rewriting G = VA®z - Va — VPA®z - Va where P is the L? projector on divergence-free
vector-fields, and computing as in the case s = 0, we get the following equation:

Dt(%Zs) +iV(adiV(1/JSZS)) = ws(Fs"i_Rs‘i‘iS(bowSV’PAsz . VCL) + (Dt 10g¢§+g—divv)ws2zs
[(V(aD¢o) = V(aDs) <as)> } ' | <1/1s)
il (FR T a9 ogveptos () ) )]+ ia%atvz) - V1o
2
—H'adiv(szZS)Vlog(ifz)_

This looks rather complicated. For clarity, we shall first deal with the case when z is curl-free.

3.2.a Higher order estimates in the potential case

We assume here z is potential, that is curlz = 0. This will make possible a “direct” estimate
of YsZs, provided that 1 is well chosen.

First of all, in the previous equation for D;(¢sZs), the term V(PA®z) - Va vanishes. Fur-
thermore, multiplying that equation on the left by sZ7%, taking twice the real part, integrating
over RY and using Lemma 3.1 and that a, ¢o and 1), are functions of p, we discover that the
second line above has no contribution, that the terms corresponding to the first line may be
computed exactly like in the case s = 0 and that the last line is non zero (hence entails the loss
of one derivative) unless 12 is proportional to a®.

We thus set ¥, = a2. As
spa’(p)

a(p)

Dp? = (g — divv),

we eventually obtain the following equality:

a

/
—s/p(a)(divv)|¢szs|2d:v+2Re /¢§z;.Rs dz.
a(p

In order to conclude, we need that p and a be bounded and bounded away from zero. In
what follows, we shall assume the following.

d . spa’
(3.3) an%zsné = 2Re /w?zs-Fs+/g (1+ P >|1/}8Z3|2dx

(H) 0<p<pt,z)<p<oo and 0<a<a(t,r)<a<oo for (t,x)ec[0,T]xRY,



This obviously implies that _
Tl = || voas A%a]|,,

defines a norm on H?, equivalent to the standard one. We claim that the equality (3.3) combined
with the commutator estimates of the appendix leads to the following.

Proposition 3.2 Let z satisfy equation (LS) with a = a(p) and w = aVlogp for some
function p such that Oyp + div(pv) = pg. Assume that (H) is satisfied and that curlz = 0.

o If —N/2 < s< N/2+1 then the following estimate holds true for all t € [0,T]:
N . t R
(3.4) [2(t) . < 7 Jo A (HzouHs + / el AT (1) 1y df)
0

with HZHHS = ||V/pa® A®z||;2, C depending only on N, s, p and p, and

A) = [lg®)llpee + [1Pa@)][Le + DV (D)]] +Dw ()]l + [ V2a(t)|

N N N .
H2 NLe° H?2 NL*° H?2 NLe°

o [f s> N/2+1 then (3.4) holds true with

A) = lg® I + I1Da() e + 1DV (O lgsa + 1DW () g + V() o

o [f, additionally, v = Rez and w = Imz, then we have for all s >0
~ t ~ t - , J~
(3.5) [2(8)l. < oo A (HZOHHS + [[eclarie e, df)
0

with A(t) = 1+ ||g(t)|| L + | D2z(t)||;, , provided the function ay :=ao L™ is in WoT:
with o the smallest integer such that o > s.

In the particular case where g =0 and f = q;(L)w for some g4 in Wothee “we have
~ t ~
(36) f(t) . < o8 (41D e g

Proof. This is only a matter of bounding the remainder term R;.
Clearly, we have for all s € R,

(3.7) ||V?a- QA% ,+||V?a- QA° 22|, +||VQA*?z- Da||;» < (|| D?al| - + 1Dall o) 12l

where it is understood that (in what follows) the notation A < B means that A < C'B for some
harmless constant C.

Bounding the remainders R;, Ro and Ry relies on the results of the appendix. We have to
proceed differently according to the value of s.

Let us first assume that —N/2 < s < N/2 4+ 1. Applying the inequality (A.6) we get

(3.8) [Rillex < IDv]y [ Daly .
(3.9) IRalle < IDwl,y . _[|Dallyecs.

For bounding the commutator Ry, we apply Lemma A.3 with u = divz and m = 1. We get

(3.10) IRollpz S 1IV2all

¥ V2
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Plugging (3.7), (3.8), (3.9) and (3.10) into (3.3), we end up with

1d~ 2 ~ ~
(3.11) 5 lzlns < llzlp: £l

~ 2
2
+Cllals (gl +IDally + 1DV +IDWl| x4Vl y )

for some constant C' depending only on s, N, p, p, and on the function a.

If s >0, we apply the inequality (A.7) to v/ and 8jzi, or w/ and 9;27, and obtain
(3.12) [Rillr2 S 1Dzl [[DV]lgs-1 + [ DV (00 |1 D2]| a1,
(3.13) IR2llp2 S 1Dz Loo [|DWlgss + [[DWI| o0 [ D2]|s-1-

For Ry, the second part of Lemma A.3 (with u = divz and m = 1) yields

(314) ||R(]”L2 < HleZHLoo Hv2a”H5_1 + HVQG‘HLOO HdiVZHHs—l.

~

Plugging (3.7), (3.12), (3.13) and (3.14) into (3.3), we end up with
~ 92 ~ ~ ~
(3.15) g llzlus < lzlg:fll: + Cllzlys Dzl (1DV]ge + [ DW e +[Vallges )

~ 2
+Cllz]l s (19l + 1 Dall e + DV | oo + [ DW | e +[|Val| )

for some constant C' depending only on s, N, p, p, a and on the function a.

Combining Gronwall’s inequality with either (3.11) or (3.15) (and the fact that H¥~! < L
if s > 1+ N/2) completes the proof of (3.4).

Let us now assume that z =u+iw and s > 0. Remind that w = VL with L = £L(p) and
that a = a3(L). On the one hand, by Proposition B.1, we have

IV2aller < CIIDW o1

On the other hand, we have V2a = af(L)VL - DL + ay(L)Dw so that by the interpolation
inequality

(3.16) IDL[} s < ClILllo0 || V2L o -

we get
ID%]), . < ClIDW]  and [ Dale < C(1L+ [ Dw]; )

for some constant C' depending only on the function ay and on the bounds for p.
Inserting the above inequalities in (3.15), we end up with

ld~ 2 ~ ~ ~ 2
5 gl2ls < llzllp £llas + Cllzlgs (gl + 1Dzl ) 5

which gives (3.5) by Gronwall’s lemma.
The proof of (3.6) stems from Corollary B.2 and Gronwall’s lemma. The details are left to
the reader. O

3.2.b Higher order estimates in the general case

This section is devoted to the proof of estimates in Sobolev spaces for equation (LS) in the
general case. The counterpart of Proposition 3.2 is the following 2.

*Below, it is understood that [|-||g—a = |||/ if @ = 0, and that [|||—« is the norm in the Besov space
B if a > 0 (see the definition in [17]).
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Proposition 3.3 Let z satisfy equation (LS) on [0,T] x RY with a = a(p) and w = aVlogp
for some function p such that Op + div(pv) = pg Assume that (H) is satisfied and that s > 0.
Then the following estimate holds true for all t € [0,T] and a € [0,1):

(3.17)

l2(t) I < C(!ZoIIQHs +/0 () s 12 () s+ A (7)) dr + HDP(t)H%aHZ(t)HQst)

for some constant C' depending only on N, o, s, p and p, and A(t) equals

lg@®)lle Do) e DV - AHIDWEy D@y i s < 5+,
lg(®)lloe + Do) [Loe + DV (Bl gt + [DW (E) | ges + 11D p() [ 11 if s>%+L

If besides v = Rez and w = Imz then inequality (3.17) holds with
(3.18) A(t) =14 [lg@)llpe + [1D2(1) Lo

provided ay := a o L1 is in WoT2> with o the smallest integer such that o > s.
In the particular case where g =0 and f = qs(L)w for some g4 in Wothe " ywe have

t
(319)  [a(0)]3 sc(uzOH%s+ | @+ 1Dal dT+HW(t)H?:—aHZ(t)H?Is—ua)-

Proof. Denoting 9 := a? as in the potential case, the equation for s reduces to
(3.20)  Dy(vsZs) + iV (adiv (1sZs)) = ¢s(Fs + Ry) + 5 (Dylogh? + g — divv) ¢, Z,
i (VlaDo) L V@PLDY - (1,2,) — iaVo(Zs) - V og(d0ts) + isdth, VPAZ - Va.

0

We observe that in the general case (curlz # 0) the last term in (3.20), VPA®z-Va is responsible
for the loss of one derivative. A second gauge function will be used to overcome this problem.

As a first step, we aim at getting a bound for ||Q(¥sZs)| 2. Since Q is a projector, this
will be made by merely considering the inner product of the (3.20) with Q(v¢sZs). Indeed,
the time derivative of ||Q(tsZ,)||?> turns out to coincide with 2 Re [(Q(sZs))" - Di(vsZs) da
up to zeroth order terms. This follows from successive integrations by parts as we show now.
Recalling that Dy = 9; + (v* - V), a first integration by parts yields

2Re [(Qi20)" - Dilw2) de — 5 122

———k

= —2Re /(divv) (Q(sZs))" - (¥sZs) dx — 2 Re /aj(g(zpszs)) (s ZF)v? da.

Since YsZs = P(YsZs) + Q(1sZs), the last term can be rewritten as

/8j (Q(%Zs)) (%Z?)Uj dx :/<83(Q(1/JSZS)) (Q(wszs))kv]‘f'aj(Q(wszs)) (P(wszs))kvj)dxa
=3 [ |ewzf e+ [0 (QWZY (P(v.2)* ds
where we have integrated by parts the first term, and used the property curl @ = 0 in the second

term. An ultimate integration by parts in the latter combined with the property div’P = 0
eventually leads to

2Re / (QsZs))" - Dy(1sZs) do — % 1Q(vsZs) 12 = — / (divy) | Qs Zs)|* da
—2Re /(divv) (Q(sZs))" - P(¢sZs) dx + 2Re /(P(wszs))* Vv - Q15 Zy) du,
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whence

. d
(3.21) '2Re/(g(¢szs» - Di(sZs) dx — i HQ(wsZS)H%ﬂ < CDv|pe |2llgs 1Q(1sZs) |12 -

Now, (3.20) implies that Re/(Q(q/JSZS))* - Dy(YsZs) dx =

SZS
/ Q(YsZ s)) (11)3( R;) + (D;log 11)3 +g—divv) ¢2 ) dx
_ Im/ Q . (a£¢0)+ (aDws ) . (wszs) diE

+1m [ (Q0.2.))" avows s>-v1og(¢ows)—s¢owsvm8z-w) dz.

We have used here the property QV = V, which shows the second term in the left-hand side of
(3.20) has no contribution. In the above equality, the first term in the right-hand side can be
estimated exactly as in the potential case, and the second term is harmless: since a, ¢y and g
are functions of p, it is easy to show that

(3.22) ‘/(Q(@bszs))* - (Tlabon) | T@Pv)) . (y,Z,) dx

SID? | oo N2l | Qs Zs) I -
The last term requires more work. Its principal part will turn out to be

1

3 Im/paerl (QA%z)" - VPA®z - Vlog(pas)) dx,

after several manipulations, integrations by parts, and commutator estimates. We first use
Lemma 3.1 and rewrite

Im/ Vo(ws s)-Vlog(oos) de = — Im/ ))*.Vg(wszs).Vlog(¢o¢s) dx
Using again the property divP = 0 and integrating by parts we see that
— Im/ V(1sZs) -V log(poths) dx = Im/ (VsZs)) - D(aV log(dows)) - (VsZs) dx

is another harmless term. So the principal contribution of V¢ (1¢sZs) comes from div (¢sZs) Ion .
Recalling that ¥s = az and Zy = ¢o A® z, this leads to

‘Im /((Q(@ZJSZS))* -Vo(sZs) - Viog(poths) — (divA®z) (P(wszs))*.v(%%)) a dr

S D%l Nzl

or, using once more the property divP = 0 and integrating by parts,

‘Im /((Q(¢SZS))* : VO(wsZs) : VIOg(¢O¢s) - (QASZ)* : V,P('Qbszs) . V(@o@bs))adiﬂ

S D]l o 2l

As VP is a homogeneous Fourier multiplier of degree 1, Lemma A.4 insures that

(3.23) IIVP, ¢ots] A2z < 1D (¢0ws )l Loo 12l
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Therefore we have

(3.24) ’ Im/((Q(z/zSZS))* Vo(1hsZs) - Viog(pots) — potos (QA®z)" - VPASz V((;Sows)) adr

SID%l Nzl

In order to find the principal contribution of the last term in (3.20), we also integrate by parts
and get

'Im /<¢ows(9(wszs))* -VPAz - Va — ¢gip2divA®z (PA®z)* - w) dz| < ||D?p| o llIF:

or, thanks to a second integration by parts,

'Im /(qﬁozps(g(wszs))*.VPASZ.Va— ¢3¢§(QASZ)*.V7>ASZ.W> dz| < ||D?p|| o 12|

Plugging (3.21), (3.22), (3.24) and the above inequality in (3.20), we conclude that

d *
G25) LWz =2Re [(Q(6.2.) v Fuds
+1Im /pa5+1(QA5z)* - VPA®z - Vlog(£) dz + R,

where the remainder term Rs may be bounded by taking advantage of the error bounds in (3.7),
(3.8), (3.9), (3.10), (3.12), (3.13), (3.14), (3.21), (3.22) and of Proposition B.1. More precisely,
one has

2 .
(3.26) [Ral < (IDvll y . HIDWI x  +1D%] 5 +lglle) lale if se(—3 ¥ +1),

(3:27) [Ra| < (DY, Dw, D*0) s [ Dl lzllye + [[(Dv, Dw, D?p,g)|, 12l it 5 > 0.

In what follows, we denote by Rs any term which may be bounded as in (3.26), (3.27).
The bad first term in the second line of (3.25) is unlikely to vanish. This motivates us to
look for a second gauge ¢ pertaining to the solenoidal part of z. We have

Psls

Dy(¢sZs) + iV (adiv(psZs)) = ¢s(Fs + Rs) + (Dylog ¢2 + g — divv) 5

_H[(V(GD(?O) +V(GD¢S) + aV log ¢ Dlog((z;)) : (¢szs)}

¢0 ¢s
Ps ¢

+ia(Vo(¢SZS) Vlog(ec) + div (6,2,) Vlog(:

In order to get an estimate for |P(¢sZs)|| 2, we take the real part of the inner product of the
above equality with P(¢sZs). For the first term, we get after several integration by parts,

)) + ishods VPA’z - Va.

d

2Re / (P(6s2.))" - Di(6:24) da = — [P(6. 202

—/divv]P(chZS)]zdx—QRe /(P((;SSZS))*.VV.Q(q&szs)dx,

hence

(3.25) 2Re [(P(6.2.)" - Dil0n2) do = 5 P02 + ..
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The next term, namely V(adiv(¢sZs)), is a gradient, hence has no contribution. The remainder
term R and the next two terms (which are of order zero) may be bounded as in (3.26) and
(3.27). Now, by performing several integration by parts, one can easily check that

2

/(P(¢SZS))* . [aVo(QﬁsZs) . V10g< 05 > + adiv(ngZs)V10g<¢8> + 5¢0psVPA°z - Va| dx

poa’ a®

= [ adiv(6.20) (P(6.2.)" - T 108(606) do + R..
Combining integration by parts and Lemma A.4, one can (up to a harmless remainder) replace
div (§sZs) (resp. P($sZs)) by dodsdivA®z (resp. dodsPAz). We end up with
355 P62 = Re [(P(6.2.)" 6., do—1im [ pad?(QA%2) VPA'2T log(06.) di+R..
Adding up inequality (3.25), we conclude that
1d

L (PR 1)) = Re [(PO2) 6+ (@) bR i

1
+§ Im /pa(QAsz)* -VPA°z - <asv log (&) — gb?Vlog(png)) dr + Rs.
It is now clear that ¢s has to be is chosen such that

a*Vlog(&) — 43V log(pe3) = 0.

Hence we set

(3.29) ¢s(p) =

where A stands for a primitive of a® — pdipas which is positive on [p, p].
Let us write the equality we eventually get

Ldy

B30 gl = Re [(PG.20) - 0.F. + (Q6.2.) - 0iF.) do + R,

with R, satisfying (3.26), (3.27) and |z||, := \/ [P (hsZs)|72+ Qs Zs) |72 -
Let us focus on the proof of (3.17). Integrating (3.30) and appealing to (3.26) and (3.27)
(and to the embedding H® < Lip if s > N/2 4 1), we get

_ 9 - o t t
(3.31) vt € 0.7, Tz < Jaol” +2 /0 Tall TN, dr + C /O Allz|. dr

where the function A has been defined in (3.17)
In order to bound ||z||;;. , we have to compare ||z||, and ||z|/;;s . On one hand, the assumptions

in (H) insure that ¢, and v, are bounded, hence ||z||, < |/z||ys. On the other hand, since p,
s and ¢s are bounded away from zero, we have

lzlly: < ||VPdsPA| ., + ||\ /vsQA%Z|
S P82z + 1QWsZs) 12 + || [P, /bl A2 2 + [|[Q, A A%Z]| - -

Taking advantage of Lemma A.4 for bounding the two commutators, we conclude that
(3.32) iz, < 1zl < C(lll, + 1 Dpllgall2lgerre)

whenever a € [0,1) (with the convention that || Dp||co = ||Dp||j if @ =0).
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Now, inequalities (3.32) and (3.31) enable us to conclude that for all ¢ € [0,7], we have

t t
2 2 2 2 2
HZ(t)HHsS!ZoHHer/O 111555 1] s dT+/O Allzllgzs dr + [ Dp(t) [ c-all2(E)][fs-1+a-

The proof of (3.18) and (3.19) relies on (3.27) and on section B of the appendix for getting the
desired expression for A in (3.31). The details are left to the reader. O

4 A fourth order approximate model

In order to solve the Euler-Korteweg model (1.2), we make use of a fourth order regularization
of the extended formulation (ES). More precisely, for £ > 0, we introduce the following system:

OL: 4+ u - VL +ay(Lo)divue + eA?L, =0,
(ES:)

Wz + (0} -V)z: +iVz. - we +iV(ay(Le)divze) + eA?z. = gy(Le)we,
with u. = Rez. and w. = Imz.. Remark that we do not impose any compatibility relation
between L. and z..
4.1 Local existence

In the present section, we aim at proving the existence and uniqueness of local H* solutions for
(ES;) in the case € > 0. Let us first define what we mean by a H® solution.

Definition 4.1 Let ¢ > 0. Let Ly € L be valued in J and such that DLy € H%. Assume
that zg € H®. The couple (L.,z.) of functions defined on [0,T] x RN s called a H® solution
of (ES;) if L is valued in a compact subset of J, (L., z.) satisfies (ES.) with data (Lo, z¢) in
the sense of distributions,

(L. — Lo) € ([0, T); H*™Y), (DLe,z.) € C([0,T];H%) and e(DL.,z.) € L?(0,T;H*"?).

Theorem 4.1 Let s > 1+ N/2 and € > 0. Let Ly € L*> be valued in a compact subset a J
and such that DLy € H®. Assume that zg € H®. There exists a positive T such that (ES;) has
a unique H® solution (Le,z.) on [0,T] x RY.

Proof. Take L < L and n > 0 such that [L, E} cCJand L+n<Ly< IL— 7. In what follows
we denote by (S;);>0 the analytic semi-group associated to the operator —A? (hence (Set)i>0
is the semi-group for —eA?), and use repeatedly the standard estimates

1
(4.1) 1S<t follyge ey + €2 1D? Szt folliz sy < Cll follgs
t 1ot 17

(4'2) Hfo Sa(t—'r)f(T) dTHL%O(Hs) te2 Hfo Sa(t%)f(T) dTHL%(Hsﬂ) <Ce zel ||f”L%(H9—2)
for t < T, where the constant C' > 0 is independent of € > 0 and T > 0.

For convenience we introduce the shortcuts Ly(t) := St Lo and zy(t) := Seyzo.

For T > 0, we define the Banach space

Er = {(L,z) | L ec(o,T); ") N L0, T; H*) and z e C([0,T]; H°) N LQ(O,T;H‘*Q)}

endowed with the norm

. i . 1 . 1 .
(L, 2)|| 1, == ”LHL%O(HSH) + HZHL;S(HS) te2 HDQLHLZT(HsH) tez HDQZHLQT(HS)'
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We also consider the subset ErT]ZR of (L,z) € Er such that |L] <n/2 and ||(L,Z)HTE <R.
Finally, for (L,z) € EL", we define ®(L, %) := (®1(L,2), ®2(L, %)) by

t
Oy(L,2) = — / Setir) (u* VL + aﬁ(L)divu) dr,
0
t
Bo(L,2) = /0 Setir) (qﬂ(L)W — (U V)z—iVz-w— z'V(aML)divz)) dr

where we denoted L := Ly + L, z:=27;+ 2z, u:= Rez and w:= Imz.

Let Ry := ||VLo|lys +1Zollys- We claim that @ is well defined and has a fixed point (L, %) in
E?’RO for suitably small (positive) T'. This will readily entail that (L, z) satisfies the existence
part of Theorem 4.1.

Boundedness of ®
Remark that (4.1) insures that
(4.3) vt € RY, || Lo(t) |l gpsrr + ll2e(t)lgzs S Ro-

Next, by definition of L,, we have
t
Lg(t) — Ly = —6/ Adiv (VL@) dr.
0

Hence, by virtue of Sobolev embeddings (remind that s—1 > %) and Cauchy-Schwarz inequality,

1
IZe(t) = Lollp oo < CllLe(t) = Lollgs—r < CeT2 [ D*VLe| 2 155)-

Taking advantage of the inequality in (4.1) with fp := VL, we conclude to the existence of a
constant C'= C(s, N) such that ||L,(t) — Lol <7/2 whenever

(4.4) C(ET)%RO <.

From now on, assume that 7" has been chosen so that condition (4.4) is fulfilled. This ensures
that ®; and ®, are well defined for any (L,z) € E%L™.
By virtue of the inequality (4.2), we thus have

. 1 . _1 % .
H(I)l(va)HLg?(HSH) +e2 H‘I)I(LZ)HL;(HHS) Se2efut - VL aﬂ(L)dlvu‘|L2T(HS*1)’

. 1 L
[ P2(L, Z)HL%"(HS) +e2[|@y(L, Z)||L2T(HS+2)

<e 2| qy(L)w — (u* - V)z — iVz - w — iV (ag(L)diva)|; 2 ggo-2)-

The right-hand side of the first inequality above may be bounded by using Proposition B.2 and
that H*~! is an algebra. We get

L 1 L _1
(45) B2 8)l| e o)+ €21121(E,2) | 3 aoss) < CeTe ™3 (1 [ DL e o) ll e

for some constant C' depending only on L, E, s, N and on the function ay.
Proposition B.2 combined with the fact that H~! is an algebra also yields

las (L)W o2 < Nas(L)Wllgeos S (14 [ DL gro—2) [ Wl o1,
[(u* - V)2l + V2 - Wz S |25,
1V (a5 (L)diva) || < llaz(L)divally. . S (1 + [|DL]ges) |12l
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whence,
. 1 . 1
(4.6) [@2(L, 2) | oo (m1sy + €2 [|P2(L, 2) | L2 (542 < Ce*e™2 (1 + 1zl g0 (11-1)) 121112, 1)

Combining (4.3), (4.5), (4.6) and Cauchy-Schwarz inequality, we infer that there exists a constant
C independent of €, Ry and T', and such that

. T
9L, D)7 < O™/ ZRo(L+ Ro)

whenever (I,z) € EL™ and condition (4.4) is satisfied.
Since ||®;(L,z < C||®1(L,2)]||;ys—1 , we conclude that ® maps EL™ in E%™ provided
. H T T

the following two inequalities are fulfilled:

T
(4.7) CVTeRy <n and Ce’y/ zRo(l + Rp) < min(n, Rp).
for some constant C' independent of Ry, € and T'.

Contractivity of &
Let (L1,21) and (L2,22) be in B with T satisfying (4.7). We have

t
[®1(La,22)—®1(L1,21)](t) = —/ Se(tr) (5u* - VLy+uj - VAL + dadivug + aﬁ(Ll)divéu) dr
0

with the notation da := ay(L2) — a4(L1), 0L := Ly— Ly, and du:=1s — 0.
Applying (4.2), we get

191(La, 22) — @1(La, 1)y go gy + £3(|®y (Lo, 2) — ©1 (L1, 21) |2 1042
< CeTe2 (Hdll* - VLa|lL2 o1y + luy - VOL| 2 (gro-1y
ld div s 3 gge-y + lag(Ea)dival 5 gy )
Since H*~! is an algebra, we have by virtue of Cauchy-Schwarz inequality

[l6u™ - VL[ (o1
[l - VALl 2 (51

1

T H&IHL%O(HS—l)HVL2HL°T°(HS—1)7
1

CT2Ju || poo (grs-1) [IVOL| oo (grs-1) -

<
<
Taking advantage of Corollary B.3 and of the embedding H*™! — L we get
o divuuz|gs < C(1+ [ DLillies + 11D Lol ge) div s |y 165 o
Applying Proposition B.2 yields
llag(L1)divéul|yge—y < C|ldivéul|gge (1 + |[[DL1[|ygs—2)-

Therefore, we eventually have

(4.8) |®1 (Lo, 22) — q)l(Llazl)”L%’(H5+1)
+e3|®1(La, 22) — D1(Ln, 21)||Lz (ms+s)y < CeTE\/?(l + Ro)?|| (6L, )|,
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Similarly, we have

[@2(La, 22) — o(Ly,21)] (t) = /O Se(t-r) ((Qﬁ(L2) — qy(L1))w2 + g4 (L1)ow — (du” - V)z2
—(u} - V)& — iVzy - du — iViz -y — iV ((ag(La) —as(Ly))divuy) — iV(aﬁ(Ll)divdu)) dr.

By using the results of the appendix, we discover that <I>2(L2, Zy) — @Q(Ll, z1) may be bounded
by the right-hand side of the inequality in (4.8). The details are left to the reader.
We conclude that there exists a constant C’ independent of Ry, T and 7, and such that

. - T
|®(La,20) — ®(L1,21) || < Cle” \/Z(l + Ro)?|| (0L, 02)]| .

It is now clear that if 7 has been chosen so that (4.7) holds true and 2C’e’® \/g(l + Ro)? <1

then ® is a contractive map on E;},’RO. Applying the contracting mapping theorem thus yields

a fixed point (L,z) € EgJRO for the function @.

Uniqueness

There is a very strong similarity between the proof of uniqueness for (ES.) and the proof of
contractivity for ®. Indeed, let (L1,21) and (Lg,z2) be two H* solutions of (ES.) on [0, T]|xRY.
Denote 0L := Ly — L1 and & := z9 — z1. We have

815514 + €A25L = —u; . V(5L — 5[1* . VLl — (aﬁ(Lg) — (Iﬁ(Ll))diVUQ — aﬁ(Ll)divéu.

By following the arguments used in the proof of the contractivity of ®;, we see that the
L2(0,¢; H*~1) norm of the right-hand side above may be bounded by

1
Ct2 (14 IV Lo sy + IV L2llge sy ) {10210 1oy 0L Lo (115 + [0l oo (116 ) -
£ (H?) & 7 (H?) 7 (H2) &

Hence, denoting

Ri= max(IVLil ey + 12l e )

we end up with

1 t
IOLI oo (e+1) + €2 | D2OL| 3 g1y < C\f (1+R)?|(L, ).

A similar bound holds for d. Hence we eventually get

t
vt e [OvTL H((SLﬂ&)Ht,s < C\/?(l + R)2H(5L7 &)”t,s'

This obviously entail (6L, ) =0 on [0,¢] whenever ¢ satisfies Cetg\/g(l + R)? < 1.
Arguing by induction, we conclude that (JL, &) =0 on the whole interval [0,77]. O

Remark that the proof of Theorem 4.1 supplies the lower bound C'min(e, e~1) for the time

of existence, with C depending only on the regularity parameters, on L, L, n and on the H?
norm of VLy and zg. By virtue of uniqueness, we thus easily get the following

Proposition 4.1 Let s > 1+ N/2 and (L,z) be a H® solution of (ES.) on [0,T'] x RN for
all T" < T, such that L([0,T) x RN) cc J and (DL,z) € L>(0,T;H*). Then (L,z) may be
continued beyond T into a H® solution of (ES;).
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The following corollary of Theorem 4.1 will help us to solve the Euler-Korteweg system.

Corollary 4.1 Take s > 1+ % and € > 0. Let Ly € L be valued in a compact set of J and
satisfy DLg € H®. Assume that ug € H®. There exists a T > 0 such that system

L +eA’L +u* - VL + ay(L)divu = 0,
(EK;)

du+eA?u+ (u*-V)u— V2L VL — V(ay(L)AL) = ¢;(L)VL,

has a unique H* solution (L,u) on [0,T], with L wvalued in J, (L— Lo) € C([0,T]); H*),
DL € L%([0,T);H**2) and u € C([0,T); H*) N L2([0,T); H**2). If besides curlug = 0 then
curlu=0.

Proof. Let us denote zp := uy + iVLy. Applying Theorem 4.1 supplies a (unique) local
H* solution (L,z) to (ES.) with data (Lg,zo). Consider w := Imz. A straightforward
computation shows that

d(w—VL)+ (u*-V)(w—VL) + Vu - (w—VL) +eA*(w—-VL) =0,

hence

Sl — VIR < 5 ldival e [w ~ VL2 + [Vl fw ~ VLI
Since w and VL coincide at time ¢t = 0, Gronwall’s lemma entails that w = VL. We conclude
that (L,u) is a H® solution to (EK;).

Uniqueness easily stems from Theorem 4.1. Indeed, given (L1, u;) and (L2, uz) two solutions
of (EK.), we notice that (Li,u; +iVL;) and (Lg,us +iVLs) both solve (ES.) with the same
data, and thus coincide.

Next, applying the curl operator to the second equation of (EK.) yields

drcurlu 4 (u* - V)curlu + eA%curlu 4 Du - curlu + curlu - Vu = 0.

A basic energy method gives

1d 1
ST chrlu||i2—|—5 ||Acurlu||ig—§ / |curl ul2divu d:v—{—/ curlu : (Du-curlu+curlu-Vu) dz = 0,
whence
1d 2 2 (1, ..
o ewrtul, < fleurtul, (5 Idivaly + 2 Dul ).
It is now clear that curluy = 0 entails curlu = 0. O

4.2 Uniform a priori estimates

In the present section, we aim at proving a priori estimates independent of € for the linearization
of the fourth-order system (ES;).
Our main result is the following.

Proposition 4.2 Take ¢ >0 and s > 0. Let (L,z) be a H® solution of

oL+ v* - VL + ay(L)divv + AL = 0,
oz + (v V)z +iVz-w + iV(ay(L)divz) + eA%z = f + cAh.
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a:= ay(L)) satisfies (H). Then

on [0,T] x RV . Assume that w = VL and that (p := L~(L),
1)

the following estimates hold true for all t € [0,T] and o € [0

2
(49) @2 +e ! |D%| dr < c(nzo\%s

+ Jo (1€ lgs 12l +Ac 2] F + el ) dr + [lw()lIE-o IIZ(t)H%sm),

(4.10) [(vpz)()[I52 + 2 Jo [|D?2]|7 dr < ||(v/52) 0)]7
+2 J5 [1v/pzll,z || Vot dr + Ce [y (I3 + | DAL HﬁZHiz) dr,

for some constant C' depending only on N, «, s, a, a, p and p, and A.(t) =¢ HDQL HLOO
A(t) with A defined as in Proposition 3.3 in the case g = 0.

Moreover, if z=v +iw, ag € W2 h =0 and f = g(L)w for some g5 € W2 e
have

t
(4.11) IIZ(t)II?{SSC[IIZol%s+/0(1+\|DZIILoo+€IIDWIIioo)IIZII?{s dr + [[W(t) ¢ |12() [fgrso |-

Proof. The proof relies on the gauge method introduced in Proposition 3.3. The only change
is that we now have to include the fourth order term eA?z, which amounts to replacing f with

f — eA%z in (LS) and to taking g = —5% in (T).

Denote by 55 (resp. 1;5) the “incompressible” (resp. “compressible”) gauge3. Both gauges
may be seen as functions of L so let us write an equation for ®A®z with ® an arbitrary suitably
smooth function of L. Arguing as in the case € = 0, we get

Dy(®A%z) + iV (adiv (PA°z)) + cA*(PA®z) = ©(A*(f + eAh) + R,) + £ Q(®,2)

Ao dive o i (Y(@Dd) | V(aD®) i a’ :
—a®’A zd1vv+z[( %0 + 5 +aV10g<I>Dlog(§>> - (PA z)}
. ¢ ) o2
+ia (VO(CDASZ) - Vlog(—5—) + div(®A°z)V log(—— )) +is®VPA°z-Va
Ppa’ ¢

with Ry defined in (3.2), Q(®,2z) := A?(®Az) — DA%A°z — AL Az, ¢o = /p and & :=
®/,/p. In the equality hereabove @ stands for d®/dL, and we have used that

Dy® = —(adivv 4+ cA*L)®’

By going along the lines of the proof of (3.30), we obtain

el +=([Pacaca)||, + [ea@aa) ) ==,

2 dt
+Re / (P(sA%2))"- (65 A* (F+eAh) +2Q(ds, 7)) + (Q(¥sA2)) - (s A* (F+eAh) +eQ(¢s, 7)) da,

where the remainder term R may be bounded according to (3.26) and (3.27). N
In order to conclude to Proposition 4.2, we have to bound the terms pertaining to Q(¢s,z)

~ ~ 2 ~ 2
and Q(vs,2z), and to compare HPA(ngSASz)HL2 + HQA(wSASZ)HL2 with HDZZH%S. This is the

purpose of lemmas 4.1 and 4.2 below.

3Remind that {/?s = \/ﬁa% and that ;55 = A, with A, defined in (3.29).
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Lemma 4.1 Let L be bounded and F be a W™ function of L. Let Z be a H? vectorfield. Let
IT be a homogeneous Fourier multiplier of degree 0. Then for all ¢ > 0, there exists a C > 0
depending only on ¢, F, II and ||L||« , and such that

‘/ "L [ANF(L)Z) - F(L)AZ—F'(L)A’LZ] dx| < ¢||AZ|2. +C | DL} . 122

Proof. Easy (but cumbersome) computations yield

A*(F(L)Z) — F(L)A?Z — F/(L)A’LZ = 4F"(L)DL - VALZ
+F"(L)((AL)? +2V2L : V2L)Z + F"(L)(2AL|VL|? + DL - V2L -VL)Z + F"(L)|VL|*Z
+4DZ - VAF(L) +2AZAF(L) + 4D*Z : D*F(L) +4DAZ -VF(L).
Let us denote
I = /(H(F(L)Z))*-z F'"(L)DL - VAL dz,
Iy = /(H(F(L)Z))*Z F"(L)((AL)* + 2V?L : V*L) d,

Iy = [(I(F(L)Z))"-ZF"(L)2AL|VL]? + DL - V2L -VL)dz,

* ////

ZF (L)|VL|*dz,

*

.DZ-VAF(L)da,

*

.DAZ - VF(L)da.

[merwz)
[ merz)

Ig = /(H )* (AZAF(L) 4+ 2D*Z : D*F(L)) d,
[merwz)

Let us start with the study of I;. Performing an integration by parts, we notice that
I = —/(H(F(L)Z))*-ZAL div (F"(L)VL) dx — /D((H(F(L)Z))*.Z) VL F"(L)AL dx,
hence
11| S ALl (IDLIE e + 1ALl o) 1 Z]F2 + | DL oo | ALl e | 2112 (1212 | DL oo + | DZlg2)
Taking advantage of the inequalities (3.16),
(412) IDAEz < CllAll (DAl
and of Young’s inequality, we conclude that
L] < C || DL < 1ZI17 + 5 HAZHLz :
By virtue of inequality (3.16). we readily have
It < C|D2LIF L ||Z)2.  for k=2,3,4.

In order to bound I5, we perform an integration by parts and rewrite

Is = —/[VH(F(L)Z)}*-DZ AF(L)dx — /(H(F(L)Z))*-AZ AF(L) dz.
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Appealing to (3.16), (4.12) and to Young’s inequality, we easily get
2 2 c 2
1) < C||DLI} 1212 + & |AZ ..

A direct use of (3.16) (with no integration by parts) yields the same inequality for Ig.
Finally, the term I7; may be handled by making use of the following integration by parts

I; = —/(H(F(L)Z))*-AZ AF(L)dx — /[VH(F(L)Z)]*-AZ VF(L)dx.
Od

Lemma 4.2 Let L € L®, F € W»*® and Z be a H? vectorfield. Let 11 be a smooth homo-
geneous Fourier multiplier of degree 0. Then for all ¢ > 0, there exists a positive constant C
depending only on ¢, F, Il and ||L||;« , and such that

|IA, F(D)Z]: < || AZIE + C || DL« 127
Proof. We have
[MIA, F(L))Z = T1(ZAF(L) + 2D(F(L)) - VZ) + [II, F(L)]AZ.
The last term may be bounded by mean of Lemma A.4 with n = 0. We get

2
1A, F(D)Z|pz S (IDLl[gee + [ALlge) [|Zlle + |1DLlpoo [DZ]|12 + [[DL| e [|AZ| -1

~

Using (3.16) and (4.12) completes the proof. O

Let us resume the proof of Proposition 4.2. Performing two integration by parts to handle
the terms pertaining to h, inserting the inequalities provided by lemmas 4.1 and 4.2 (with ¢
suitably small) and taking advantage of (3.26) and (3.27), we discover that

1d~ 2 2 112 int int 2 2
(4.13) 5 717l + el D7zl < 2l [IE], + CAL 2]l + Cellhllg
for some constants ¢ and C' depending only on the usual parameters and A. defined according
to the statement of Proposition 4.2. Arguing as in the case ¢ = 0, we easily get the inequality
(4.9).
Let us now state the inequality (4.10). We have

Dy(¢oz) + iV (adiv (¢oz)) + A (¢oz) = ¢o(f + cAh) — di;’ ¥ oz

+iV(aDdy) - z — iaVo(¢oz) - Vlog ¢o + e (A*(doz) — oA’z — A*Lejz),

with ¢, denoting the derivative of ¢y with respect to L. Multiplying by ¢oz*, integrating over
RY and using lemmas 4.1 and 4.2 to handle the terms in €, we eventually get

d 2 2 2 2 2
7 oozlit + £ (| D% 2 < 2l @ozllr2 6ol 2 + Ce DLl 60zllg= + Ce [l
which obviously yields (4.10). O

Corollary 4.2 Let (L,z) satisfy the assumptions of Proposition 4.2 with h = 0. Then there
exists some constant C depending only on N, s, a, a, p and p such that

T max(1,s
el + VENDl ey < CeCI A1+ ol (ol + 1815y )
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1 s=1
Proof. Remark that we have ||zy.—1 < ||z[|}, ||z]|g: if s > 1 and [|zg.—1 < ||z[];2 otherwise.
Hence applying (4.9) with o = 0 and appealing to Young’s inequality, we get for all ¢ € [0, T,

t t
2 2 2 2 2st 2
1Z(t) |l +8/0 | D?2|s dr < C(\ZoHHs +/0 (1€l s 2l s+ Ac |2l s ) dr + [[w ()] HZ(t)HL2>

with s] := max(1, s).
Using Gronwall’s type arguments yields

2 C[tAcdr ! st
120 e sy + VE ID%2] 3 gy < O A (HzOan AL sup (O ||z<t>HL2).
7€|0,
The term ||z(t)||; > may be bounded according to the inequality in (4.10). This completes the
proof of Corollary 4.2. O

Remark 4.1 In dimension N = 1 and, more generally, for potential flows, the estimates are
simpler since the sole gauge s suffices to close the estimates. Arguing as in Proposition 3.2,
one can prove that the inequality (4.9) remains valid for all s > —N/2 and reduces to

12(8) e + VEID? 2l ey < C (170l + 11 311y + VEIBN 200y + A2l ).

As for the inequality (4.11), it reduces to
2 ! 2
12(8) [« + Vel D 2l 2 =) < C<”Z0HHS+/O (1+]|Dz| e +e [ DWI|Loo) [ 2] s dT)-

4.3 Local existence on an interval independent of ¢

This section is devoted to the proof of the following result.

Proposition 4.3 Take ¢y > 0. Let ug € H® with s > 1+ N/2, and Ly € L™ be valued in
K cC J and satisfy DLg € H®. There exist an exponent B > 3 depending only on s and N,
a constant C' depending only on ay, g, d(K,R\J), N and s, and a positive T depending
(continuously) on eg, C, ||DLo||ys and ||ugl/ys such that for all € € (0,e0] system (EK.) has
a unique H® solution (L,u) on [0,T] x RN with besides

(414) 2l gy + 1207 o2 + VEID?al g 110y < C(llz0llgs + 1m0y, )"
where z :=u—+1VL and zg :=ug + iV .Lg.

Proof. For all € > 0, Corollary 4.1 insures the existence of a unique H® solution (L,u) on
some non trivial time interval. Let T™ be the lifespan of the maximal H* solution to (EK.).
Let us denote n:=d(K,R\ J). Fix a positive ' < T* so that

(4.15) vt € [0,7], ¥z € RY, J*+g < Lt,z) < J* -

N3

The continuity of L ensures the existence of such a T'. We aim at finding a lower bound for 7T'.
In what follows, we assume that s > max(2,1+ %) (we shall explain afterwards how to handle
the case s < 2). We have

(4.16) oz + (0" - V)z +iVz - w+ iV (ay(L)divz) + eA%z = g (L)w.
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Hence applying the inequality (4.13) and using Proposition B.1 for bounding |gs(L)w||., we
get

ldy 2 2 2 2
(4.17) 5 7717l + el Dzl < C(1+ || Dzllyee + | DWIILee) 2] e
In order to close the estimates, we now have to compare HZH s and ||z]|y. . For that, we introduce
an « € [0,1) such that § — a < s —2 (note that this is possible since s > £ +1). Hence

2
H*=2 < C~ thus, by virtue of (3.32),

1Zlls < llzllis < 25 + [Wlle-2ll2]lgs-1a-

Now, interpolating between H*~2 and H® and using Young’s inequality, we easily conclude that
there exists a constant C' such that whenever (4.15) is satisfied, we have

33—«

(4.18) CMlzll, < llzllye < C(lzll, + lall2) with 5= T—.

Hence we now have to get H*~2 bounds for z. Applying A*~2 to (4.16), we discover that
DNz + eA*N° 7%z = [w!, A5?)0;z + A* 2 (qy(L)w — iVz - w — iV (adivz)).

The commutator may be handled like in (3.12) (remind that s —2 > 0). Then, applying a
standard energy method, we get

1d

2 2
5 g7 172 + el D*2lne2 S Izllye2 (|1 D2l [1Dullges + [Dullpoe [ D2llgss

V2 Wligea + lladivzlge: + gD wliy.s).
The nonlinear terms may be bounded according to Lemma B.1 and Proposition B.1. We get
IVz - Wlgse + [ladiva|g1 S llzllgs + 1Dzl o [[Wllgs—e and (g (L)W|lgee S [[Wlgs—2,

hence, combining with the inequality in (4.17),

d (2 2 2 T2 2 28—1
(Tl + %) S (1 4+ 1Dzl + < IDwIE) (Talls + 1222 ) + el 2 ol

~ 2
Introduce the function Z(t) := \/Hz(t)Hs + Hz(t)HIQﬁ,2 Plugging (4.18) in the above equation
and taking advantage of the embedding H5~! < L, it is easily found that Z satisfies the
following differential inequality

1d
(4.19) 5%22 NS VARSAREYAS

with C' depending only on N, s, ay, g4 and 7.
In order to pursue the computations, let us assume that

T
(4.20) Ceo / Z3(t) < log2.
0

Then inequality (4.19) combined with Gronwall’s lemma implies that

Z(t) < 22(0)eCteC Jo Z(T)dr.
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Assuming that T < % log<1 + %), straightforward computations lead to

7(0)

(4.21) Clo Z(mydr < ! and Z(t) < 22(0)e for t€0,T]

' ~—1-27(0)(e“t — 1) ~—1-2Z(0)(eCt — 1) T
From now on, we assume that
(4.22) 7 < Liog(14

' =%\ T az(0)
so that the denominators in (4.21) are greater than 1/2. Hence, if in addition we have

1 log 2

4.23 “T <
(423) ¢ Og<1 —22(0)(eCT — 1)) = 4202 (0)

then condition (4.20) is satisfied as well.

By combining inequalities (4.18) and (4.17), we readily conclude that, under condition (4.15),
we have (4.14).

We now have to find a condition which guarantees (4.15). For that, it suffices to find some
T > 0 such that

sup  |L(t,z) — Lo(z)| <
(t,z)€[0,T]xRN

N3

We have
|L(t) — Lolleo < |L(t) = SetLo|ly00 + ||SetLo — Lollpe0 -

On one hand, the definition of S; combined with Sobolev embeddings ensures that

1Lo — SetLolly & [3 1| A28z Lo||ggoms dr,

VAL ALl

IZANRZA

On the other hand, as 9;L + eA?L = —u* - VL — a4(L)divu, Lemma B.2 and Proposition B.1

yield
t

/0 (Hu* “VL|gsr + Haﬁ(L)diquHs_l) dr,
(1+ HDZLHLtOO(Hs—2))HUHL,}(HS)-

I1L(t) = Set Lol S
S

Therefore, whenever (4.15) is fulfilled, we have

(120 max L0 ~ Lol < O(VETIALollges + (L4 1D Ll e eyl e )

Using (4.24) and arguing by induction, we conclude that (4.15) is satisfied provided (4.22),(4.23)
are fulfilled and

(4.25) —(1+ Z(0)e°T) log<1 . 2Z(0)(eCT—1)> <en and [ALollyerveoT < e

for some small enough positive constant c¢. This provides a uniform lower bound for T% for
e € (0,e0]. The proof of Proposition 4.3 is complete in the case s > 2.

Remark 4.1 enables to treat the case s < 2. Indeed, this may occur only in the one-
dimensional case, and one-dimensional flows are always potential. The proof is actually simpler
since we need not to bound the H*~2 norm of z. O
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4.4 Lipschitz continuity with respect to the data
Proposition 4.4 Let s > 1+ N/2 and (Lo, up) satisfy
(DLg,up) € H* and Lo is valued in K CCJ.

There exist a neighborhood V of (0,0) in H5*t! x H® and a positive T such that for all (Eo, up)
such that (8Lg,dag) := (Lo — Lo,ug — ug) € V system (EK.) with data (Lo,0y) has a unique

solution (L,q) with L wvalued in a compact subset K of J and (DZ, u) uniformly bounded in
C([0, T); H¥) N L2(0, T; H*™2).

Besides there exists a constant C depending only on V, d(K,R\J), €, s, N, a3 and ¢ and
such that

0L e ey + 100 5 110y < C (Lol + 10l )
with 6L := L — L and du := U —u. Here (L,u) stands for the solution with data (Lo, ug).

Proof. According to Theorem 4.3, there exists a positive 7" and a neighborhood V of (0,0)
such that for all (Lo, tg) satisfying (6Lo,dug) € V, system (EK.) has a H* solution (L,z) on
[0,7] x RY with L valued in a (fixed) compact subset of J and (DL, ) uniformly bounded in
L>®(0,T;H%) N L%(0, T; H**?) — with a bound depending on «.

Let us first estimate the L? norm of éL. For doing so, we notice that

0y0L + (T - V )OL + eA26L = —(0u* - V)L — dadivi — ag(L)divou with da:= ay(L) — as(L).

Therefore, an obvious energy argument yields
t
(4.26)  [|OL(1)[|2 < II6Loll2 + C/o (IDL|[ 1,00 l|8ully 2 4+ 6L 2 |div ]|y w0 + [|divéul];2) dr.

In order to estimate [|dul/y., we introduce the complex valued functions z := u + iVL and
z:=u+iVL. Let Q4 be a primitive of g;. The function 0z := z — z satisfies

O+ (u* V)& +iVaz-w+iV(ay(L)diviz) +eA*%
= V(Qu(L) - Q4(L)) — (8u" - V)& — iV - dw — iV (dudiv).

By virtue of Corollary 4.2, we thus have

s ¢ 2z|| 151 +¢|| DW||? o0 ) dT
H(sz(t)HHs SC(1+HWHL$<>(L00))€CfO (HD “H 1+el[Dw]|f, )d (H&ZOHHS

t ~
# [ (10D = Qg + 1680 -l + V5 Sl + il ) ).
By taking advantage of Lemma B.1 and Corollary B.3, one can bound the integrand by

C(1+ D2 gorr) (1 + 1DW /ot + [ DWllggo—1 ) (0L ll12 + Gl )

Hence, adding up the inequality (4.26) then applying Gronwall’s lemma, we end up with

(4.27) (L) Iz + [[&() s < C(L+ Wl oo (1,)) (II5L0HL2 + H&oHHs)
 oC Ja [ Dl go10) (HHI D2 g1 H DF g1 )+l Dw [P | 7

for some constant C' depending only on the usual parameters. The proof of Lemma 4.4 is
complete. O
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4.5 A blow-up criterion and more lower bounds on the lifespan

In this section, we aim at getting more informations on the lifespan of H® solutions to (EK,).
Let us first state a blow-up criterion.

Proposition 4.5 Let Ly be valued in a compact subset of J and satisfy DLy € H® for some
s > 1+ N/2. Take ug € H®. Assume that the corresponding H® solution (L,u) of (EK.) is
defined on [0,T) x RN and satisfies the following three conditions:

(4.28) L([0,T) x RN) cc J,
(4.29) Jo (ID*L) [ + I DUl + & | D2L[} ) dt < o0,
(4.30) supyeqo,r) [L(t)lga <00 for some «a € (0,1).

Then (L,u) may be continued beyond T into a H® solution of (EK.).

Proof. Interpolating between L? and H® yields

1Ll collzllgs-o < nllzllys + 57 L& 2]l

for all » > 0. Thus, applying the inequality in (4.11) to z:=u+iVL,
t 2s
(431)  [z@®)llFe S 2ol +/0 (1+ || Dzl + € [|D2L]| Izl d7 + L) & 2]

The term ||z(t)||; 2 may be bounded by appealing to the inequality in (4.10) and Gronwall’s
lemma. Hence the above inequality provides a bound in L*°(0,7;H®) for z. By virtue of
Proposition 4.1, we thus conclude that (L, u) may be continued beyond T'. O

Corollary 4.3 Let (Lg,ug) satisfy the assumptions of Proposition 4.5 and s > s1 > N/2 + 1.
Then the lifespan of a H® solution to (EK.) with data (Lo, ug) is the same as the lifespan of a
H% solution.

Proof. Once noticed that s; > 1+ N/2 implies H*' — Lip, we see that conditions (4.28),
(4.29) and (4.30) are fulfilled. Hence Proposition 4.5 applies. O

5 Study of the Euler-Korteweg model

5.1 Local well-posedness
Let us state our main result.

Theorem 5.1 Take s > l—i—%. Let pg € L™ be valued in a compact subset of J, and satisfy
Dpy € H®. Let ug be a vector-field with coefficients in H®. There exists T > 0 such that (1.2)
has a unique solution (p,u) on [0,T] x RN satisfying

(5.1)  (Dp,u)eC(0, T);H*) NC ([0, T};H*?), (p—po) €C([0,T];H™), p([0, T]xRY) cC J,.

Moreover, there exists a neighborhood V of (po,ug) in (po + H*TY) x H® such that for all
(Po,Ug) € V, system (1.2) with data (po,Uo) has a unique solution (p,u) on [0,T] x RN
satisfying (5.1) uniformly, and the map

{ v —  C([0, T]; H*" x H®) N C([0, T); HL x H*2)
(Po, o) = (p— po,u)
1S continuous.

If besides curlug = 0 then curlu =0 on [0, T] xRN,



28
Proof. Using the unknown L := L(p), it suffices to prove the corresponding statement for

0L +u* - VL + ay(L)divu = 0,
(EK)

du+ (u* - V)u— V2L - VL — V(ay(L)AL) = ¢,(L)VL.
According to Corollary 4.1, if (L,u) is a H® solution to (EK), the assumption curluy = 0

insures that curlu =0 on [0,7] x R
Now, let us briefly enumerate the main steps of the proof of well-posedness for (EK).

Step 1. Proof of uniqueness.

Step 2. Solving an approximate mollified problem.

In this step, we state that for small enough ¢, then there exists a positive T' such that
(EK;) with data Lo, := xe*Lo, Upe := xe*ug has a H® solution on [0, 7] xRN uniformly
with respect to €.

Here, the function . stands for the mollifier x. := e #Ny(¢7#.) with x a smooth function
whose Fourier transform is compactly supported and is identically equal to one near the
origin, and 3 is a small enough positive exponent to be specified hereafter.

Step 3. Convergence of the family (L., u.) when € goes to 0.

We show that for a convenient choice of 3, the sequence (L., u.) satisfies the Cauchy
criterion (for € going to 07) in the space

(Lo +c(o,T]; HS“)) x C([0,T]; H*)V.

Step 4. Checking that the limit function (L, u) is a solution to (EK).

Step 5. Proof of the continuity of the solution map.

Step 1 : uniqueness

The proof of uniqueness is a straightforward corollary of the following proposition.

Proposition 5.1 Let (L1,21) and (L2, 2z2) be two H® solutions of (ES) on [0,T] x RN | with
s>14+ N/2 and s # 3+ N/2. Assume in addition that L; (i = 1,2) is valued in K CC J.
Let us denote 0L := Lo — L1 and 0z := z5 — z1. Then the following estimate holds true for all
tel0,7]:

1L (2), 82(8)[go-> < C (14 [[wa [ F ) IGL(0), 82(0)) g2

%o (1+1D71 [[ge1 +(H DW1 g aH DWallyo1) [ Dz2lyge1 ) dr

where w; := Imz; and C' depends only on ay, g4, s, N, J and K.

Proof. Let @y stand for a primitive of g;. The equation satisfied by dz reads

ooz + (uf - V)dz + iVéz - wy + iV (ay(L1)div z)
= V(Qi(La) — Q4(L1)) — (8" - V)z — iVzy - ow — iV (Sadivzs)

with da := ay(L2) — ag(L1), du =uy —u; and ow = wy — wy.
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We notice that & solves an equation of the type (LS). Besides, p; := L71(L;) satisfies the
mass conservation equation dyp; + div (p1uy) = 0. Hence, if s > 2 and s # 3+ N/2, applying
Corollary 4.2 with € = 0 enables us to bound the H*~2 norm of & as follows:

t
t
(5.2) \\&z(t)\\Hs_asfy(t)eCfo(HDmHsﬂdT(uéz(ost_ﬁ / (1Q:(L2) — QL) s
G0 F)aallygos + [Tz - Gwygoms + [ vy dt)

with v(t) := 1+ ||W1HE?ES£;2)

Note that if s < 2 (a case which may occur only if N = 1) remark 4.1 leads to the inequality
(5.2) with ~(¢) = 1.

We now have to estimate the integrand in the right-hand side of (5.2). According to Corollary
B.3 with k = 2, we have

1Q4(L2) = Q4(L1)llgor S (1 + [[DWillgges + [[DWallgges) [[0L ][ grs-1-

Since for s > 1+ N/2, the usual product maps H¥~! x H*~2 in H*"2, we have

60" Vaallyge 2+ V2 - 0wl s S D2y s |zl
Finally, since H*~! is an algebra, we have, in view of Corollary B.3,

1a divzylge—1 S (14 [[DWillgs—s + | DWallps-s) |00 | ro -1 [|div 22| o1
Plugging all these inequalities in (5.2) and applying Gronwall’s inequality, we end up with

(5.3)  ||&@(t) lyge2 < y(t)ecfot(1+HDZ1HHs—1+(1+IIDW1||HH+||Dwz||HH)||Dz2||Hs_1)dT

(O + [ 1D g D) [ Dt L2 )
In order to close the estimate, we now have to bound the term ||6L||;;s—> which appears in the
right-hand side of (5.3). For doing so, we use the fact that JL satisfies
0y0L +uj - VOL + du* - VLy + dadivuy + div (ag(L1)ou) — D(az(L1)) - u = 0,
whence
O A2 0L+l VA 200+ A2 <6u*-VL1 +éa divug+div (aﬁ(Ll)&l)—D(aﬁ(Ll))m) = [, A*2]9;0L.
Taking the L? inner product of the above equation with A*26L, performing several integration

by parts and using Lemma A.2 (which is allowed since s —2 > —N/2 and s —2 # N/2+1), we
get

(54)  SEIOLIRes — ClDu g s < 10wl las (L)l
0L s (180" VL lgos + 180 div ity s + [1D(a5 (L) G0y 2).

The right-hand side of the above inequality may be bounded by mean of lemmas B.2, B.3 and
Corollary B.3. We get

Jas( 1)y
00"V Ly s
|00 div ug||g.—»
| D(ag(L)) - Gl g

L+ [[Dwilgs-1) [ 0ul|gge—z,

Wil + [ DWi |1 ) 1ol o,

LA [|DW1 [ o 4 [[DW2| o) [ div ug | e [[0L] sz,
L+ [|Dw1 [lgs— ) || 0| g2

o~~~

S
S
S
S
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Plugging these inequalities in (5.4), we get

1d 9
3 710 S (U4 [IDW o)l 0oz (10wl ggo-2 + (1L fg-2)
2
+(1+ [Dwillges + [[Dwallge)[[Dug o |00l -2,

hence, according to Gronwall’s lemma,

e R (LAOT

t
+0 [ (U4 IDwi g o2 ).
0

Inserting (5.3), we get after a few computations

t
JOL(0) |2 < €72 (1) Adr [IéL(O)H%H

t t 2
+</ AeC I Adr dT) <H&z(0)||12{32+/ AY6T g dT) ]
0 0

with A(t) := (14 Dz1 (1) [ gsr + (1 + [|DW1()[[gsr + [[1DW2(8) [ o) | D22 (t) | o1
Taking the square root and applying Gronwall’s inequality, we easily conclude that

(5.5) 1L(8) go-> < CA(B)C Do AD (ISL(0) |2 + 162(0) 102 ).

Finally, plugging (5.5) in (5.3) yields the desired inequality. O

Step 2 : study of an approximate problem with smooth data

Remark that by virtue of Lemma (C.1) and Sobolev embeddings, we have for some constant C'
depending only on the choice of x,

N
1Zo=Loell o < C"772) | DLo|ly.,  1DLocllye < CIDLollgg and  [[uoellye < Clluolly..

Hence there exists an g9 > 0 such that for € € (0,¢9), the function L. lies in a fixed compact
subset K of J. One can now apply Proposition 4.3 and Corollary 4.3 to get a positive time T
(which may be bounded by below in terms of £y and of the norm of the data) such that for all
e € (0,g0), system (EK.) has a unique H*® solution (L., u.) on [0,7] x RV with besides

1
(5.6) HZEHL%O(Hs) +e2 HZEHL%(HS-&-Q) + HLs - LO,E||L%O(H3+1) <K

for some constant K independent of € € (0,g(). As usual, it is understood that z. := u.+iVL,.

Step 3 : the Cauchy criterion

From now on, we denote by Ck a generic constant depending only on K and on T'.
We claim that for a convenient choice of 3, the family (L. — Lo .,z:) € C([0,T]; HS™! x H?)
satisfies the Cauchy criterion in 07 .
e H* 2 estimate.
As a first step, we state the convergence of (L. — Lo, z:) in C([0,T]; H*~2). Let us denote
OLY := L. — L, and &! := z. — z,. Assuming that § € (0,1/4), we claim that

(5.7) ||5LZHL<>O([0,T];HH) + H(SZZHLOO([O,T];HS*Q) = o(e¥)
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uniformly with respect to 0 < v < e < ¢g

Let us first focus on the case s # 3 + N/2. With obvious notation, we have
OOLY +us- VOLY +vA?0LY = (v—e)A*L. — (0u?)*-V L. — &Y divu. —div (a,0a?) + Da,, - u?.
Hence, arguing as for proving (5.4), we get

1d 2 2 2
5%”5LZ“HS—2 — C|Duy || ggo |01 || 152 + VI[ASLL || fgs—2 < l| AWe || ggs—2 [|0W || o2
+|0LY [l ggo2 (1 (00)* - V L oo + 002 divu||ges + || Day, - || s ) + | 6w || o [ dul || s

Note that we performed an integration by parts to deal with the term (v—e)A?L..

Now, bounding the nonlinear terms as in the proof of Proposition 5.1, we end up with

d 2 2 2

0L oz S (1 + 1Dy o + [1DWe ) (1 + [ D[l ) (1622 [ + 122 o2
Fell Awell oz || owe || o2

whence, applying Gronwall’s lemma, Young’s inequality and taking advantage of the uni-
form bounds given by (5.6),

t
65 WEOls < O (12O + [ (181 + 2l Awlfsdr))
Let us now state an inequality for ||&Y||y.—2. Since 2% solves

Oz’ + (uf, - V)dz¥ + vA &Y + iVl - w, +iV(a, diviz’)
= V(Q¢(Le) — Q4(Ly)) — ((u¥)* - V)ze — iVz. - W” + (v — ) A’z + iV (&aldivz.),

Corollary 4.2 insures (if s > 2 and s # 3 + N/2) that
t
16822| o 1e-2) < c%<t>e0fé<“DZv”Hs—1+"”DWv“i°°>dT(H&zzm)\Hs_z + / (el 2%l
0
Qs (Le) = Qs(Ly) Iy + [1((002)* - V)ze [ goo + [| Ve - OWL | gon + H&lZdiVZsHHS—1> dt
. L max(1,5-2)
Note that if s < 2, the above inequality holds true with v, = 1 since Remark 4.1 applies.

All the nonlinear terms in the right-hand side may be bounded as in the proof of Propo-
sition 5.1. Using the uniform bounds of the previous step, we get

t t
162 (8) g0 scK<||6zz<o>||Hs_z+ /0 (IS e + 1022 ygez) dr + € /0 ||A2z€||Hs_sz).

Combining with the inequality in (5.8) and using again Gronwall’s lemma, we discover
that

L (#)[Froe + 1022 (8) [z < CK(H(sLZ(O)”IQ{S? + 622 (0) Ifyo-2

t
2
#22 [ (1awelfes + 8% 1) dr ),
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which, according to (5.6), leads to
Ve € 10,7 1L (0 oo + 102 (0 lge-» < Coc (18L2O) s + 6 (O)ll + VE ).

Now, Lemma C.1 enables us to complete the proof of (5.7) in the case s # 3 + N/2.

If s =3+ N/2, one can use the inequality (5.6) with s —n for some n € (0,1) such that
(2+n)B < 1/2. Going along the lines of the previous computations, one gets

HéLg(t)HL%O(HS—Q—'n) + ”&llg(tM’L%:(Hs—Q—n) S CK(H(SLZ(O)HHS_Q_'V + H&Z(O)HHS—Q—'I] + \/5)7
hence, according to Lemma C.1,
”(SLZHLOO([QTLHS_Q_") + H&ZHLOO([QT];HS—Q—n) = 0(6(2+n)5)_

Interpolating with the uniform bounds in L*°([0,7]; H®) supplied by (5.6), we conclude
that (5.7) is still satisfied.

H? estimates.

Corollary 4.2 assures that

s ¢ z - wol|? o) dr v
(5.9) ”(Szg(t)HHS < C(l—i—HWyHLtoo(Loo))eCfo(”D vllgs—1tel|lDwy |[f00 ) d <||5Z£(0)||HS

¢
[ (1042 = QoL ()" - Dzl
HIVa. g + 2|l + kvl ) dr ).

According to (5.6), the exponential term may be uniformly bounded on [0,7] for 0 < v <
€ < gg. Next, the results of section B of the appendix yield
(5.10) 1Q4(Le) — Q¢(Lo)llpers < C(1+ [DWellger + [DWo [lgga—1) [0LZ || g1
Lemma B.2 and the embedding H*~? < C~! also ensure that

1(0u2)* - Ve |ye S [1D2e |00 (|00 |y + |02 || jgo-2 || D?2e |5
hence, in view of (5.7) and of the uniform bounds of the previous step,
(5.11) I((u2)* - V)ze |l < K0l + ()| D?2e |1y
A similar argument leads to
(5.12) IV2e - 6w || < K[|0WZ |[y7. + 0(e*) || D?2c |y
For bounding the last term in (5.9), we use Lemma B.1 and Corollary B.3. We get

1002 divze || ygon < [l divze]| oo (|80 [|gon + (1002 || | D2l
S A+ IDWel |y + 1 DW [l ges ) [[div 2ze || oo 11002 [[ggom + [[0LY [ oo [ D% 2|y
whence, taking advantage of (5.6) and (5.7),
(5.13) 1002 div ze | gosr < K (1L o2 + 16w ||gg:) + 0(e*%) [ D2 |1y
Plugging inequalities (5.10), (5.11), (5.12) and (5.13) in (5.9), and applying Gronwall’s
inequality, we conclude that for all ¢ € [0, 7],

t t
(5.14) H&zzos)anscK<uézz<o>uH5+e / ||A2za||Hsdr)+o<e2ﬁ> [ @102 dr

In order to conclude that the Cauchy criterion is indeed satisfied in H®, we now have to
bound 5HA225\|L1T(H5) and ”D2Z€HL1T(H5)'
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e Bounds for z. in L*>(0,7;H**t2) N L2(0, T; H5*4).
Since z. € C([0,T]; H*) satisfies
Nze + (uf - V)ze +iVz. - we +iV(ay(Le)divz:) + eA’z. = g4(Le)we,
we may apply Prop. 4.2 and Corollary 4.2 to bound z. in L*°(0, T; H¥2) N L2(0, T; H*H).
We get
Lin2
12| Lo (ro+2) + €21 D7 2c || 12 (11542

T 2
< C(1+ HWE”ittOQ(LOO)) ||Z0,€”H5+2€C Jo (1+”DZ€HL°°+5HDWE||L°°) dt.

By virtue of Lemma C.1, we eventually conclude that

1 _
(5.15) 17 | o 2y + €2 1D 2e| 2 (s 2) < Cree ™.

e Conclusion.

Plugging (5.15) in inequality (5.14) yields (remind that § < 1/4)
vt € [0, T, (|02 (t)[5s < Crc[|022(0) g5 + o(1).
Next, applying Lemma C.1 (i) and combining with (5.7), one concludes that
0L poe rrsry + (100 ]| oo (g10) = 0(1)

uniformly with respect to 0 < v < ¢.

This insures that (L., u.) satisfies the desired Cauchy criterion in 0F.

Step 4 : Existence of a solution

Let (L,z) € (Lo + C([0,T];H*™)) x C([0,T]; H*) be the limit of (L., z:) when & goes to 0%.
Since (Le — Lo, 2z:) tends to (L — Lo, z) in L*°(0,T;H®), proving that (L, z) satisfies (ES) with
data (Lg,zo) is straightforward. The details are left to the reader.

Denoting p := £L71(L), it is now obvious that (p,u := Rez) is indeed a solution to (1.2).
By making use of the results of the appendix, one can also show that d;p € C([0,T]; H*~!) and

opa € C([0,T); H*~2), whence (L,u) € C1<[0,T]; (Lo+H") x HS_Q).

Step 5 : continuity of the solution map

Fix data (Lo, up) such that Lo(R™) cC J and (DL, ug) belongs to H*. Let (L%, ul),en be
a sequence of functions such that Ly — Lo tends to 0 in H*+1 and u; converges to up in H*.
One can assume with no loss of generality that there exists a compact set K CC J such that

vn € N, LF(RY) c K.

Hence, the previous steps of the proof supply a H® solution (L",u") to (EK) with data (Lg, uf)
on some time inteval [0,7] independent of n with, besides, (L™, u™) uniformly bounded in
(Lo + C([0, T]; H*™)) x C([0, T]; H*). Of course one can arrange that system (EK) with data
(Lo, up) also has a H® solution (L,u) on the same interval [0,77].
Now, Proposition 5.1 entails that?
lim (L",u")=(L,u) in (Lo+C([0,T);H*"")) x C([0,T]; H*"?).

n—-+00

f s = 3+% use Proposition 5.1 for getting estimates in H* then interpolate with the uniform bounds in
H.
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In order to prove the continuity of the solution map in the space (Lo + C([0,T];H**!)) x
C([0,T7; H®), we shall follow the method introduced by J. Bona and R. Smith for KdV in [6].

Let x. be the mollifier defined in section 5.1. Let us denote L. := x.xL{ and ug . := xe*uy.
Taking advantage of Lemma C.1 and arguing as above, one can find an ¢y independent of n such
that for all € <&y and n € N, system (EK.) with data (Lg ., ug,.) (resp. (Loe,uoc)) has a H?
solution (LZ,u?) (resp. (Lc,u:)) on [0,T] which belongs to (Lo+C([0, T]; H*™1)) xC([0, T]; H?)
uniformly with respect to € and n.

n

», z and z. as before, we have

Next, introducing the complex notation z", z
(5.16) 12" — 2| poo (1) < 12" = 22| oo msy + 1228 — Zel oo (usy + 126 — 2l oo (a15)-

In step 2, it has been shown that the last term tends to 0 when ¢ goes to 0. Moreover, in
light of Lemma C.1 part i77) with ¢ = 0, one can show by going along the lines of step 2 that
||z — ZQHL%o(HS) tends to 0 uniformly with respect to n when € goes to 0.

Therefore, for any ~+ > 0, there exists a € > 0 such that the first and last terms in the
right-hand side of (5.16) are bounded by /3 for all n € N.

Besides, it has been stated in Proposition 4.4 that

[u? — uEHL%O(HS) +[|LZ - L€”L°T°(HS+1) < C(Huaa —Uoellys T Lo — LO,aHHsH)

for some C' which may depend on ¢ but does not depend on n.
Since, according to Lemma C.1 we have

g —vocllys + 1116 = Loellgorn S lug — wollgs + 116 — Lol

it is now clear that for large enough n we also have

n

~y
|22 — ZgHL%O(HS) < 3

This completes the proof of the continuity of the solution map and of Theorem 5.1. O

5.2 Lower bounds on the lifespan and blow-up results

Let us first give a lower bound for the existence time of a H® solution.

Proposition 5.2 Under the assumptions of Theorem 5.1, we have the following lower bound
for the existence time:

1 c ~
T> log<1 + H> with Zy := ||zol|+s + ||Zo 557 , Zo:=ug+iVig
- i 20l + 120/

for some constants ¢ and C' depending only on the usual parameters, and 8 > 3 depending only
on s and N.

Proof. It is only a matter of letting 9 goes to 0 in (4.23) and (4.25). O

Remark 5.1 Note that for small data, we thus have T > log ||zo||;--

Let us now state a blow-up criterion.
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Proposition 5.3 Let s > 1+ N/2 and (p,u) be a H® solution to system (1.2) on [0,T) x RY.
Assume that the following three conditions are satisfied:

(5.17) p([0,T) x RY) cc J,,
(5.18) ST (18P0 e + lleurlu(t) o + diva(®) ) dt < oo,
(5.19) supeqo,r] [P(B)[ca <00 for some a € (0,1).

Then (p,u) may be continued beyond T into a H® solution of (1.2).
If curlu = 0 then condition (5.19) is not needed.

Proof. By using the change of function L := L(p) and z := u+1iVL, it is easy to see that the
above three conditions are equivalent to

T
(5.20) L([0,T)xRY) cc 7, / (Jlcurl z|| ;oo +|divz|[;o ) dt < 0o and  sup ||L(t)]|qa < oo.
0 te[0,7]

Combining the inequality in (4.31) with ¢ = 0 and proposition, and taking advantage of (5.19),
we obtain the following inequality

t
(5.21) vt € [0, 7], [|2(t)|[F. < C(HZoH%s +/O (1 + 1Dz o) 12 dT)-

Of course, in the general case, the constant C' depends on the data and on | L|| Leo(ceay- I
curlu = 0 however, the inequality (3.5) leads to (5.21) even if (5.19) is not assumed.

Now, a standard Gronwall argument would enable us to bound z in L*°(0,7; H®) is Dz were
assumed to be in L'(0,7; L®). It turns out that this may be somewhat relaxed by appealing to
the following logarithmic interpolation inequality (see e.g inequality (2.2) in [12]):

|Dzll < C(1+ Dzl _log(e + [ Daly. 1))

where Bgo,oo is a homogeneous Besov space of regularity index 0 (for the precise definition, see
for instance [17]), in which L* is embedded.
Plugging this inequality in (5.21) and applying Gronwall’s lemma, we get for some constant

Cr which may depend on T,

t
vVt € [0,7T), log(e + ||z(t)\|%ls) < Cr log(e + HZ0||2H3) —1—/0 ||Dz(7')|\]~3g0700 log(e + Hz(7')||12{s) dr,

which, after a second use of Gronwall’s lemma supplies a bound for z in L>°(0,7; H®) provided
Dz belongs to L(0,T; Bgopo) — this refinement really gains something since L*° < Bgo’oo
strictly.

Finally, we notice that

Dz = (—A)"'Ddiv(curlz) — (=A)"'DV/(divz).

Hence Dz may be computed from curlz and divz through homogeneous operators of degree

0. Since such operators are continuous in BY

0,000 We have

1Dzl S llewlz|g +|[divaly,
00,00 00,00 00,00
S ALl + [leurluf|pe + [[divafpe -

~

Hence (5.18) implies that Dz belongs to L*(0, T} Bgo’oo). O
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Remark 5.2 Up to condition (5.19) (which is of lower order and is not necessary if u is
potential), the blow-up criterion stated in Proposition 5.3 is comparable to the celebrated Beale-
Kato-Magjda’s criterion for incompressible Fuler equations (see [2]). This is not a scoop that
this kind of criterion may be generalized for most reasonable quasilinear hyperbolic PDE’s. Note
however that (EK) is not hyperbolic.

Remark 5.3 According to the proof of Proposition 5.3, condition (5.18) may be replaced by a
weaker one, namely

T
/ (IAL|lgo  +|lcurlullge 4 [[divullge ) dt < oco.
0 00,00 00,00 00,00

Starting from Proposition 5.3, it is easy to conclude to the following

Corollary 5.1 Under the assumptions of Theorem 5.1, the lifespan of a H® solution to (1.2)
with data (po,ug) is the same as the lifespan of a H*' solution with s1 < s. In particular H®
data yield H* solutions.

6 Perturbation of capillary profiles

In the previous section, a local existence result has been stated for initial data (pg, up) such that
Dpg and ug belong to H®. This statement is not completely satisfactory as it does not supply
the existence of a solution for data which are small perturbations of a capillary profile. Indeed,
a typical plane capillary profile is a smooth traveling wave solution with different left and right
endstates and fast decay of derivatives at infinity (see e.g [3]). In general, the velocity of such a
profile does not belong to any Sobolev space with nonnegative index.

More generally, if (p,u) is a given smooth reference solution of (1.2) on [0,7] x RY, we
address the question of local solvability of (1.2) for H® perturbations of (g uo) := (p(0),u(0)).
Our main result is the following

Theorem 6.1 Take s > 1+ . Let (p,u) be a solution to (EK) on [0,T] x RN with
p([0,T) x RNy cc I and (D?p, Du) € C([0,T]; H*™3).
Assume that the data (pg,ug) satisfy
po(RN) ccJ, po:=po— Py € H*Y and g :=ug — u, € H.
There exists a positive T < T such that (EK) has a unique solution (p,u) on [0,T] x RY in

A7 = (pu) + (C([07 T); B 1) n el ((o, T]; HE ! xHH)).

Besides the blow-up criterion stated in Proposition 5.3 remains valid and there exists a neigh-
borhood V of (po,uo) in (p,, o)+ (H5T1 x H®) such that for all (po,0) € V, system (EK) with
data (po, ) has a unique solution (p, 1) on [0,T) xRN uniformly in A, and (po,10) — (p, 1)
maps continuously V in A,

Finally, if curlug = 0 then curlu = 0.

Proof. The main steps of the proof are the same as in Theorem 5.1. To simplify the computa-
tions, we perform the change of unknown L := L(p).
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Step 1 : uniqueness

Let (L1,u1) and (Lg,u2) belong to A% and satisfy (EK) on [0,7] x RY with the same data.
Obviously (ug —uy) € C([0,T);H®) and (Ly — L1) € C([0,T); H*T!). Besides, by virtue of
the assumptions made on the reference solution (L,u), the functions D?L; and Du; belong to
C([0,T]; H*~1) for i = 1, 2. Hence Proposition 5.1 insures that (L, u;) = (L2, u3) on [0, 7] xRV,

Step 2 : study of an approximate problem with smooth data

Denoting L := L — L and @ := u — u, the system for (L, 1) reads

) &L +u*-VL +u*-VL+ adiva+ adivu = 0,
E - - -

du+u*-Vu+u*-Vu— V2L-VL — V?L-VL—V(aAL+aAL)=V(Q4(L)—Q4(L))
with a := ay(L), a:=ay(L), a:=a—a and Q4 a primitive of g;.

Let w:=VL, w:=VL and w:=w — w. It is easily found that z := u + iw satisfies
Oz+u"-Vz+u"-Vz+iVz-w+iVz-w+iV(adivz) +iV(adive) = V(Qy(L)—Q4(L)).
This induces us to solve the approximate mollified system
L. +eA2L, = —eA2L —u* - VL. — 0 - VL — a.divil, — a.divu,

(ESe) 07 + A%, = —(uF - V)z. — (W V)z — iVa. - w. — iVz - W.
—iV(aedivz.) — iV (a.divz) + V(Q4(L:)— Q4 (L)) — eA%z

with data 5075 = Xe X (Lo —LO) , Z0e = Xe* (zo *Zo) and Y. defined as in the proof of Theorem
5.1. Above, it is understood that z. := z + z., u. := Rez., w. := Imz., L. := L + Ee,
ac :=ay(L;) and @ := a. — a.

As in section 4, solving (E/)S/E) in C([0,T]; H**! x H*) NL2(0, T; H**3 x H**2) for T suitably
small stems from the contracting mapping theorem. Indeed, it suffices to find a fixed point for
the functional ® := (&1, ®5) defined by

Oy (L,2)(t) = — [y Sepr) (EA2L + uf - VL. + 8% VL + a-divi. + a-divu) dr,

(52(1.’? Z)(t) - = f[;/ Sa(t—'r) ((u: ’ V)EE + (ﬁ: ’ V)Z +1iVz, - w, +1iVz - W,
+iV (aedivz.) + iV (aedivz) — V(Q4(L:) —Q4(L)) + eA?%z) dr,

Above, we denoted L.(t) := Sg,gi(),E + L(t) + L(t), z:(t) := Sz + 2(t) + z(t), u. := Rez,
w. := Imz. and so on. Remark that

Le(t) — Lo = L(t) + (L(t) — Ly) + (Set(xe * Lo) — Lo)-

Hence, since L is continuous, one can insure that L.([0,7] x RY) lies in a compact subset of J
independent of ¢ provided T, ¢ and [|L[| s (1) are small enough.

Now, going along the lines of the proof of Theorem 4.1 and using the results of the appendix
for bounding the nonlinear terms, it is not difficult to prove that if ||DLoc||y. + [|Zo.ell;s < Ro
then, denoting R := HDL||LO£(HS+2) + ||DuHL%o(HS+1), we have

o . T
(L, 2)|p. < CeTa\/ ;(€E+ Ro(1+ Ro +E))

whenever (L,z) belongs to the space E%’RO defined the proof of Theorem 4.1 and T < T.
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Besides, if (L1,%1) and (La,2s) both belong to EL™ then

2
I

L T .
19(La, 22) — B(L1,21) | 7. < Ce'%y ;(1 + Ro +E) (L2 — L1, 22 — 21) |7

Hence the contracting mapping theorem yields a solution (L.,z.) in C([0,T:]; H*H x H®) N
L2(0, T.; H*® x H*?) (with besides L.([0,7.] x RY) cC J) for some small enough positive T¢.
Obviously (L., z.) satisfies EVSE and has the desired regularity property.

Uniqueness relies on the same arguments as in Proposition 4.1. Moreover, by following
Corollary 4.1, one can easily check that wo . = Vzgﬁ and w = VL imply w, = vie.

We now want to get a positive lower bound T' for T, when ¢ goes 0. Remind that

(6.1) Oze + (W -V)z: +iVz. - we +iV(a:divz.) + A%z,
=—(u}-V)z— —iVz - W. — iV(adivz) + V(Q4(L:) — Q¢(L)) + A%z

and that w. = VL. with ;L. +u? - VL. + a.divu. + eA%L. = 0.
Let us first assume that s > 2. Applying the inequality (4.13) to the above equation, we get

dw. 2 2 2 \ix 12
2117l S ellAzli + (1Dzelgo-r + & [DWe[po ) |12 e
HZe s (12 - Vzllgs + V2 Wellgs + [[@ediva] g + [|Q4(Le) — Q4(L) |l go1)

T~ 2 ~ ~ . —
where [|Z:; = |P(v/As(pe)AZ.) |12, + | Q(v/p=aZA°Z. )|} 2 with pe := £L7'(L.) and A, defined
in (3.30).
In the following computations, we restrict ourselves on a time interval [0,7] so small as

6.2) Vtel[0,T], Ve e RY, J~ + g < L(t,x) < JF — g with 7 := d(R\ K, Lo(R")).

The nonlinear terms in the right-hand side of the above inequality may be easily bounded by
taking advantage of the results of the appendix. We eventually get

T~ 2 2 ~ 14
63) gzl < el A% + el|z

~ ~ ~ 2 ~

HlZellys (1Lellrz + 1Zelgs) (e 1 DW e + (14 [ Dzl g ) 1+ 1 DW [l g + 1Ze |31 )) -
Let us stress the fact that having L. in L? is needed for bounding Q(Le) —Q4(L)| s and
||aediv z||fs+1. For instance, according to Proposition B.3, we have

l@edivelye S 11 e ldivellyin S I Zelle | D2llgee (14 | Dwllgecs + | DWe|ggo-s).
Let a € [0,1) be such that § —a < s — 2 (note that such an « exists because s > & +1).
Since C™® < H*~2, one can easily prove by arguing as in (4.18) that
17~ ~ T ~ ~ 0
(6.4) CMIZell, < N1Zellgs < O (126l + Il -alZe g2 + 12l
: 2 — 3—

with v:= = and ¢ := 7=.

Therefore, in order to close the estimates, bounds on HE&-HLQ and on ||Z.||js—2 are needed.
Getting the L? bounds is easy. Indeed, since

O Le +u - VL. + U - VL + a.divil, + d.divu + eA’L, = —eAL,

a straightforward energy method yields

~ 2 _ ~ 2 ~ _ _ 9
(6.5) |Lellrz < ([ Dullpot [ DUl o0 )| Lellp2 + | Lellp2 (1wl oo [[8e g2+ [[8e ) +€[ ALl72-

4
dt
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For getting H*~2 bounds, apply A*~2:

NNz + (uf - V)A 2z + AN 22, = [ul, A¥?)0;2.
—A2(iVZ. - we +iV(a.divz:) + (U V)z+iVz - W. + iV (a.divz) — V(Qy(L.)—Q4(L)) — A’z

Assuming that s — 2 > 0 in the following computations, a standard energy method combined
with the inequality (A.7) yields

d, . 2 ~ 2 ~ 2
g lZell—2 S Ze [[11s—2 (1 DZe || oo | D0 || jgo—s + | D0 |y oc (|22 [ gg—2) + €| Az o2

H|Ze [ gs-2 (I VZe - Welo—2 + [|aedive|lge— + [|(TZ - V)2 g2
+HVZ' "i’eHHs—2 + HﬁgdiVZHHs-1 + HQﬁ(LE)_QﬂL)HHst-

All the non linear terms appearing in the right-hand side may be bounded by appealing to lem-
mas B.1 and B.2, and to propositions B.1 and B.3. After a series of cumbersome computations,
we end up with

d N _ ~
g lZells—2 S HZeHHs—2<HZeHHs(1 + 11Dzl a1 + [Ze|gs-2)
= ~ ~ 2
+ (I Lellrz + [1Ze | ge—2) (1 + | Dwell e + HWeHHs—z)) + ¢l Azlg. .
Hence, combining with (6.5) and (6.4),
7 ~ 12 2
6.6)  (I1LellPs + 12 fre2) S ell Dl
+ (1 Lellrz + 1Ze s ) (1Lellrz +1Zellyg2) (1 + [ D2llgen + I Le 2 + 112l g)-
. . .. . D) ~ 112 o—1 . . .
Multiplying this inequality by <||L5||L2 + ||Z5||Hsf2) and using Young’s inequality, we also get
7 =~ 2 4 26 T =2 4
(6.7) Gl + 12 lfi2)” S el Dallie—s + e (1 Lellfs + 112 [Fro2)
7 ~ T 26— =~ 126-1 T >
(I Lellz + 112l ) (1Le o+ 1Ze o) (1 + 1Dl g + 1| Le Iz 412 g2 )
It is now possible to close the estimates. Indeed, let Zg be defined by
= T 2 = ~ 2 = ~ 2 \&
Z2(t) = |zl + 1L (2 + 12 (O)llFro2 + (1Le@®IF2 + 128 Ie=)
Remark that (6.4) insures that
I Lellz + 1Zellgs S (14 1Wl[E-a) Ze.

Hence adding up inequalities (6.3), (6.6) and (6.7), we get

d ~ o~ ~
972 <Py Azt 221 ),
3 . 2 2 20
with P = C(||Azl%. + | Dzlf3e 1 + | Dzl ) and
4 2
A= O+ w5 (2 [ Dw]E + (Ut [ Do) (14 [ D)

1
2

Therefore, denoting Ze o(t) := 2(2:2(0) +e fothT) and assuming that

(6.8) o5 fo AMZ2W)dt < o
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Gronwall’s lemma leads to
Yt € [0,T), Ze(t) < e2Jo A dres Y A(MZe(nydr 7y,
Now, if in addition we have
(6.9) Z.o(T) (e%foT At _ 1) <1,
then for all t € [0,77,

~ 1 rt
1 ~ 7 t 7f A dr
and Z.(t) < co(t)ez o

0
1= Zeg(t) (e i 4=t —1) R G

(6.10) ez foAZedr <

In order to ensure condition (6.2), one can argue exactly as in the proof of Proposition 4.3 and
apply (4.24) (indeed (Lg,u.) satisfies (EK.)). Hence for (6.2) to be satisfied, it suffices that

VETdivwollyes 4 (14 [ divav]| e ey + 1diviel o gresy) (1l rey + 18ell s 1) < en

for some suitably small constant c.
A standard bootstrap argument shows that if T < T is so small as to satisfy

(VeT|divwollger < L, Zeo(T) (e%foTAE<t>dt B 1) <
_528(0)9% Jo Ayt log(l — Zeo(T) <82f0 A (t)dt _ 1))

(HIDW o) + (T I ey Zeo (T m%Aﬁﬂ(mmHs

|
(12 (o 509 < 5

1
2

(6.11)

then (6.10) holds true on [0, 7).
Taking advantage of Lemma C.1, we see that

174 0 é
Ze0(0) S [[Lo = Lollgs+1 + 1 Lo = Lollgs— + [[uo — ug|lggs + [luo — up|lzy..-

Moreover, the functions Z.p and A, are nondecreasing with respect to €. Hence one can find
some T > 0 and g9 > 0 satisfying (6.11) for all ¢ < g9. Combining with (6.4) and (6.10),
we eventually get uniform bounds in C([0,T]; H5t! x H?) for (L., T.) when e goes to 0. This
achieves step 2 in the case s > 2.

The case s < 2 (which may occur in dimension one only) is easier to handle. This is only
a matter of applying Proposition 3.2 instead of Proposition 3.3. Since the auxiliary norm ||-|| .
is equivalent to the usual H® norm, we need not estimate the H*~2 of z.. The details are left
to the reader.

From now on, we denote by K a generic constant such that for all € € (0,e(), we have
~ 1. ~ 1.~
el Lo (1) + €2 10el| L2 (rrov2) + [ Lell oo (rasrry + 21 Lell L2, (raovs) < K-

Step 3 : the Cauchy criterion

Since dLY := L. — L, = Lc — L, and &z := Z — %, = 2 — 2, step 3 of the proof of Theorem
5.1 insures that
H(sLZ”L%O(Herl) + ”(SuZHL%C(Hs) =o(1)



41

holds true uniformly with respect to 0 < v < e < g¢, provided

(6.12) L.(0,TxRY) Cc K cC J uniformly in e,

(6.13) Dz. € L>(0,T;H*"') and /z D3z. € L2(0,T;H*"!) uniformly in ¢,
1 .

(6.14) 1022 1y + =4 1A% 13 0y = O,

Conditions (6.12) and (6.13) are insured by the previous step and by the assumption on the
reference solution. Hence we are left with the proof of (6.14).

As D?z € 1L>°(0,T; H*2), it actually suffices to prove (6.14) for z. instead of z.. Starting
with equation (6.1) and applying the inequality (4.13) with a slight modification (we mean that
we do not use Sobolev embeddings for bounding the terms due to (3.27)), we end up with

H%HM + & D?%e sz S ll Az ygesa

Hzell o (182 - Vzllorz + V2 Wellgsre + [@cdivagas + [1Q¢(Le) = Q4(L) ljyo10)

+(e IDWellfoo + [ Dzellpoe) 1Ze s + [ D2ellpoe | D2e e ||2e oo

The nonlinear terms may be bounded thanks to Lemma B.1 and Corollary B.3. Hence,

HZeHs+2 + e D%Zelljyore S el Azllgosa + (1+ & [ DWellf e + 1D o0 + | D2llgera) 2 [ o2
(L + [ Dw lges2) 12 lygee | Zellie + 1Dzl e 12 lggee-

Taking advantage of the uniform bounds supplied by the previous step and of Young’s inequality,
we conclude that, for some constant Cr r depending only on the usual parameters, on 7" and
on the bound K,

”Z6H5+2 + e D% llfes2 < Oric (14 [Zelfrsa)

whence, applying Gronwall s lemma,

~ 2
(6.15) HZa ”s+2 + E/ ||D226||Hs+2 dr < elCr.x (Hzg(O)HSH + tCT,K).

On one hand, the inequality (3.32) combined with a straightforward interpolation insures that

[Zelly o S Ve llpers S TZellro + Il oo 12 e

On the other hand, z. is uniformly bounded in L*°(0,7;H®) and Lemma (C.1) insures that
12(0)[|,40 < €727|20 — 2ol Hence the inequality (6.15) entails (6.14).

Step 4 : Existence of a solution

Let (L, 1) € C([0,T); H*+! x H*) be the limit of (La,zg) when ¢ goes to 0F. Since convergence
holds in a very strong sense, it is easy to show that (L,U) satisfies (EK)

Besides, by making use of the results of the appendix, one can state that oL eC ([0, T]; H—1)
and 9;u € C([0,T]; H*2).

Step 5 : Continuity of the solution map

The proof relies on Proposition 4.4 which, after cosmetic changes may be adapted to the case
where Lo € Ly+H*"! and ug € uy+H?. Indeed, by looking at the inequality (4.27), one realizes
that the constant Cx depends on (L,u) only through ||L||; , |[Dul/gs—1 and |[D*L||ys-1. The
details are left to the reader.
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Step 6 : blow-up criterion

Under the assumptions of Theorem 6.1 on the reference solution (p,u), one can show that (p,u)
may be continued beyond T provided

p([0,T) x RN) cc J,,
T :
ST (AP0 e + el a(t) [ + divat) ) dt < oo,
supeqo,r] [[P(t)||[ca < oo for some « € (0,1) (no condition if curlu = 0).

Starting from system (E\IZ), the proof is an easy adaptation of the one of Proposition 5.3. O

Remark 6.1 Passing to the limit € goes to 0 in (6.11) yields a lower bound on the time of
existence in Theorem 6.1. In the particular case where the reference solution (p,u) is globally
defined and has spatial norms which are time independent (e.g a traveling wave), we gather that

initial data (po,uo) such that |[po — pllg.r + ([0 — Wl < yield a solution (p,u) with a

lifespan of order (at least) logn~!.

Appendix

A Commutator estimates

This section is devoted to the proof of estimates which have been used throughout the paper.
For that, elementary paradifferential calculus (see [7] for the original presentation) based on a
Littlewood-Paley decomposition, is needed.
According to a classical convention, a(x,D) will stand for the operator of symbol a(z,¢)
(for suitable functions a). This means D may be thought of as %D with D = (01, ,0N).
Let (x,¢) be a couple of C§° functions such that

(i) x is supported in B(0,4/3),
(i) ¢ is supported in the annulus C(0,3/4,8/3),
(i) V& € RN, x(€) + X en v(279) = 1.

Let us denote S, := x(279D), Ay :=¢(279D) for ¢ € N, and A_; := Sy = x(D). It is obvious
that S, = Zg;l_l Ap and that u =3 - ; Aqu whenever u is in S'(RN). Besides,

(A.1) p—ql >1= AApu=0 and [p—gq|>4= Ay(Sp—1uApv)=0.
The paraproduct of two temperate distributions « and v is defined by

Tyv = Z Sq—1ulgv
qeN

and we have the following (formal) Bony’s decomposition for the product of two distributions:
wv = Tyv + Tyu + R(u,v)
where the remainder R(u,v) is defined by

Ru,v) == > Al with Agi=Agy+ Ay + Agar.
g>—1

The following two estimates for the remainder and the paraproduct will be used repeatedly:



Lemma A.1 There exists an absolute constant C' such that for all m € R, we have

(A.2) ”R(fvg)”L2 < C||f||Hme9HFgg’27
(A.3) ITsglln < C Ul lgllen
where

N

lgllgm = sup( p2am| A g<w>|2)
Foo zeRN g I

stands for the norm in the Triebel-Lizorkin space ¥ o

Proof. We have
IRz = sup / R(f,g)vda.

vl 2=1

Hence, taking advantage of (A.1), there exists Ny € N such that

I1R(f, )2 = SUP /ZAquqQSquNovdx

L21

I
Now, Cauchy-Schwarz and Hélder inequalities yield

s | (Z?qmm ) <Z2 48, 0)P S0 0 ) o

1
ol 1l [ 1500 85000 o)

Thus, in order to complete the proof of (A.2), it suffices to state that

IA

1

(A4) ([1sws@Pac)” < ol
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The above inequality is a mere consequence of the continuity in L? of the maximal function and

of the following inequality

(A.5) Myo(a) = sup A [ 11 ola = )l dy < CMo(a)

which holds true for all function h such that y — (14 |y|)®h(y) is bounded for some K > N.

Let us prove (A.5). Take 2 € RY. Denoting w(y) := v(x — y), it suffices to prove that

sup AN / hOw)| w(y)| dy < Csupr™ / o (y)] dy.
A>0 r>0

lyl<r

This fact stems from the following inequalities

/Ih(Ay)\ lw(y)| dy =/ [h(Ay)| |w(y !dy+Z/ h(Ay)| lw(y)| dy,
lyl<a—1 p<>\|y|<21”+1
g AN <)\N/ ’w y \dy+ Z2p(N—K (2p+1)\—1)—N/
lyl<a=t >0 Aly|<2rit

<A N Mw(0).
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The proof of (A.3) is similar. Indeed, in light of (A.1), we have

1Tl = / Sy 1f 29 A9 272Dy da

[v] ‘H m=1

M
where ¢ stands for a C§° function equals to one on a wide enough annulus C(0,71,72) and

supported in an annulus C(0,7],75).
Using Cauchy-Schwarz and Holder inequality yields

< [su sy st (;zmmqg ) (Zz 2am|5(271D) <x>|2)éda:

whence, according to (A.4) and Cauchy-Schwarz inequality,

[ T1 < Mlgllem , 0 lli—m 1]z -

We can now prove the following lemma?:

Lemma A.2 For all s such that —N/2 < s < N/2+ 1, the following inequality holds true for
some constant C = Cy y :

(A.6) lla, Aullp> < CllDall_y llullgs--

200

where HfHBgoo := sup, 290 | Ay fll 2 stands for the norm in the Besov space ngo.

Besides, for all positive s, there exists some C' = Cs n such that
(A7) [[a, AJul[ 2 < C(IIUHLoo [1Dal|ggs—1 + || Dally o HUIIHH)

Proof. Let us denote a := (Id — A_;)a. For proving (A.6), we decompose

[a, A°|u = [Tg, A¥|u+ Thsya — A°Tya+ R(A°u,a) — A°R(u,a) + R(A_ja,A°u) — A°R(A_ja,u).
—_—— =~ ——

Rl R2 R3 R4 RS RS
Bounding R'

Using (A.1) and the definition of R', we get

= S;1a3(27D)A° Agu — F(27ID)A(Sy-1aAqu)

q=1

Ry

for some function ¢ € C§° supported away from the origin and equals to one on a wide enough
annulus.
Using first order Taylor’s formula, the term R}I rewrites

1
= /RN/O hsq(y)y* - VSg—1a(x — Ty) Agu(x — y) dr dy

® An inequality similar to (A.7) has been stated in e.g [10].
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with hs, = F 1 (@(279)X%) and A*(€) := (1 + [€]?)2, hence

(A.8) | Rg

qHLQ S H| ' |hs,q|

L ||Aqu||L2 [Dallp, -
We claim that for all & € N, there exists Cj > 0 such that
(A.9) Vo € RN, |z[2%27 9N b (2792)] < CR2%.

Indeed, we have
2 Vi (270) = (2m) V2 [ G)? 4+ 270 d,
whence, performing integration by parts,
(D)Mo 0 (2712) = (2m) V20 [ o AR @) ? +2720)2) di
In light of Leibniz formula, the integral decomposes into a sum of terms of the type

/em7 0°3(n) (In|* +2720) 57101 Pg () dn

with |a| 4+ |B] = 2k and Ps; is a homogeneous polynomial of degree |3| —2;j with coefficients
independent of q.

Since ¢ is supported in an annulus centered at zero, each integral may be bounded by some
constant independent of ¢ € N, which completes the proof of (A.9).

Now, because

[ 1oltheawldy =277 [ fal2 g2 10)] d,
the inequality in (A.9) enables us to get
Il - s glls < Co w2971,
Since HRlHi2 SDIRS HR;HiQ, the inequality (A.8) thus entails that

IRz S 1Dallpee [l gs-1-

Bounding R?, R3, R* and R®
Standard results for the paraproduct combined with the fact that Ths,a = Ths,a yield

[Ra2llLe S A ullg-1llallpy, S lullgs—1 [[Dallpe  forall s eR.

Since low frequencies of a are not involved in the definition of R?, we have for all s € R,
[Rs]l> S llullpe [ Dallgs-r-
Remark that if s < 1+ N/2, the following inequality is also available

1Bsllp> < llullge—llDall sy -

~Y
2,00

Applying (A.2) with m =1 yields

[Rallpz S 1A%l [[aller_ -
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Since Lip — F(l)o,2 (see [17]) and @ has no low frequencies, we conclude that
[Ralle S lullgs-1 [Dallee -
We have
[R5l < [1R(u, @) gs-

Hence, if s > 0,
[Bsllez S llulliee lallgs S llullpe [|Dallgs-1,
and if s > —N/2,
1Bslle> < Nlullgsrlall yo S lullgslDall sy -

2,00 2,00

Bounding RS
We argue as for R'. Indeed, we have

0
Rs= Y AgA_1aAY(279D) Agu — A*X(279D) (A, A_1alqu),
q=—1

R

with x € C§° equals to one on a wide enough ball centered at the origin.
Denoting hs g := F1(X(279-)A*) and applying first order Taylor’s formula, we get

1~
RS = /RN/O hs () y* - VAGA_1a(z — Ty)Aqu(z — y) dy dr

As hg 4 is in L! and Rg has a finite number of terms, (A.1) entails that
[Rell12 < [DA—1a]p [[S3ullz S [[Daflpe [[ullgs-1-

The proof of (A.6) and (A.7) is complete. O

Let us now state a more accurate result (which is a variation on an exercise in [1], page 179,
see also [13] for similar inequalities pertaining to more general pseudo-differential operators).
We recall that the Poisson bracket of two symbols a and b is defined by

da 0Ob da 0Ob
{a, b} =Y — = - — |
Zj: 85] aﬁj 3&?]' c%]

Lemma A.3 Take m € (—N/2,1+ N/2) and s € (—N/2 —m,N/2+ 2 —m). There exists
C = Csm,Nn such that

o A% = Ha X} D)l < CIV%al y gz

2,00

Besides, if (m €[0,1] and s+m >0) or (m >1 and s > 1) then we have

e, A% = Ha, N3Ol < Ol 920l gemsim + [ V20l o2 ).
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Proof. Observe that {a,\*} = —(9;a)(87X*). (In order to avoid confusion, &’ stands for
0/0¢;, whereas 0; means 0/0x;.) Therefore, using Bony’s decomposition,

s 1 s s ; B s
[a, A°|u — ;{a,)\ YD)u = [To, A°lu — i Tp,a (0’ X*)(D)u+ Thsya — A°Tya

Rl R2 R3
—i T(girs)pyudja+ R(a, Au) — A°R(a, u) —i R(d;a, (87 A°)(D)u)
T R5 RS R7
+ R(A_ja, A*u) — A°R(A_1a,u) — iR(;A_1a, (07 \*)(D)u)
PY

with a:=a — A_ja.

Bounding R'
Using the definition of the paraproduct and (A.1), we get R' = ZqZO Ré with

Ry = S4_1a 327" D)A® Agu — $(279D)A* (Sg—1adqu) — iSq—10;a 3(277D)(07X*) (D) Aqu,

and ¢ € CF° supported away from the origin and equals to one on a wide enough annulus
C(0,r1,72). Using second order Taylor’s formula, we gather

1
R; = — /RN/O hs o(Y)y* - D*Sy_1a(z — Ty) -y Agu(z — y)(1 — 7) d7 dy,

with hg g = F1(A*p(272)).
Therefore,

12,

qHL2 =< H‘ ' |2h$»q

L1 HD2SQ*1aHLoo ”AqUHLz .

Taking advantage of inequality (A.9) to bound H| : !2hs,qHL1 , we end up with

1R lm < [[V2a oo g2

Bounding R?

Standard continuity results for the paraproduct combined with the fact that low frequencies of
a are not involved in the definition of R? yield

1R < A Ulgpmalllgs, S Nulgons [[V2afl e 3 m<2,
1R S IAulge_[@leem S lull i 1920l gm0,
Note that for general (m,s) such that m —2 < N/2, the following inequality is available:

1Bl < 1A%l allall_y o S HUHHm+s—2IIV2aHBg :

2,00 2,00

Bounding R?

Since A®* maps H** in H™, and low frequencies of a are not involved in the definition of R3,
we have for all s € R,
2
[Ralgm < Nlullpee V7l ggs—24m-

Note that if s —2+m < N/2, one also has

[E]I SIS ||u||Hs—2+mHV2a||Bzg ~

2,00
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Bounding R*

Standard continuity results for the paraproduct combined with the fact that (97A*)(D) is a
pseudo-differential operator of degree s — 1 yield

IR g S 1@ )DYullygn: | Dl S Nllgoems [|V2all o if  m<1,
IR g S 1@ A)D)tllgr— | Dillggesms S Jullpw [V2allgeenz i s> L.
Actually, if m = 1, the inequality (A.3) combined with the embedding Lip — Féo,Q insures that
1B g < (/@A) D)u]| 2 lfallps, < Tl [V o

Of course, the following inequality is also available as soon as m < 1+ N/2:

1Rl S WA YD)ullggm-sllall_avy S lullyesm-2lIV2all y -

2,00 2,00

Bounding R

Basic results of continuity for the remainder insure that for s € R and m > 0, we have
1Rl < Nallggesm [A%ullpzs S IV allgermes llpe -

Note that since A* maps L* in F_ 7y, (A.2) insures that we also have

HR5HL2 S ”VzCLHHs—2+m l[ullpe -
Of course, if m > —N/2, one has for all s € R,

1Rl S IIUIIHs+m—2HV2allBg -

2,00

Bounding RS

If s+ m > 0, we have
1Rl S It pgs—2em [ V20| e

whereas if s+m + N/2 >0,

1Rl S IIUIIHs—umHVQaIIBg -

2,00
Bounding R’
Since (97)*) is a homogeneous multiplier of degree s — 1, we easily get for s € R and m > 0:
. _ :
IR g S (1Dl ge-10 [ A*) (D) ull e S V2l ggamzim 1]y
Note that (A.2) also insures that
7
[F HL2 S IV2allgez [|ullpe -
Finally, if m > —N/2, standard results of continuity for the remainder give

1R | < IIuIIHs—2+mHV2allBg -

2,00
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Bounding R®

According to (A.1), we have for a convenient y € C§°,

RS =" A_1A;aA*Y(D)Agu — A*Y(D)(A_1Agalgu) — iA_1A49;aX(D)(@A*)(D)Agu.
q<0

R

Now, arguing as for bounding ||R|, ,, we get

L2’
1 —
Rg(x) = //0 (ffl(Asi))(y)y* . DQA_lAqa(x — 1Y) -y Aqu(z — y)T dr dy.

Since there are only a finite number of Rg each of them being bounded by

Clll- PF O D22 1a] o || Bgu

L2’

we easily conclude that

HRSHHm S HDZA—IGHLoo [Ssull 2 < HVQCLHLOO [l ps—24m-

Let us state an ultimate commutator estimate.

Lemma A.4 Let n € [0,1) and A € C®°(RN \ {0}) be a homogeneous function of degree m €
[0,1 —n]. Then there exists a constant C' depending only on A, n, m and N such that

JLA(D), Bullz < CIDbl o bl -1+
with the convention || Db|co := || Db/} -
Proof. Let us denote A(D) := (Id — A_;)A(D). We have

[A(D), b]u = [A(D), Tb]u + A_lA(D)Tbu — TbA_lA(D)u
+A(D)T,b — Tapyab + A(D)R(u,b) — R(A(D)u, b).

By using first order Taylor’s formula and that the function A(1—y) is smooth and homogeneous
of degree m outside a small ball centered at the origin and n > 0, it is easy to show that

|A®). B , < CUIDBl - ullipm-s

Since only low frequencies are involved in the operator A(D)A_;, we obviously have

JAAD)Tyullys S [Tyl ren < bl fullgmorens

~ ~

IToA-1AD)ull S Il [A1AD)ullz S [bllpee 1ullgm-14n-

~ ~

Using (A.2), (A.3) and standard results of continuity for the paraproduct and the remainder,
we also have (provided n <1 and m € [0,1 —17)])

|AMD)Tud| > S I Tubl gm

1T ayud]| 2 S [AD)ullg-140 16l 10
[AD)R(u, b))z < [1R(w;b)llggm
IR(AD)u, b)llr: < |AD)ullg-140lbllgrn

S lullgm-1+allbllgren,
S lullgm—1+0lbll gr-n,
S lullgm-1+albllgr-n,
S lullgm-aallbllgren,

whence

ITAD), blullz < C[Ibllee + Dbl )/l gpm—1+n-

In order to eliminate the term |[|b]|; , it suffices to apply the above inequality to by := b(\-)
and wu)y := u(\-) and to make A tend to infinity. O
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B Tame estimates for the product or composition of functions

This section is devoted to the proof of various tame estimates which have been used repeatedly
throughout the paper. Let us first state estimates for the product of two functions.

Lemma B.1 For all s >0 and k € N, there exists a constant C' depending only on s, k and
N and such that
k
luollge < O (llullse lollgs + ol 1DFullygss ).

Proof. The case k = 0 is standard (see e.g [1]). We rule out the case s = 0 which is trivial.
For proving the general case kK > 1 and s > 0, one can take advantage of Bony’s decomposition

(B.10) wo = Tyv + R(u,v) + Tyu.
It is well known that for all s > 0, we have
[Tuvllgs + 1R (w, 0) s S llwllpee l[0llgs-

In order to bound the last term, we notice that T,u = T,(Id — x(D))u where the low frequency
cut-off x has been defined in the previous section. Hence

[Tullys S [lollpee [[(Id = x(D))ul|gs-
Now, since

1+ [¢)?
€]?

we readily have |(Id — x(D))ullys < I1D%u|jpe—s - U

The following variation on Lemma B.1 is also needed.

k —
(5 = XDl = [ - x<5>>2( ) (1 + [€[2) 4 DFu(e) P d.

Lemma B.2 For all s >0 and k € N, there exists a constant C depending only on s, k and
N and such that
k
vl < C(lulle Nollge + Nollo 1D el gesr- )

Proof. Decompose uv as in (B.10) and bound the first two terms as in Lemma B.1. For the
third one, one uses that
IToullys S vl llullges-

Of course, as Tyu = T,,(Id — x(D))u, the term ||ul|j.+1 may be replaced by ||D*ul|jeri-r. O

Lemma B.3 Take s < 0. There exists a constant C' depending only on s and N, and such
that
luv|gs < Cllullgis o] gs-

Proof. The proof still relies on Bony decomposition for uv. Since s < 0, standard results of
continuity for the paraproduct yield

I Tuvllgs + [Toullgs < Clluflpe [0]lgs-

For bounding the remainder, we use that L? — H*® and inequality (A.2). Since Clsl — Fli,m
we discover that
[R(w, v)[[gs < Cllullgsilvllgs,

which completes the proof of (B.3). O
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We now turn to the proof of composition estimates. Let us first recall the following lemma
(the proof of which may be found in e.g [1]).

Lemma B.4 Let I,J be two intervals of R with J CC I and I open. Let s >0 and o be the
smallest integer such that o > s. Let F be in WOTL(R; I) and satisfy F(0) = 0. Assume
that v € H® has values in J. There exists a constant C' = Cs 1 jn such that

1F ()l < CUH+[0llgoe) 1 lwooo (1) 0]l 1o

Since we often manipulate bounded functions which need not be in Sobolev spaces but whose
gradient does belong to a Sobolev space, the following improvement of Lemma B.4 is very useful.

Proposition B.1 Let I,J be two open intervals of R with J CC I. Take m € N*, s > —m

and let o be the smallest integer such that o > s. Take F € Wf:cm“ " and let v be valued in

J and such that D™v € H®. There exists a constant C = Cs 1 5N such that
otm
D™ (F' ()= < C(1+]0llgee) " I yasm.oo (| D™ 0] -
Proof.

1. As a warm-up, let us estimate D*F(v) for k € N*.

For any multi-index « of length &, Fad-di-Bruno’s formula yields

:Zk: > <ca17...7a].F(j)(v)H8aiv)

j=1 art-+aj=a =1
where the coefficients cq, ... .a; are positive integers whose value does not matter here.

Combining Holder and Gagliardo-Nirenberg inequalities, we get

|[FO@ T o], < [IFO@)| TEL 0n
< “F(j)(v)“Loo 1”U||L°° UHL2 ’
whence
k—1 ) )
(B.11) IDHE@) s < G [P, S leli [0 0)
=0

2. Assume that s is a nonnegative integer. Since

s+m

D™ F ()]s < Z 1D* (F ()l

inequality (B.11) readily yields the estimate in Proposition B.1.

3. We now have to prove Proposition B.1 for general s > —1. This is actually an easy
variation on the proof of Lemma B.4 based on Meyer’s first linearization method.

Of course, one can change F for a function F € WZ;mH *(R) compactly supported in

I and such that F = F on a neighborhood of J. In what follows, we denote F by F'.
Decompose F(v) into

F(v) = F(Sov) + Y F(Spi1) — F(Spv).
p=>0
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According to first order Taylor’s formula, we have
1
F(Sp+1) — F(Spv) = mpApv  with my = / F'(Spv + T7Apv) dr.
0
One can easily prove that the m,’s are Meyer multipliers, namely

(B.12) Vk € {0, o +m},

[DFmy| < G20+ ol ) e
Take ¢ > —1. According to the above equality, A, (F(v) — F(S()’U)) decomposes into

Aq(F(v) = F(Sov)) = Z Aq(mp Apv) + Z Aq(my Apv) .

0<p<q p>q+1

A A

Mimicking the proof given in [1] and taking advantage of the Bernstein’s inequality:
3C >0, Vp e N, [|Apv|l . < C27P" [|[A, D™, 2,
we easily get

P4 A3 < € T (277 [D7 iyl ) (2 D™ By ) 29,
2d(etm) HAgHLQ < O psgrt Ml (27 [ D™ Apv]lr2) gla=p)letm)

which, in view of (B.12) eventually® leads to

D™ (F(v) = F(Sov)) 1 (0) = F(S0v) [l ggs+m

HHS S
S Aol ) T I E yosmoos [ D™ 0l -

(B.13)

In order to bound the “low frequency” part D(F (Sov)), we use the previous step of the
proof with Spv and the integer o. This yields

|D™ (F(500)) e < ID™ (F(S00))llgo < CL+ [0l )™ M g1, | D™ S0

[
whence the desired inequality since ||[D"Sov|lge < | D™ 0|l

a

Corollary B.1 Let v, I and F satisfy the assumptions of Proposition B.1 with s > 0 and
m = 1. Let o be the smallest integer such that o > s. Assume that w is bounded and that
Dw € H®. There exists a constant C = Cs 1 5~ such that

o+l
I1F'(v) Dwl|ys < C(HF(U)HLoo [Dwllgs + lwllgee (1[0l 00) HF/HWUH’OO(I)HDUHHS>'

Proof. According to Lemma B.2, we have

1) Dwllgs S 1 @)||Leo [Dwllgs + [[Dwllg-1[[DF(v)|. -

Using that ||[Dwl||¢-1 S ||w||;~ and applying Proposition B.1 yields the desired inequality. O

The following variation on Corollary B.1 and Proposition B.1 will prove to be also very

useful.

remind that o > s and s > —m
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Corollary B.2 Toke k € N and s > 0. Let F be as in Proposition B.1. We have
[F(w)wllys < C(HF(U)HLoo lwllgs + [lwllp~ (1 + HUHLOO>G+]€HF,HWU+‘“7°°(I)HDkU”HS—’“>'
Proof. Combine Lemma B.1 and Proposition B.1. O

Corollary B.3 Let I,J be two intervals of R with J CC I, and v and w be two J-valued
functions. The following a priori estimates hold true.

o If s >0 and F € Wot2°(I) where o is the smallest integer such that o > s then
1Fw) = F@)llge < € (17 eyl = vl

otk
+lw=2pe (14 sup [Jo+7(w—2)1) HF'Hwa+k,o<>(1)(HD"%HHHc + HDk(w—v)HHHD

7€|0,1
for some C =Csp1N-
o If Fe Wh(J) then |F(w) = F(v)|lr2 < | F'|lpoepllw = vl
Proof. According to first order Taylor’s formula, we have
1
Fw) — F(v) = / (w — ) F' (0 + 7(w — v)) dr.
0
Therefore,

1
1F(w) = F0)l[gs < /0 (w = v)F'(v+ 7(w = v))| gs dr,

which implies the desired result if s = 0. The case s > 0 readily stems from Corollary B.2. O

C Mollifiers

The following lemma which is a straightforward extension of Lemma 5 in [6] to the multidimen-
sional case is used repeatedly in the regularization process of system (EK).

Lemma C.1 Let x € S(RY) be such that X is compactly supported and equals to 1 in a
neighborhood of 0. For n > 0, denote X, := n~Nx(n~'). Then we have the following results.

(i) There exists a constant C' such that for all s € R and f € H*(RY), we have

Ixn * fllgste <Cn7 |\ fllgs for all >0 and ne (0,1).
(ii) There exists a constant C such that for all s € R and f € H(RY), we have
1 =X * fllgs—o < C7\ fllggs for all o >0 and n € (0,1).
(iii) For all s € R, ¢ >0 and f € H*(RY), we have
If =Xy * fllgs—o = 0(n7) when n goes to 0.
Besides, if (f™)nen tends to f in H® then for all 0 >0,
n N =Xy x oo — 0

uniformly for n € N when n goes to zero.
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Index of symbols

e From the model and the data

a = +/p K, function of p, 5

go: bulk chemical potential, function of p,
4

J[}L: upper bound of densities, 4

J, : lower bound of densities, 4

J,: interval range of densities, 4

J*: upper bound for L, 5

J7: lower bound for L, 5

J: interval range for L, 5

K: Korteweg stress tensor, 3

K : capillarity coefficient, function of p, 4

K: part of total energy functional, 2, 6

L = L(p), alternate dependent variable, 5

L: primitive of a/p, 5

p: extended pressure, function of (p, Vp), 3

po: bulk pressure, function of p, 4

N: dimension in spatial variables, 4

p: density of the fluid, 3

po: initial density, 4

p: density in reference solution, 4

u: velocity of the fluid, 3

ug: initial velocity, 4

u: velocity in reference solution, 4

\/% Vp, alternate dependent vari-

able, 5
x: spatial variable, 2
xj: spatial coordinate (1 < j < N), 3
e Functional spaces
Ce: Holder space, 4
L2: space of square integrable functions, 2

W =

L°°: space of essentially bounded function,
4

H*: Sobolev space, 3

W Sobolev space, 9

E%: space of solutions, 4

Er, E%’R: functional spaces in (L,z) vari-
ables, 15

A% affine space (p,u) + E%, 36

Bg?oo: Besov space, 44

?.'é,zi Triebel-Lizorkin space, 42

e “Operators”

curl : curl operator (in space variables), 3

0j: partial derivative with respect to the
space variable x;, 3

ISz}

div : divergence operator (in space variables),
3

D: differentiation operator (in space vari-
ables), 3

Dy = 0y + v* - V: convectional derivative, 6

A: Laplacian operator, 4

Ay basic operator in Littlewood-Paley de-
composition, 42

0 : stands for the difference between two sim-
ilar quantities, 17, 25

V: gradient operator (in space variables), 3

Vo : divergence-free gradient operator (in
space variables), 3

V?2: Hessian operator (in space variables), 3

Ix: identity operator in space X, 3, 4

F: Fourier transform, 3

A?: fractional derivative operator of symbol
A3

II: Fourier multiplier, 20

P: L2 orthogonal projector on solenoidal
vector-fields, 3, 8

Q: L? orthogonal projector on potential vector-

fields, 3, 7

Sq:sumof A, p<qg—1,42

S;: semi-group for —A?, 15

R(u,v): remainder term in paraproduct de-
composition, 42

T,v: paraproduct of u and v, 42

e Delimiters

[, ]: delimiters for commutator of two oper-
ators, 7

{, }: delimiters for Poisson bracket, 46

|| [lygs: delimiters for modified H® norm, 9

|| [|5: delimiters for “approximate” norm on
H*, 14

e Sub or super-scripts

*: superscript for conjugate transpose, 3

fi: subscript for functions of L instead of p,
5

": standing for a perturbation, 15, 18

£: subscript related to the semi-group of
—eA?, 15

", 36

e Miscellaneous (roman)

a,a: lower and upper bounds for a, 9

A: arising in a priori estimates, function of
t, 9



Ag: primitive of a® — pd%as, 14

C': constant in a priori estimate, 9

F = ¢¢f, source term, 6

F; := ¢oA°f: source term, 8

f: source term in linearized eq. for z, 6

F': (arbitrary) function of L, 20

g: source term in linearized eq. for p, 6

G =VQA®z-Va, 8

K: compact subset of J, 23, 28, 30

K’: compact subset of J, 25

I, etc: ..., 20

h: source term, 19

q = —pg}/a, function of p, 5

Q4 primitive of gy, 26

Q(®,z): error term, 20

Ry: remainder term, 7

R;, Ry, etc: remainder terms, 8

Rs: remainder term, 13

Ry : total norm of initial data, 15

R: total norm of solution, 18

s: Sobolev index, 4

s1: number greater than N/2 + 1, 27

si = max(1,s), 22

T, T*: time of existence of a solution, 4

V: neighborhood of (0,0) in H**! x H®, 25

V: neighborhood of (pg, ug), 36

z: complex valued dependent variable, 5

Z = ¢pz: alternate dependent variable, 6

Z; = ¢oA°z: dependent variable, 8

e Miscellaneous (greek)

[ exponent in a priori estimates, 23

0B: exponent involved in mollifier, 28

~: exponent in a priori estimates, 38

d: exponent in a priori estimates, 38

¢: regularization parameter, 15

n, 15

A%: symbol of A%, 3

v: regularization parameter, analogous to ¢,
30

¢: frequency variable, 3

p, p: lower and upper bounds for p, 9

o: Sobolev exponent, 9

@: cut-off of low and high frequencies in
Littlewood-Paley decomposition, 42

¢o = /p: gauge function for L? estimates,
6

¢s: gauge function for solenoidal H® esti-
mates, 13

®: iterative map, 15

& =3//p, 20

Vs

o7

: total gauge for solenoidal H® estimates,
20

: cut-off of high frequencies in Littlewood-

Paley decomposition, 42

: function used for the mollifier, 28
Xe*
s

mollifier, 28
gauge function for potential H® esti-
mates, 8
: total gauge for potential H® estimates,
20



