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Abstract
The purpose of this study is the construction of a vecto-

rial polynomial base for the Nédélec mixed finite element
[3]. We also aim to build automatically a code written in
fortran90 for the elementary mass ans stiffness matrices.
To this end, it is essential to use a symbolic calculus tool
(here, Maple), so that the input data for the development
of such a finite element of order k, are the number k it-
self and the k-order mesh made of triangles or tetrahedra.
In particular the main motive is to generate automatically
finite elements, and never to mention the expression of
the polynomial basis functions, which is attached to the
symbolic calculus: there is no practical interest to the
representation of basis functions.

Introduction
This article is concerned with the need to increase

the order of finite element methods in electromagnetism
[1],[2],[5]. The aim is here to determine polynomial ba-
sis functions of triangular and tetrahedral elements for
any order k. For this purpose, we need first to express
the polynomial space of start Rk for any order k, then to
give the mathematical expression of degrees of freedom,
and finally to solve the unisolvance system. For all these
steps, we use a symbolic mathematical program.

1 Higher-order finite element of order of H(curl)
Finite element of order k in R3 on tetrahedra
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Figure 1: Reference tetrahedron

We recall notations of some polynomial spaces used to

define Nédélec finite elements:
Pk linear space of polynomials of degree ≤ k,
P̃k linear space of homogeneous polynomials of degree k,
Sk = {u ∈ (P̃k)3, u1x + u2y + u3z = 0},
Rk = (Pk−1)3 ⊕ Sk linear space of polynomials for the
finite element of order k and class H(curl).

2 Space of polynomials and degrees of freedom of k-
order H(curl) finite element

Our interest is the k-order finite element built on a tetra-
hedron (see figure 1). In the sequel we use classical no-
tations of finite element: K̂ is the reference tetrahedron
with nodes (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), K is any
tetrahedron of the mesh, f̂ a face of K̂, f a face of K, etc.

2.1 Characterizing and determining Sk

To built Rk, we first need to determine explicitly Sk.
We prove that Sk is entirely describe by the following
polynomials:

for m + n ≤ k :

 x̂m−1ŷnẑk−m−n+1

0
−x̂mŷnẑk−m−n

 , (1)

for m + n = k + 1 :

 x̂m−1ŷn

−x̂mŷn−1

0

 , (2)

for m + n ≤ k :

 0
x̂mŷn−1ẑk−m−n+1

−x̂mŷnẑk−m−n

 . (3)

2.2 Definition of the degrees of freedom
We put:

−→
p̂ =

 p̂1(x̂, ŷ, ẑ)
p̂2(x̂, ŷ, ẑ)
p̂3(x̂, ŷ, ẑ)

 .

Degrees of freedom of edge type
∫
Γ
−→p · −→τ dγ

If k is the order of the element, the number of edge
degrees of freedom is ne = 6k and they are:
for m = 1, k ∫ 1

0
−p̂1(1− x̂, 0, 0)x̂m−1dx̂ (4)



∫ 1

0
p̂2(0, ŷ, 0)ŷm−1dŷ (5)∫ 1

0
(p̂1(x̂, 1− x̂, 0)− p̂2(x̂, 1− x̂, 0))x̂m−1dx̂ (6)∫ 1

0
(−p̂1(1− x̂, 0, x̂) + p̂3(1− x̂, 0, x̂))x̂m−1dx̂ (7)∫ 1

0
(p̂2(0, ŷ, 1− ŷ)− p̂3(0, ŷ, 1− ŷ))ŷm−1dŷ (8)∫ 1

0
p̂3(0, 0, ẑ)ẑm−1dẑ (9)

Degrees of freedom of volume type
If k is the order of the element, the number of volume

degrees of freedom is nv = k(k − 1)(k − 2)/2 and they
are:
for m + n + l ≤ k − 3,∫ 1

0

∫ 1−x̂

0

∫ 1−x̂−ŷ

0
p̂1(x̂, ŷ, ẑ)x̂mŷnẑldx̂dŷdẑ (10)

∫ 1

0

∫ 1−x̂

0

∫ 1−x̂−ŷ

0
p̂2(x̂, ŷ, ẑ)x̂mŷnẑldx̂dŷdẑ (11)∫ 1

0

∫ 1−x̂

0

∫ 1−x̂−ŷ

0
p̂3(x̂, ŷ, ẑ)x̂mŷnẑldx̂dŷdẑ (12)

Degrees of freedom of face type
To define them, we use the following eight vectors:

q̂1 = q̂6 =

 0
1
0

 , q̂2 = q̂3 =

 1
0
0



q̂4 = q̂5 =

 0
0
1

 , q̂7 =

 −1
1
0

 , q̂8 =

 −1
−1

2

 .

If k is the order of the element, the number of faces de-
grees of freedom is nf = 4k(k − 1) and they are:
for m + n ≤ k − 2,∫ 1

0

∫ 1−x̂

0
((
−→
p̂ ∧

−→
n̂ ) ·

−→
q̂1)(x̂, ŷ, 0)x̂mŷndx̂dŷ (13)

∫ 1

0

∫ 1−x̂

0
((
−→
p̂ ∧

−→
n̂ ) ·

−→
q̂2)(x̂, ŷ, 0)x̂mŷndx̂dŷ (14)∫ 1

0

∫ 1−x̂

0
((
−→
p̂ ∧

−→
n̂ ) ·

−→
q̂3)(x̂, 0, ẑ)x̂mẑndx̂dẑ (15)∫ 1

0

∫ 1−x̂

0
((
−→
p̂ ∧

−→
n̂ ) ·

−→
q̂4)(x̂, 0, ẑ)x̂mẑndx̂dẑ (16)

∫ 1

0

∫ 1−ŷ

0
((
−→
p̂ ∧

−→
n̂ ) ·

−→
q̂5)(0, ŷ, ẑ)ŷmẑndŷdẑ (17)∫ 1

0

∫ 1−ŷ

0
((
−→
p̂ ∧

−→
n̂ ) ·

−→
q̂6)(0, ŷ, ẑ)ŷmẑndŷdẑ (18)∫ 1

0

∫ 1−x̂

0
((
−→
p̂ ∧

−→
n̂ )·

−→
q̂7)(x̂, ŷ, 1−x̂−ŷ)x̂mŷndx̂dŷ (19)∫ 1

0

∫ 1−x̂

0
((
−→
p̂ ∧

−→
n̂ )·

−→
q̂8)(x̂, ŷ, 1−x̂−ŷ)x̂mŷndx̂dŷ (20)

3 Change of bases for the degrees of freedom to pre-
serve H(curl) continuity

As the H(curl) finite elements are invariant by affine
transformation if we use - for a given (3× 3) matrice B:

−→p = B∗−1−→p̂

we can define affine equivalent finite elements [2],[3].

3.1 Change of bases for edge degree of freedom
For all number i of an edge Γ̂, we impose to find

−→
p̂ j ,

such that σ̂i(
−→
p̂ j) = δij , where δij is the kronecker sym-

bol and where for these degrees of freedom:

σ̂i(
−→
p̂ j) =

∫
Γ̂

−→
p̂j ·

−→
τ̂ ŝidγ̂

We define: −→̃
pj = B∗−1−→p̂j

We suppose that the degrees of freedom for each edge
Γ of a tetrahedron K are, for i = 1, k:

σ̃i(
−→̃
p j) =

∫
Γ

−→̃
pj · −→τ si−1dγ

Then σ̃i is verifying: σ̃i(
−→̃
p j) = σ̂i(

−→
p̂ j) = δij .

We define: σi(−→p ) = σ̃i(−→p ) when the edge Γ is covered
in the same way as Γ̂. If this edge is covered in the oppo-
site way, we define, refering to a parametrisation of Γ on
the interval [0, 1]:

σi(−→p ) = −
∫

Γ

−→p · −→τ (1− s)i−1dγ

Then we formally define the matrix: Ae = (ae
il), where

ae
il = (−1)l+1

(
i
l

)
, if i ≥ l and ae

il = 0 if not. We

have: 
σ1

...
σi

...
σk

 = Ae


σ̃1

...
σ̃i

...
σ̃k

 (21)



Then we must choose as H(curl) compatible basis
Span{−→̃p i} related to edges:

−→p 1

...
−→p i

...
−→p k

 =t Ae


−→̃
p 1

...
−→̃
p i

...
−→̃
p k

 . (22)

3.2 Change of bases for faces degree of freedom
As well as for the edges, the H(curl) continuity at

faces interfaces has to be formulated. We restrict this
study to the 2nd-order case; the k-order general case will
be presented in a paper to appear.
For all number i of a face f̂ , we impose to find

−→
p̂ j , such

that σ̂i(
−→
p̂ j) = δij where for these degrees of freedom:

σ̂i(
−→
p̂ j) =

1

| f̂ |

∫
f̂
(
−→
p̂ j ∧

−→
n̂ ) ·

−→
q̂i dγ̂

So we have:

σ̂i(
−→
p̂ j) = σ̃i(

−→̃
p j) =

1
| f |

∫
f
(
−→̃
pj ∧ −→n ) · −→uidγ

where:
−→̃
pj = B∗−1−→p̂ j and −→ui = B(

−→
n̂ ∧

−→
q̂i ) ∧ −→n . We

define the degree of freedom for a face f in the mesh by:

σi(−→p ) =
1
| f |

∫
f
(−→p ∧ −→n ) · −→qi dγ

where −→q i = B
−→
q̂i

|B
−→
q̂i |

and −−→qi+1 = −→qi
⊥,−−→qi+1 ⊂ f , for i ∈

{1, 3, 5, 7}. Then we look for basis functions −→p j related
to faces verifying:

σi(−→pj ) = σ̃i(B∗−1−→p̂ j) = δij

To this end, we decompose - following the figure - the
−→u i on each orthonormal vector base face (−→q i,

−→q i+1), so
that:

−→u i = αi
−→q i + βi

−→q i+1

−→u i+1 = αi+1
−→q i + βi+1

−→q i+1

For the degrees of freedom, we have:

σ̃i = αiσi + βiσi+1

σ̃i+1 = αi+1σi + βi+1σi+1

or with the (2× 2) matrix Af =
(

αi βi

αi+1 βi+1

)
.

(
σi

σi+1

)
= A−1

f

(
σ̃i

σ̃i+1

)
(23)

finally the effective vectorial basis on face f is taken to
be: ( −→p j−→p j+1

)
=t Af

( −→̃
p j−→̃
p j+1

)
. (24)

4 Obtention of mass and stiffness matrices
The next step of our study is the determination of the

mass and stiffness matrices:

M = (mij)

K = (kij)

where
mij =

∫
K

−→p i · −→p j dxdydz (25)

kij =
∫

K
curl−→p i · curl−→p j dxdydz (26)

For this purpose, we use symbolic program to make an
exact integration of these integrals with a simplification
by the 6 factors of the symetric matrix B∗B.

Conclusion
The equations (1) to (20), (25) and (26), are solved with

symbolic calculus. Although polynomial vector bases are
effectively produced by these equations, their contents
never appear. The main effort will then be devoted to the
H(curl) compatibility equations (21) to (24) which are
to be treated with a small but not easy to handle program
written in fortran 90.

This method can be extended to the H(div) conform-
ing finite elements [4], and more generally for any mixed
finite elements using such degrees of freedom.
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