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Abstract

The goal of this study is the automatic construction of a vectorial polynomial basis for
Nédélec mixed finite elements [7], particular, the generation of finite elements without the
expression of the polynomial basis functions, using symbolic calculus: the exhibition of
basis functions has no practical interest.
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Introduction

This article addresses the need to increase the order of finite element methods in
electromagnetism [3],[6],[9].

The important points in this presentation are:

• The option for the use of symbolic calculus which represents roughly 300 lines
of Maple language, the use of which consists of:
. writing the general form of the polynomials
. writing the degrees of freedom
. solving the unisolvence system
. writing the masses and stiffness matrices analytically integrated
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• Characterization and determination of the polynomial spaces associated with the
mixed finite elements of H(curl) in R3, also called Nédélec finite elements.

• A new, algebraic characterization of the H(curl) conforming, respecting the con-
tinuity of the degrees of freedom and base functions. Taking account of these
matricial relationships takes up roughly 500 lines in Fortran 90 language.

The results are presented conventionally with finite elements [7]. The value of this
approach lies in the naturalness and simplicity of the formulation compared, for
example, to [1],[2],[4],[5],[10], insofar as the approach extends the original text of
Nédélec without introducing any polynomial functions other than those contained
in this paper [7]. The only datum is the order of the finite element. Extension to
quadrangles or to hexahedra can be made in a similar manner.

The algebraic answer to the problem of orientation, which is fundamental in mixed
finite elements, is presented. It must be understood that with mixed finite elements
the essential datum, in addition to the nodes and the connectivity of the meshes
(triangles or tetrahedra) is the orientation. An orientation of the edges and faces (for
tetrahedra) must be given a priori. Taking account of that orientation - whatever it
is - is performed here in a matricial, algebraic manner, which is an important result
of this study.

The aim here is to determine polynomial basis functions of triangular and tetrahe-
dral elements for any order k. For that purpose, must first be expressed the polyno-
mial space of start Rk for any order k then the mathematical expression of the de-
grees of freedom must be given and finally the unisolvance system must be solved.
For all those steps, a symbolic mathematical program is used.

1 Finite elements of order k in R3 on tetrahedra

Let x, y, z be the current coordinates in R3. Notations of certain polynomial spaces
used to define Nédélec finite elements are recalled:
Pk linear space of polynomials of degree ≤ k,

τ

n

y

z

x

Fig. 1. Tetrahedron notations

P̃k linear space of homogeneous polynomials of degree k,
Sk = {u ∈ (P̃k)

3, u1x + u2y + u3z = 0}.
Consider a tetrahedron K, with six edges Γi and unitary tangent vector −→τi , for
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i = 1, . . . , 6, with four faces fj and a unitary normal vector −→nj , for j = 1, . . . , 4.
The finite element defined on K is considered, by the following linear space of
polynomials of order k and class H(curl):

Rk = (Pk−1)
3 ⊕ Sk, (1)

and according to figure 1 and the definition above, the set of linear forms as degrees
of freedom (d.o.f.), first d.o.f. based on edges,

∫
Γi

(−→p · −→τi ) q(s) ds , for q(s) ∈ Pk−1 , (2)

then d.o.f. based on faces,

∫
fj

(−→p ∧ −→nj) · −→q dγ , for −→q ∈ (Pk−2)
2 , (3)

and finally d.o.f. based on volumes,

∫
K

−→p · −→r dxdydz , for −→r ∈ (Pk−3)
3 . (4)

The dimension of this finite element is given by [7]:

dimRk =
(k + 3)!

2 (k − 1)! (k + 1)

2 Space of polynomials and degrees of freedom of k-order H(curl) finite ele-
ments

The subject of interest is the k-order finite element built on a tetrahedron (see figure
1). In the sequel classical notations of finite elements are used: K̂ is the reference
tetrahedron with nodes (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), K is any tetrahedron of
the mesh, f̂ a face of K̂, f a face of K, etc. For each of the four faces f̂ with number
i ∈ {1, 3, 5, 7}, the normal vectors

−→
n̂i are defined, with the notation

−−→
n̂i+1=

−→
n̂i for

convenience, by (see figure 2):

−→
n̂1 =


0

0

−1

 ,
−→
n̂3 =


0

−1

0

 ,
−→
n̂3 =


−1

0

0

 ,
−→
n̂7 =

1√
3


1

1

1

 .

3



To define these d.o.f., the following eight vectors are used (see figure 2):

−→
q̂1 =

−→
q̂6 =


0

1

0

 ,
−→
q̂2 =

−→
q̂3 =


1

0

0



−→
q̂4 =

−→
q̂5 =


0

0

1

 ,
−→
q̂7 =


−1

1

0

 ,
−→
q̂8 =


−1

−1

2

 .
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Fig. 2. k-order reference tetrahedron

2.1 Characterizing and determining Sk

To build Rk, the set Sk must first be explicitly determined. Monomials base func-
tions were determined and chosen as weight functions. Any other choice of base
to generate Rk is acceptable. For example, Legendre polynomials can be used as
barycentric coordinates that can be employed as in the reference [1]. We prove that
Sk is entirely described by the following polynomials vectors:

for 0 ≤ m + n ≤ k,m 6= 0 and n 6= k :


x̂m−1ŷnẑk−m−n+1

0

−x̂mŷnẑk−m−n

 , (5)
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for 0 ≤ m + n ≤ k,m 6= k and n 6= 0 :


0

x̂mŷn−1ẑk−m−n+1

−x̂mŷnẑk−m−n

 , (6)

for m + n = k + 1, m 6= 0 and n 6= 0 :


x̂m−1ŷn

−x̂mŷn−1

0

 . (7)

PROOF. Let d be the dimension of space. Nk,d is noted as the cardinal of polyno-
mials Sk (in the sense of [7]). N 1

k,d is noted as the cardinal of polynomials given by
(5) and (6). It is clear that this gives, with here, d = 3:

Nk,3 = 2N 1
k,3 +Nk,2

therefore:
Nk,3 = 2N 1

k,3 +N 1
k,2

and we have:

N 1
k,d =

(d + k − 2)!

(d− 1)!(k − 1)!

that is:

N 1
k,2 = k and N 1

k,3 =
(k + 1)k

2
so that finally:

Nk,3 = k(k + 2)

which is the dimension of Sk.

2.2 Definition of the degrees of freedom

A symbolic program is essentially used to create and solve the unisolvance system,
thanks to which the polynomials in span{−→ql } generating Rk and the degrees of
freedom σi are defined. The symbolic calculus is then used to solve and find the
−→pi ∈ span{−→ql } which verify σi(

−→pi ) = δij .

Let :
−→
p̂ =


p̂1(x̂, ŷ, ẑ)

p̂2(x̂, ŷ, ẑ)

p̂3(x̂, ŷ, ẑ)

 ∈ Rk,

where p̂i(x̂, ŷ, ẑ) are polynomials of order k in the variables x̂, ŷ and ẑ defined
by linear combination of monomials (5),(6) and (7).
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The classic degrees of freedom are then chosen, namely those introduced by Nédélec,
and based on the edges, the faces and the volume moments.

Degrees of freedom of edge type

If k is the order of the element, the number of edge d.o.f. is ne = 6k and following
figure 2 with a parametrization on each edge Γ̂ with tangent vector

−→
τ̂i , they are:

for m = 1, . . . , k ∫ 1

0
−p̂1(1− ŝ, 0, 0) ŝm−1dŝ (8)∫ 1

0
p̂2(0, ŝ, 0) ŝm−1dŝ (9)∫ 1

0
(p̂1(ŝ, 1− ŝ, 0)− p̂2(ŝ, 1− ŝ, 0)) ŝm−1dŝ (10)∫ 1

0
(−p̂1(1− ŝ, 0, ŝ) + p̂3(1− ŝ, 0, ŝ)) ŝm−1dŝ (11)∫ 1

0
(p̂2(0, ŝ, 1− ŝ)− p̂3(0, ŝ, 1− ŝ)) ŝm−1dŝ (12)∫ 1

0
p̂3(0, 0, ŝ) ŝm−1dŝ (13)

Volume type degrees of freedom

For k the element order, nv = k(k− 1)(k− 2)/2 the number of volume degrees of
freedom, these d.o.f. are, for m + n + l ≤ k − 3:∫ 1

0

∫ 1−x̂

0

∫ 1−x̂−ŷ

0
p̂1(x̂, ŷ, ẑ) x̂mŷnẑldx̂dŷdẑ (14)

∫ 1

0

∫ 1−x̂

0

∫ 1−x̂−ŷ

0
p̂2(x̂, ŷ, ẑ) x̂mŷnẑldx̂dŷdẑ (15)∫ 1

0

∫ 1−x̂

0

∫ 1−x̂−ŷ

0
p̂3(x̂, ŷ, ẑ) x̂mŷnẑldx̂dŷdẑ (16)

Face type degrees of freedom

If k is the order of the element, nf = 4k(k − 1) the number of faces degrees of
freedom, we define according to figure 2, for m + n ≤ k − 2:∫ 1

0

∫ 1−û

0
(
−→
p̂ (v̂, û, 0) ∧

−→
n̂1) ·

−→
q̂1 ûmv̂ndûdv̂ (17)

∫ 1

0

∫ 1−û

0
(
−→
p̂ (v̂, û, 0) ∧

−→
n̂2) ·

−→
q̂2 ûmv̂ndûdv̂ (18)
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∫ 1

0

∫ 1−û

0
(
−→
p̂ (û, 0, v̂) ∧

−→
n̂3) ·

−→
q̂3 ûmv̂ndûdv̂ (19)∫ 1

0

∫ 1−û

0
(
−→
p̂ (û, 0, v̂) ∧

−→
n̂4) ·

−→
q̂4 ûmv̂ndûdv̂ (20)∫ 1

0

∫ 1−û

0
(
−→
p̂ (0, v̂, û) ∧

−→
n̂5) ·

−→
q̂5 ûmv̂ndûdv̂ (21)∫ 1

0

∫ 1−û

0
(
−→
p̂ (0, v̂, û) ∧

−→
n̂6) ·

−→
q̂6 ûmv̂ndûdv̂ (22)∫ 1

0

∫ 1−û

0
(
−→
p̂ (1− û− v̂, û, v̂) ∧

−→
n̂7) ·

−→
q̂7 ûmv̂ndûdv̂ (23)∫ 1

0

∫ 1−û

0
(
−→
p̂ (1− û− v̂, û, v̂) ∧

−→
n̂8) ·

−→
q̂8 ûmv̂ndûdv̂ (24)

3 Change of bases for the degrees of freedom to preserve H(curl) continuity

The second part of this work concerns the transformations of the reference element
into a mesh element, and the problem of orientation. This is covered in this para-
graph. The transformations of the reference element into any cell are independent
of the basis functions but dependent upon the degrees of freedom and of course on
the order, in other words on the orientation chosen in the mesh.

As the H(curl) finite elements are invariant by affine transformation if a given
(3× 3) matrice B, is used :

−→p = B∗−1−→p̂
affine equivalent finite elements can be defined [6],[7].

3.1 Change of bases for edge degree of freedom

For all numbers i of an edge Γ̂,
−→
p̂ j must be found, such that σ̂i(

−→
p̂ j) = δij , where δij

is the kronecker symbol and where for these degrees of freedom, for i = 1, . . . , k:

σ̂i(
−→
p̂ j) =

∫
Γ̂

−→
p̂j ·

−→
τ̂ ŝi−1dŝ

We define: −→̃
pj = B∗−1−→p̂j

We suppose that the degrees of freedom for each edge Γ of a tetrahedron K are, for
i = 1, . . . , k:

σ̃i(
−→̃
p j) =

∫
Γ

−→̃
pj · −→τ si−1ds

Then σ̃i verifies: σ̃i(
−→̃
p j) = σ̂i(

−→
p̂ j) = δij .

We define: σi(
−→p ) = σ̃i(

−→p ) when the edge Γ is covered in the same way as Γ̂. If this
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edge is covered in the opposite way, we define, with reference to a parametrization
of Γ on the interval [0, 1]:

σi(
−→p ) = −

∫
Γ

−→p · −→τ (1− s)i−1ds

Then the matrix: Ae = (ae
il) is formally defined, where ae

il = (−1)l+1

 i− 1

l

, if

(i− 1) ≥ l and ae
il = 0 otherwise. This gives:

σ1

...

σi

...

σk


= Ae



σ̃1

...

σ̃i

...

σ̃k


(25)

Then as H(curl) compatible basis Span{−→̃p i} related to the edges, must be chooses
the following: 

−→p 1

...

−→p i

...

−→p k


=t Ae



−→̃
p 1

...
−→̃
p i

...
−→̃
p k


. (26)

3.2 Change of bases for faces degree of freedom

As for the edges, the H(curl) continuity at the faces interfaces must be formulated.
This study is restricted to the second order case; the k-order general case will be
presented in a paper to be published.
For all numbers i of a face f̂ ,

−→
p̂ j must be found such that σ̂i(

−→
p̂ j) = δij , where for

these degrees of freedom:

σ̂i(
−→
p̂ j) =

1

| f̂ |

∫
f̂
(
−→
p̂ j ∧

−→
n̂ ) ·

−→
q̂i dγ̂

This gives:

σ̂i(
−→
p̂ j) = σ̃i(

−→̃
p j) =

1

| f |

∫
f
(
−→̃
pj ∧ −→n ) · −→uidγ
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where:
−→̃
pj = B∗−1−→p̂ j and −→ui = B(

−→
n̂ ∧

−→
q̂i )∧−→n . The degree of freedom for a face

f in the mesh is defined by:

σi(
−→p ) =

1

| f |

∫
f
(−→p ∧ −→n ) · −→qi dγ

where −→q i = B
−→
q̂i

|B
−→
q̂i |

and −−→qi+1 = −→qi
⊥,−−→qi+1 ⊂ f , for i ∈ {1, 3, 5, 7}. Then basis

functions −→p j related to faces are sought verifying:

σi(
−→pj ) = σ̃i(B

∗−1−→p̂ j) = δij

To that end - according to the figure - the −→u i on each orthonormal vector base face
(−→q i,

−→q i+1) is decomposed, so that:

−→u i = αi
−→q i + βi

−→q i+1

−→u i+1 = αi+1
−→q i + βi+1

−→q i+1

For the degrees of freedom, this gives:

σ̃i = αiσi + βiσi+1

σ̃i+1 = αi+1σi + βi+1σi+1

or with the (2× 2) matrix Af =

 αi βi

αi+1 βi+1

 .

 σi

σi+1

 = A−1
f

 σ̃i

σ̃i+1

 (27)

finally the effective vectorial basis on face f is taken to be:−→p j

−→p j+1

 =t Af

−→̃
p j

−→̃
p j+1

 . (28)

4 Obtention of mass and stiffness matrices

Finally, the symbolic program is again used to form the mass matrix and elemen-
tary stiffness, such that the expression of the elementary matrices of the linearized
problem is totally automatic and the final form of the basis functions is determined
solely by the choice of the degrees of freedom. In particular, the polynomials are
not presented in their explicit form as only the calculation of the matricial terms
matters.
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Let Ω be a simply connected polyhedron domain in R3 and τh a conformal and
regular partition of Ω into tetrahedra {K}. On the reference element K̂ the mass
and stiffness matrices an be defined:

M̂ = (m̂ij)

K̂ = (k̂ij)

where
m̂ij =

∫
K̂

−→
p̂ i ·

−→
p̂ j dx̂dŷdẑ (29)

k̂ij =
∫

K̂
curl

−→
p̂ i · curl

−→
p̂ j dx̂dŷdẑ (30)

For that purpose, a symbolic program (Maple) is used to make an exact integra-
tion of these integrals with a simplification by the 6 factors of the symetric matrix
(BB∗)−1.
In fact, taking−→p i = B∗−1−→p̂ i, the integral (29) and (30) are algebrically computed,
with respectively 6 real coefficients µl and κl and the results may be simplified
under the simple form:

mij =
∑

1≤l≤6

µl bl

kij =
∑

1≤l≤6

κl bl

with :

(B∗B)−1 =


b1 b4 b6

b4 b2 b5

b6 b5 b3

 (31)

Conclusion

The systems σ̂i(
−→
p̂ j) = δij with relations (1) to (20) and equations (25)-(26),

are solved with symbolic calculus (see the appendix). Although polynomial vec-
tor bases are effectively produced by these equations, their contents never appear.
The genericity of the finite element (calculation starting from an domain of ref-
erence) must be completed, i.e. corrected, to take account of the orientation. The
orientation is a priori data on the given mesh, expressed by an algebraic modifica-
tion of the elementary matrix for those of the d.o.f. the orientation of which is nil in
conformity with the reference domain. It is at the same time necessary to consider
for each element the numbering of the d.o.f. to assign the terms of the matrices and
it is necessary next for each element to consider the change in orientation between
the reference element and the element in the mesh:

• affine transformation point by point for integration with appropriate numbering
of the mesh,
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• transformation of the orientations taken into account for each element.

The main effort will then be devoted to the H(curl) compatibility equations (25)
through (28) that must be processed with a small but not easy to handle program.
The practical process presented here is at the same time traditional and general. Its
main properties are:

• it uses calculation symbolic system (dynamic mathematics),
• it never presents, whatever the order, the explicit polynomial vector functions

form.

This method can be extended to the H(div) conforming finite elements [8], and
more generally to any mixed finite elements using such degrees of freedom.

APPENDIX: a basis polynomial functions construction Maple program, can be
found in [11]

References

[1] M.Ainsworth, and J.Coyle, Hierarchical finite element bases on unstructured
tetrahedral meshes, Computer Methods Applied Mechanical Engineering, 58 (14)
(2003) 2103-2130.

[2] L.S.Andersen, and J.L.Volakis, Hierarchical tangential vector finite element for
tetrahedra, IEEE Microwave and Guided Letters, 8 (1998) 127-129.

[3] G. Cohen (2002), Higher-Order Numerical Methods for Transcient Wave Equation,
Springer Verlag.
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