
Pyramidal Finite Elements
for Hybrid Meshes

M. Bergot 1, M. Duruflé 2

1 EPI POems, UMR 27 06 CNRS-ENSTA-INRIA,
INRIA-Rocquencourt, Le Chesnay, France

2 Institut Mathématique de Bordeaux, Université Bordeaux I, Talence, France
morgane.bergot@inria.fr, marc.durufle@math.u-bordeaux1.fr

Abstract

We propose new families of arbitrarily high-order finite elements defined on pyramids that can be used in hybrid meshes which include hexahedra, tetrahedra, wedges and pyramids. These
finite elements will be used for equations requiring H1 or H(curl) spaces in continuous cases, and can also be used with discontinuous Galerkin methods. Numerical results in time domain
demonstrate the efficiency of hybrid meshes compared to pure tetrahedral meshes or hexahedral meshes obtained by splitting tetrahedra into hexahedra.

1. Introduction

Higher-order finite elements have exhibited a very good ef-
ficiency for hexahedral elements [1], but the automatic gen-
eration of unstructured hexahedral meshes is still challeng-
ing. A solution consists of generating hexahedral dominant
meshes including a small number of tetrahedra, triangular
prisms and pyramids. We explain here how to construct
high order pyramidal finite elements that are optimal in a
sense that will be defined, and we compute numerical ex-
periments in time domain on hybrid meshes.

2. General Scheme of the Equations

2.1 Space Discretisation
We consider time domains hyperbolic equations. After a
space discretisation, we get

d

dt
MhU + KhU = 0,

where

• Kh = Rh + Sh in the discontinuous case;

• Kh = Rh in the continuous case

and

• (Mh)i,j =

∫

K
ϕi · ϕj dx is the mass matrix;

• (Rh)i,j =

∫

K

∑

1≤k≤d

(

Ak

∂ϕj

∂xk
· ϕi − Bk ϕj ·

∂ϕi

∂xk

)

dx is the

stiffness matrix;

• (Sh)i,j =

∫

∂K

∑

1≤k≤d

(

Aknk

[

ϕj

]

+ Bknk

{

ϕj

})

·ϕi ds is the

flux matrix,

with

• {ϕi} =
1

2
(ϕ1 + ϕ2);

• [ϕi] =
1

2
(ϕ2 − ϕ1) + α

∫

∂K
C

1

2
(ϕ2 − ϕ1) ds

where α ≤ 0 and C a symmetric positive matrix.

2.2 Time Discretisation
Using for example the classical leap-frog scheme, we get

Un+1 = Un−1 − 2∆t M−1
h

KhUn

when Kh is antisymmetric (α = 0, no absorbing condition)

Un+1 = Un−1 − 2∆t M−1
h

(KhUn + LhUn−1)

where Lh is a symmetric positive matrix containing the flux
part associated with α and absorbing conditions.

3. Optimal Finite Elements

3.1 Definition

Definition 3.1. Let Ω =
⋃

K an open of R
3,

• u ∈ V solution of the continuous problem on Ω

• uh ∈ Vh ⊂ V solution of the corresponding discrete prob-
lem.

For a given order r, denoting by h the caracteristic size of
the mesh, we want

‖u − uh‖V,Ω = O(hr)

that is
‖u − uh‖V,K = O(hr)

3.2 Characterization

Theorem 3.2. Let (K, PF
r , Σ) be any finite element of the

mesh

• For V = H1, Pr ⊂ PF
r ⇐⇒ ‖u − uh‖H1,K = O(hr)

• For V = H(rot), Rr ⊂ PF
r ⇐⇒ ‖u − uh‖H(rot),K = O(hr)

where Pr is the space of polynomials of order ≤ r, and Rr

is Nédélec space of order r (see [2])

4. Application to Pyramidal Elements

4.1 Definition

Definition 4.1. A pyramid K is the image of the reference
pyramid K̂ by the transformation F

4F = (S1 + S2 + S3 + S4)

+ x̂ (−S1 + S2 + S3 − S4)

+ ŷ (−S1 − S2 + S3 + S4)

+ ẑ (4 S5 − S1 − S2 − S3 − S4)

+
x̂ŷ

1 − ẑ
(S1 + S3 − S2 − S4)

when F is invertible.

K̂

Ŝ1 = (−1,−1, 0)

Ŝ2 = (1,−1, 0)

Ŝ5 = (0, 0, 1)

Ŝ4 = (−1, 1, 0)

Ŝ3 = (1, 1, 0)

F
ẑ

x̂

ŷ

K
S5

S1

S2

S3

S4

We transform the element (K, PF
r , Σ) into the reference el-

ement (K̂, P̂r, Σ̂) via F−1.

4.2 H1 Nodal Element

Definition 4.2. The reference finite element (K̂, P̂r, Σ̂) is:
K̂ : Unit symmetrical pyramid, centered at the origin;

P̂r : Pr(x̂, ŷ, ẑ) ⊕
∑

0≤k≤r−1

(

x̂ŷ

1 − ẑ

)r−k

Pk(x̂, ŷ);

Σ̂ : degrees of freedom placed to ensure the continuity with
the other types of elements:

• Hesthaven points (see [3]) on the triangular faces;
• Gauss-Lobatto points on the quadrangular base;
• interior points.

4.3 H(curl) Element - First Family

Definition 4.3. The reference finite element (K̂, P̂r, Σ̂) is:
K̂ : Unit symmetrical pyramid, centered at the origin;

P̂r :

∇
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1 − ẑ
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(1 − ẑ)j+2

x̂k+2ŷj+1
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, 0 ≤ j ≤ k ≤ r − 2
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, 0 ≤ i ≤ r + 1, 0 ≤ j ≤ r − 1
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, 0 ≤ k ≤ r − 1

Σ̂ : classical degrees of freedom of Nédélec (cf [2]) to en-
sure the continuity with the other types of elements.

4.4 Extension to Discontinuous Elements
In the discontinuous case, we take the same finite element
space as for H1 but we use orthogonal basis functions to
make the mass matrix sparser, and then easier to invert.

5. Numerical Results

5.1 Convergence on Continuous Elements
To demonstrate the optimality of pyramidal elements in a
hybrid mesh, we consider a cubic cavity [−1, 1]3 and a gaus-
sian source centered at the origin, with
• Helmholtz equation and homogeneous Dirichlet bound-
ary conditions
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• Time-harmonic Maxwell equations and perfectly conduct-
ing boundary conditions

5.2 Acoustic Equation - Discontinuous Finite
Elements
Diffraction by a piano with a source chosen as

f (x, t) =
1

r2
0

e
−13

(

r
r0

)2

e−4(t−t0)
2

sin(2πf0t),

where r is the distance to the center of the source, r0 the
distribution radius of the Gaussian, f0 the frequency, and t0
a constant. We compute the solution from t = 0 until t = 6,
and for a same accuracy, we obtain the following results

Type of mesh Hexahedral Tetrahedral Hybrid
Error 9.4 % 5.7 % 6.3 %
Dof 49.3 millions 16.9 millions 14.88 millions
∆t 0.0002 0.0004 0.0005

Comp. Time 12j 6h 4j 7h 1j 4h

Remark. A fast matrix-vector product is used to speed-up
the computation (see [4] for more details).

References

[1] G. COHEN AND X. FERRIERES AND S. PERNET. A
Spatial High-Order Hexahedral Discontinuous Galerkin
Method to Solve Maxwell Equations in Time Domain. J.
Comp. Phys. 217(2) (2006), pp. 340–363.

[2] J. C. NÉDÉLEC. Mixed finite elements in R
3. Numer.

Math. 35(3) (1980) pp. 315–341.

[3] J.S. HESTHAVEN. From Electrostatics to Almost Opti-
mal Nodal Sets for Polynomial Interpolation in a Sim-
plex. SIAM J. Numer. Anal. 35(2) (1998) pp. 665–676.

[4] M. BERGOT, G. COHEN AND M. DURUFLÉ. Higher-
Order Finite Elements for Hybrid Meshes Using New
Pyramidal Elements. J. Sci. Comput 42(3) (2010)
pp. 345–381.

CANUM 2010, 31st May - 4th June 2010


