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Resetting and Entraining
Biological Rhythms

Leon Glass

5.1 Introduction

Biological rhythms are ubiquitous. Their periods of oscillation range from
fractions of a second to a year. Independent of the period of the oscillation,
and the precise mechanism underlying the generation of the oscillation,
certain underlying mathematical concepts are broadly applicable. Appro-
priate stimuli delivered to the oscillators usually induce & resetting of the
oscillation, so that the timing of the oscillation will be different from what
it would have been if the stimulus were not delivered. Occasionally, a stim-
ulus delivered during an oscillation will terminate the oscillation, or lead
to a different oscillation. Determining the response of oscillators to pertur-
bations administered at different phases of the cycle can give important
information about the oscillator, and also may be useful in determining
the behavior of the oscillator in the fluctuating environment. It is likely
that in every branch of biology in which oscillations are observed, there is
a literature analyzing the oscillations from the idiosyncratic perspective of
the particular discipline. Yet, from a mathematical perspective there is a
cornmonality of ideas and approaches (Pavlidis 1973; Guckenheimer 1975;
Kawato and Suzuki 1978; Kawato 1981; Winfree 2000; Guevara, Glass,
and Shrier 1981; Glass and Winfree 1984; Winfree 1987; Glass and Mackey
1988).

Resetting can be measured experimentally by delivering a stimulus to an
oscillating system and determining the resulting dynamics. By delivering
stimuli at different phases of an oscillation and with different magnitudes,
the underlying dynamical system generating the oscillation can be probed.
I give a dramatic clinical example to illustrate the approach. Figure 5.1
shows an example of a stimulus delivered by an electrode directly in a
person’s heart during the course of a serious cardiac arrhythmia, ventricu-
lar tachycardia (Josephson et al. 1993). The different traces represent the
simultaneously recorded activity from several different sites both on the
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body surface and also in the heart itself. The sharp deflections represent
the times when waves of electrical activation pass a given location. In the
top panel, the stimulus was delivered at 270 ms following an activation
recorded in the right ventricular apex, and in the bottom panel, the stim-
ulus was delivered 260 ms after an activation from the right ventricular
apex. The effects were completely different. A pulse at 270 ms reset the
rhythm, whereas when a pulse was delivered 10 ms earlier, the abnormal
tachycardia was abolished and the original rhythm was reestablished. Car-
diologists often take this type of result to indicate that the original rhythm
was generated by an excitation traveling in a reentrant circuit, in which
the excitation repeatedly circulates like a toy train going around a circu-
lar track. From a mathematical perspective, we are led to inquire exactly
what one can infer about underlying physiological mechanisms based on
experimental data concerning resetting.

B I e W Ry

aVvVF
Vv,

RVA
RVOT

..................

..........................

Figure 5.1. Resetting and annihilation of ventricular tachycardia. In each panel
the traces labeled 1, aVF, V; are surface electrocardiograms, and the other
traces are from the right ventricular apex (RVA), right ventricular outflow tract
(RVOT), and the site of origin of the tachycardia in the left ventricle (LV-50).
In the top panel a stimulus (S) delivered 270 ms after a complex in the RVA
resets the tachycardia, whereas in the lower panel, a stimulus delivered 260 ms
after a complex in the RVA annihilates the tachycardia. From Josephson, Callans,
Almendral, Hook, and Kleiman (1993).
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Stimuli need not be delivered as single isolated pulses, but can also be de-
livered as periodic trains. In general, the observed rhythms will depend on
the frequency and amplitude of the periodic pulse train. In some cases
regular rhythms are set up, whereas in other cases, there are complex
aperiodic rhythms. A formidable experimental challenge is to determine
experimentally the dynamics as a function of stimulation parameters. An-
other issue is whether we can predict the effects of periodic stimulation
based on knowledge about the resetting induced by a single stimulus.

Because of our knowledge about the mathematical properties of equa-
tions generating oscillations, we have expectations concerning the results
of resetting and entrainment experiments. The presence of stable oscilla-
tions in mathematical models of oscillations enables us to make theoretical
predictions concerning resetting and entrainment experiments. Since pre-
dictions may be quite different for oscillations generated by different
mechanisms, knowledge about the results of resetting and entrainment
experiments may be helpful in determining underlying mechanisms.

In this chapter, I will summarize the application of these ideas in idealized

situations as well as in concrete experimental settings. I will also mention
recent advances and open problems.

9.2 Mathematical Background

9.2.1 W-Isochrons and the Perturbation of Biological
Oscillations by a Single Stimulus

Since biological oscillations often have “stable” periods and amplitudes
(coefficient of variation on the order of 3%), it is usual to associate the
oscillation with a stable limit cycle in some appropriate nonlinear theoret-
ical model of the oscillation (Winfree 2000). Recall from Chapter 2 that a
stable limit cycle is a periodic solution of a differential equation that is
attracting in the limit of # — co for all points in a neighborhood of the
limit cycle. Say that the period of the oscillation is Ty. We will designate a
particular event to be the fiducial event, designated as phase, ¢ = 0. The
phase at any subsequent time ¢ > 0 is defined to be ¢ = /Ty (mod 1).
The phase here is defined to lie between 0 and 1; to convert it to radians
multiply it by 2x. _

The set of all initial conditions that attract to the limit cycle in the limit
t — oo is called the basin of attraction of the limit cycle. Let z(£) be on
a limit cycle at time ¢ and y(t) be in the basin of attraction of the limit
cycle. Denote the distance between a and b by d[a, b]. Let the phase of z at
t =0 be ¢. Then if in the limit £ — oo, '
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the latent or asymptotic phase of y(t) is also ¢. We say that y(t) is on
the same W-isochron as z(t}.

The development of the concept of W-isochrons and the recognition of
their significance is due to Winfree (2000). Many important mathematical
results concerning W-isochrons were established by Guckenheimer (1975),
who considered dynamical systems in n-dimensional Euclidean space. He
proved the existence of isochrons and showed that every neighborhood of
every point on the frontier of the basin of attraction of a Hmit cycle in-
tersects every W-isochron. Moreover, the dimension of the frontier of the
basin of attraction is greater than or equal to n — 2.

We now consider the effects of perturbations delivered to the biologi-
cal oscillation. Assume that a perturbation delivered to an oscillation at
phase ¢ shifts the oscillation to the latent phase g(¢). The function g(¢)
is called the phase resetting curve. The following continuity theorem
summarizes important aspects of the effects of perturbations on limit cy-
cle oscillations in ordinary differential equations (Guckenheimer 1975) and
partial differential equations (Gedeon and Glass 1998). If a perturbation
delivered at any phase of a limit cycle oscillation leaves the state point in
the basin of attraction of the asymptotically stable limit cycle, then the re-
setting curves characterizing the effects of the stimuli will be continuous.
In general, the phase resetting curve g(¢@) is a circle map g : St 8L,

Circle maps can be continuous or discontinuous. Continuous circle maps
can be characterized by their (topological) degree or winding num-
ber. The degree of a continuous circle map measures the number of times
the latent phase g(¢) wraps around the unit circle as ¢ goes around the
circle once. For example, for oscillations associated with stable Iimit cycle
oscillations in differential equations and for very weak perturbations in gen-
eral, g(¢) = ¢ and the degree is 1. In many instances, as Winfree discusses
(Winfree 2000), the degree of the resetting curve is 0 when the stimulation
is strong. If the degree of the resetting curve is 1 for weak stimuli and
0 for strong stimuli, there must be an intermediate stimulus (or stimuli)
that will perturb the system outside of the basin of attraction of the limit
cycle, though whether the limit cycle is eventually reestablished depends
on whether the stimulus perturbs the system to the basin of attraction of
another stable attractor. Similarly, if the resetting curve is discontinuous,
there must be a stimulus phase or range of stimulus phases that will per-
turb the system outside of the basin of attraction of the limit cycle (Gedeon
and Glass 1998).

These abstract notions are directly related to experiment. The phase
resetting curve can be measured experimentally. Assume once again that
the marker event of an oscillation is defined as ¢ = 0, ¢ = 0. Assume
that in response to a perturbation delivered at phase ¢, marker events
recur at successive times Ti(@), T2(@®), . - -, Tn(¢). Let us assume that for
all  sufficiently large, the limit cycle is asymptotically approached, so that
Tj(¢) — Tj-1(¢) = To, where Tp is the control cycle length.
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p

Figure 5.2. Resetting the intrinsic rhythm in a spontaneously beating aggregate of
cells from embryonic chick heart. A single stimulus delivered at a phase ¢ = §, /T
leads to a resetting of the oscillation. The time from the action potential before
the stimulus to the jth action potential after the stimulus is designated 7. The
reestablishment of an oscillation with the same amplitude and period as before
the stimulus is evidence for a stable limit cycle oscillation in this preparation.
From Zeng, Glass, and Shrier (1992). :

Figure 5.2 shows the effects of a single stimulus delivered to a spon-
taneously beating aggregate of cells from embryonic .chick heart. There
is a rapid reestablishment of the original oscillation. This is experimen-
tal evidence that the rhythm is being generated by a stable limit cycle
oscillation.

Figure 5.3 shows the results of a, resetting experiment in an aggregate of
cells from embryonic chick heart. A single stimulus is delivered at different
phases of the oscillation. The panel on the left is typical of weak stimulation,
and the panel on the right is typical of strong stimulation. _ ,

The phase resetting curve can be determined from the data in Figure 5.3.
It is given by '

Ce =T mear.

Winfree :(2000) gives many examples of resetting biological oscillators.
The degree of the experimentally measured phase resetting curve is usually
1 or 0, though in some cases it was discontinuous (Winfree 2000). Though
most are not much bothered by discontinuities in resetting experiments,
understanding their origin is a challenge (Glass and Winfree 1984).
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Figure 5.3. Resetting curves derived from an experiment in which a single stimulus
is delivered to spontaneously beating heart cell aggregates. The results are triple
plotted. A stimulus of 13 nA gives weak resetting, and a stimulus of 26 nA gives
strong resetting. The time from the action potential before the stimulus to the
jth action potential after the stimulus is plotted as a function of the phase of the
stimulus. From Zeng, Glass, and Shrier (1992).

5.2.2 Phase Locking of Limit Cycles by Periodic Stimulation

The earliest studies drawing a connection between the resetting and the en-
trainment of limit cycles involved the computation of the effects of periodic
stirnulation on a stretch receptor (Perkel et al. 1964) and the entrainment
of circadian rhythms (Pavlidis 1973). This connection can be developed
mathematically using the concept of the W-isochron introduced in the last
section {Glass and Mackey 1988).

Tu general, the effect of a single stimulus is to shift an oscillator from one
Wh-isochron to a new W-isochron. Consequently, it is possible to define a
one-dimensional map that relates the phase of an oscillation before a stim-
ulus to the phase of an oscillation before the following stimulus. Iteration of
such a map enables prediction of the dynamics during periodic stimulation.
Although iteration of a one-dimensional map determined from resetting ex-
periments can offer excellent insight into dynamics observed in real systems
(Perkel et al. 1964; Guevara et al. 1981}, there are many underlying assump-
tions. First, it is necessary to assume that the stimulation does not change
the properties of the oscillation, so that the same resetting curve that is
found using single pulses is also applicable under periodie stimulation. In
addition, it is necessary to assume that the resetting induced by a single
isolated stimulus is the same as the resetting induced by a single stimulus
at the same phase delivered during a periodic train of stimuli. Even if the
properties of the oscillation are not changed by the periodic stimulation
protocol, there are at least two different reasons why knowing the effects of
a single stimulus would not be adequate to predict the results of a periodic
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train of stimuli. First, it is possible that the oscillation did not relax back
to its asymptotic attractor before the next stimulus was applied. Such an
effect would be particularly important if there were slow relaxation to the
limit cycle oscillation following a stimulus. In addition, for limit cycles that
are associated with circulating oscillations in excitable media in space, the
effects of a single stimulus might be blocked by a propagating wave associ-
ated with the oscillation, whereas a pulse during a periodic train of stimuli
might penetrate the circuit and lead to resetting of the circulating wave.
From the assumptions above, we can derive an appropriate one-
dimensional map to predict the effects of periodic stimulation with period
s of a limit cycle with intrinsic period Ty. Call ¢, the phase of stimu-

lus n. Then, if the phase resetting curve is g(¢,,), the effects of periodic
stimulation are given by

Pnt1=g(¢n) +7 (mod 1) = f(¢n, 1), (5.2)
where 7 = t,/Ty. Starting from an initial condition ¢y we generate the
sequence of points ¢y, ¢, ..., d,. ‘
The sequence {én} is well-defined, provided no stimulus results in a
resetting to a point outside the basin of attraction of the limit cycle. If
p = ¢o and ¢, # ¢g for 1 < n < P, where n and p are positive integers,

there is a periodic cycle of period p- A periodic cycle of period ? is stable
if v

8f7(0)| 2| oy |
A = <1 (5.3)
¢ J;IO 8¢ b

The rotation number, p, gives the average increase in ¢ per iteration.
Calling

Anp1=g(gn)} + 1~ ¢;, (5.4)

we have

1 X
p = limsup - Z A;.

msup (5.5)

n=1

Stable periodic orbits are associated with phase locking. Inp : m phase
locking, there is a periodic orbit consisting of p stimuli and m cycles of
the oscillator leading to a rotation number m/p. For periodically forced
-oscillators neither the periodicity nor the rotation number alone is adequate
to characterize the dynamics.

To illustrate the application and limitations of this basic theory we con-
sider two simple theoretical models: the Poincaré oscillator and excitation
circulating in a two-dimensional reentrant circuit.
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Figure 5.4. The phase plane portrait for the Poincaré oscillator. From Glass and
Mackey (1988).

5.3 The Poincaré Oscillator

We first illustrate these concepts in & very simple ordinary differential
equation that has been used extensively as a theoretical model in biol-
ogy. Since this prototypical example of a nonlinear oscillation was first
used by Poincaré as an example of stable oscillations, it has been called the
Poincaré oscillator (Glass and Mackey 1988).

The Poincaré oscillator has been considered many times as a model of bi-
ological oscillations {Winfree 2000; Guevara and Glass 1982; Hoppensteadt
and Keener 1982; Keener and Glass 1984; Glass and Mackey 1988; Glass
and Sun 1994). The model has uncanny similarities to experimental data
and has been useful as a conceptual model to think about the effects of
periodic stimulation of cardiac oscillators.

The Poincaré oscillator is most conveniently written in a polar coordi-
nate system where r is the distance from the origin and ¢ is the angular
coordinate; see Chapter 2. The equations are written

dr
i kr(l—r1), |
@ o, O (56)

dt

where k is a positive parameter. Starting at any value of r, except r = 0,
there is an evolution until # = 1. The parameter k controls the relaxation
rate. The phase, ¢ = 0, corresponds to the upstroke of the action potential
or the onset of the contraction.
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Figure 5.5. (a) Isochrons in the Poincaré oscillator. (b) A stimulus is assumed to
induce a horizontal translation &. From Glass and Mackey (1988).

We show the phase plane portrait in Figure 5.4. Since the rate of change
of ¢ is not a function of r, the isochrons are open sets lying along radii of
the coordinate system. In this case the frontier of the basin of attraction of
the limit cycle is the origin. The dimension of the frontier of the isochrons
is 0, which is > (n — 2} (see p. 126), Figure 5.5. '

We assume that perturbations are modeled by a horizontal translation to
the right by a distance b, Figure 5.5. In the experimental setting, perturba-
tions are an electrical stimulus that depolarizes the membrane. A stimulus
induces (after a delay) a new action potential if it is delivered in the latter
part of the cycle. 7

This theoretical model facilitates analytical work because of its compar-

atively simple analytical form. The phase resetting curve, g(¢), is readily
computed and is given by -

€oS 2 + b
(1402 + 2bcos 2m)L/2

In computations using equation (5.7), in evaluating the arccosine function,
take 0 < ¢} < 0.5 for 0 < ¢; < 0.5, and 0.5 < @i <1 for 0.5 < ¢; < 1.

In Figure 5.6, I plot the perturbed cycle length and the phase resetting
curve for the Poincaré oscillator.

 The effects. of periodic stimulation can now be Computed by applica-
tion of equations (5.2) and (5.7). The geometry of the locking zones is very
complicated; a partial representation is shown in Figure 5.7. Here I summa-
rize several important properties. For further details the original references
(Guevara and Glass 1982; Keener and Glass 1984; Glass and Sun 1994)
should be consulted. : , :
There are symmetries in the organization of the locking zones as
originally derived in Guevara and Glass (1982). The symmetries are:

1 .
9(¢) = 5 BICCOS (mod 1). (6.7)
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From Glass and Winfree (1984).

phase resetting curves for the Poincaré
) and strong, Type 0 (right panels) stimuli.

* Symmetry 1. Assume that there is a stable period p cycle with fixed
points d0,P1, ..., $p—1 for 7 = 0.5 — 6, 0<4 < 0.5, associated with
P :m phase locking. Then for + = 0.5+ 8, there will be a stable cycle
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Figure 5.7. Locking zones for the Poincaré oscillator. Adapted from Glass and
Sun (1994).

there will be a stable cycle of period p associated with a p: m + pk
phase locking ratio. The p fixed points are Yo, ¥, - .. »Wp—1 where
i =1— ¢;.

These symmetries can be confirmed in Figure 5.7,

I now summarize main features of the organization of the locking zones.
The topology of 9(¢) changes at b = 1, and this has profound effects on
the organization of the locking zones.

Case: 0 < b < 1. The map is an invertible differentiable map of the circle
(Arnold 1983). An Arnold tongue of rotation number m; /p is defined as
the union of values in parameter space for which there is unique attracting
P : m phase locking for all initisl conditions. For invertible differentiable
maps of the circle of the form in equation (5.2), if there is p : m phase
locking for 7 and p/ : m’ phase locking for 7/, then there exists a value
T <7k <7/, leading to p+p’ : m+m/ Phase locking. Usually, the range of
values of 7 associated with s given Arnold tongue covers an -open interval
in parameter space. For a given set of parameters the rotation number
is unique. If it is rational, there is phase locking, and if it is irrational,
there is quasiperiodicity. The organization of phase locking zones for
0 <b < 1shown in Figure 5.7 for b < 1 is typical, and is called the classic
Arnold tongue structure. The periodic orbits lose stability via a tangent
bifurcation. o o

Case: 1 < b. The map now has two local extrema. For any set of param-
eter values there is no longer necessarily a unique attractor. It is possible
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to have bistability in which there exist two stable attractors for a given
set of parameter values. The attractors are either periodic or chaotic. A
superstable cycle is a cycle containing a local extremum. Such cycles are
guaranteed to be stable. One way to get a good geometric picture of the
structure of the zones is to plot the locus of the superstable cycles in the
parameter space. The structure of bimoda]l interval maps and circle maps
has been well studied and shows complex cascades of bifurcations in the
two-dimensional parameter space. As b decreases in this zone, new phase
locking zones arise; however, almost all these zones disappear into the dis-
continuities of the circle map at b = 1. There are accumulation points of
an infinite number of periodic orbits at the Junction of the Arnold tongues
with the line b= 1.

Analytic expressions for some of the bifurcations can be derived.
For 0 <b<1 the stability is lost by a tangent bifurcation for which
O¢n11/0¢, = 1. This implies that at the boundary we have

b+ cos 2wy = 0,

from which we compute
b=|sin2x7|. : (5.8)
The fixed point at the stability boundary is at

1 1
¢)(] :T+-Z’ for 0<T<Z,

and
¢o=T+§, for 4§<T<1.
For 1 < b < 2 stability of the period-1 fixed point is lost by a period-

doubling bifurcation for which Oppny1/0¢n = —1. From this we compute
that at the boundary we have

24 b? + 3bcos 2mdy = 0.
Carrying through the trigonometry we find the stability boundary

b=v4—3sin? 277 (5.9)

The fixed point at the boundary is given by

1 /44—
32
It is not generally appreciated that in this system there can be changes
in the rotation number without a change in periodicity (Guevara and Glass
1982). For example, for 2 < b as T increases with b fixed there is a change
from 1:0 phase locking to 1:1 phase locking along the line T = 0.5.
The analysis above assumes instantaneous relaxation back to the limit
cycle. Although this idealization is clearly not obeyed in real systems (Zeng,

1
$o =74+ ——sin~
27
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Glass, and Shrier 1992), it can nevertheless provide a good approximation
to the dynamics of real systems, particularly for the case in which the
stimulation frequency is roughly comparable to the intrinsic period of the
limit cycle.

We now consider the consequences of a finite relaxation time in the
Poincaré oscillator (Glass and Sun 1994). We again assume that a stim-
ulus is schematically represented by a horizontal translation of magnitude
b; Figure 5.5. The stimulus takes point (7, ¢,) to point (r/,, ¢,), where

1, = (r2 + b% + 2br,, cos 2w, )12,
Ty COS 27hy, + b

/
= —— 8rccos
Pn 2 (4

(5.10)

Following the stimulus, the equations of motion take over, so that by di-
rect integration, we find that immediately before stimulus (n+1) delivered
at a time 7 after the first stimulus, we have

TI

T
1—7r7)exp(—kr) + 7L’
¢n+1 = (,‘b;.b + T(IIlOd 1).

Tntl = (

0-0 - 1 N 1 - 3 L | i )
0.00 025 0.50 0.75 1.00

T

Figure 5.8. Locking zones for periodically stimulated Poincaré oscillator with
finite relaxation times, k = 10. Adapted from Glass and Sun (1994).
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An important difference is present in the organization of locking zones;
even for low stimulation amplitudes the classic Arpold tongue structure
described earlier does not apply. This fact does not seem to be widely
appreciated. Even for low—amplitude stimulation, for any amplitude and
frequency of stimulation, there will always be a period-1 orbit. In contrast,
in the infinite relaxation limit, for b < 1, inside the Arnold tongues associ-
ated with locking of period p # 1, there is no period-1 cycle. The existence
of period-1 cycles follows immediately from an application of the Brouwer
fixed point theorem (Guillemin and Pollack 1975, p. 65). Consequently, the
result is also applicable to a broad class of periodically stimulated oscil-
lators and excitable systems, provided there is a sufficient contraction for
large excursions from the limit cycle (Glass and Sun 1994). Of course, the
period-1 cycle is not always stable, so that in experimental work, it will of-
ten appear as though the classic Arnold tongue structure is being observed.
Subsequent to publication of this result I found a similar result in Levinson
(1944). The result deserves to be better known.

Finite relaxation to the limit cycle will also destroy the symmetries in
the infinite relaxation case. Moreover, the fine details of the locking zones
change in subtle ways not yet well understood. For example, the points of
accumulation of an infinite number of locking zones, which occur at the
intersection of the Arnold tongues with the line & = 1, need to “unfold” in
some natural way. In Glass and Sun (1994), we observe that this unfolding
appears to occur in a manner similar to that envisioned earlier by Arnold
(see Figure 153 on p. 312 in Arnold 1983).

5.4 A Simple Conduction Model

An excitable medium is a medium in which there is a large excursion from
steady state in response to a small stimulus that is greater than some
threshold. Nerve cells, cardiac tissue, and the Belousov—Zhabotinsky reac-
tion are examples of excitable media and share many similar properties
(Winfree 2000; Winfree 1987). ‘A ring of excitable medium can support
a circulating excitation, often called a reentrant wave. Reentrant waves
have been demonstrated in a large number of experimental and theoret-
ical systems (Quan and Rudy 1990b; Rudy 1995; Courtemanche, Glass,
and Keener 1993). They have a special importance to human health, since
it is believed that many cardiac tachyarrhythmias (abnormally fast heart
rhythms) are associated with reentrant mechanisms (see Chapter 7). There
is a large cardiological literature that involves the resetting and entrainment
of cardiac arrhythmia (Josephson et al. 1993; Gilmour 1990).

The previous section dealt with the resetting of a highly simplified model
containing a stable limit cycle oscillation in a nonlinear ordinary differential
equation. In this section we describe a highly simplified model to illustrate
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some of the main features as well as the subtleties that arise in the analysis
of resetting and entrainment of periodic reentrant waves in nonlinear partial
differential equations.

Figure 5.9. A simple mode) for reentrant excitation. The excitation travels at a
fixed velocity around the ring and along the tail. From Glass, Nagai, Hall, Talajic,
and Nattel (2002).

We assume that a wave circulates on a one-dimensional ring to which a
“tail” has been added; Figure 5.9. The basic cycle length T is given by

Ty = DRE)
C

where L is the circumference of the ring and ¢ is the velocity of propaga-
tion. At any point on the ring, for a time interval of R after passage of the
wave, the tissue is refractory. Otherwise, the medium is excitable. A stimu-
lus delivered during the refractory period has no effect, whereas a stimulus
delivered during the excitable period will generate waves propagating into
the excitable medium. In the current presentation, I consider only the re-
setting as measured from a single site, which might be the same or different
from the stimulation site. The current discussion is based on the analysis
in Glass et al. (2002), which should be consulted for more details.

First, assume that the stimulus and recording site are both directly
on the ring. We select this point as a fiducial point and assume that
the circulating wave crosses the fiducial point at time t3. The phase is
$(t) = (t —t0)/To (mod 1). The ring is parameterized by an angular coor-
dinate, §. We set § = 0 at the fiducial point so that the angular position
of the wave around the ring at time ¢ is 6(t) = ¢(¢). This example has
been set up so that the location of the wave on the ring is the same as
the phase of the oscillation. This example is an interesting contrast to the
Poincaré oscillator in which the trajectory was a closed circular path in the
two-dimensional phase space. In this example, the trajectory is a closed
circular path in two-dimensional physical space.
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Figure 5.10. Resetting a reentrant wave in the simple geometry shown in Fig-
ure 5.9. The refractory period is 375/8, and the distance from r; to o is % the
circumference of the circle. Panel A shows the effects of stimulation and mea-
surement from point 72, and panel B shows the effects of stimulation from point
r1 and measurement from point rs.

If the stimulus is delivered during the refractory period, then it has no
effect. If the stimulus is delivered outside the refractory time, then it will
induce two waves, one traveling in the opposite (antidromic) and the other
in the same direction (orthodromic) to the original wave. The antidromic
wave will collide with it and be annihilated, whereas the orthodromic wave
will continue to propagate, leading to a resetting of the original rhythm.
The perturbed cycle length Tj(¢(t)) is

L) f3-0-e0) 100> R
1 £ > () > 0. '
Using equation (5.1) we obtain the phase transition curve
0, 1>¢t)>f,
g(d(t)) = { o6 E > () S (5.13)

The time interval during which the stimulus resets the rhythm is called
the excitable gap. The excitable gap is G =Tj — R.

Iteration of equation (5.2) is easily carried out. Provided the stimulation
period falls in the range R < ¢; < Ty, there is a stable fixed point on the
period-1 map, associated with entrainment of the reentrant excitation to
the periodic stimulation. The phase of the fixed point is t,/Tp.

Now consider the effect of stimulating the excitation from a point ; off
the ring that lies at a distance ! from the fiducial point 75 on the ring and
on the same radius as ry; see Figure 5.9. Measurements are carried out
at the point 2. Because the conduction from the reentrant pathway can
collide with the excitation from the stimulating electrode before it resets the
reentrant excitation, the range of phases over-which resetting is observed
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is reduced. The perturbed cycle length is

Ti¢t) _ [ i-1+6®)+ax 1-am > 60> £ + o (5.14)
Ty I otherwise,

and the associated resetting curve becomes

— bk, - > £+ L,
9(#(t) = { &(t), o other:vise. o (5.15)

The range of values over which resetting occurs due to a single pulse
decreases as the distance of the stimulus from the ring increases. Specif-
ically, the excitable gap is (Ip — R — 2{/c). From this it follows that for
I > ¢(Tp — R)/2, there is no resetting. If the phase transition curve is
used to predict the effects of periodic stimulation, then one theoretically
predicts that there will be 1:1 entrainment for stimulation periods in the
range Tp > t; > R+ 2I/c. However, this is not correct, and in this case
the resetting curve can no longer be used to predict the effects of periodic
stimulation. The reason for this is that the collisions between the wave
from the stimulus and the reentrant wave lead to a reduced range of val-
ues for the resetting. During periodic stimulation at a rate Z, in the range
Tp > ts > R, the collisions between the waves originating from the peri-
odic stimulation and the reentrant wave will occur successively closer to
the reentrant circuit and the waves originating from the periodic forcing
will eventually penetrate the reentrant circuit and entrain the reentrant
wave (Krinsky and Agladze 1983; Biktashev 1997). Therefore, the theoret-
ical prediction of the entrainment zone based on the resetting curve will
underestimate the range of values leading to entrainment by a value of 2/c
for | < ¢(Tp ~ R)/2. Thus, one can estimate the distance of a stimulus from
the reentrant circuit by multiplying the discrepancy between the predicted
and observed high-frequency boundaries of the 1:1 locking by the velocity
of propagation of the wave, provided the stimulus is not very distant from
the reentrant circuit.

Just as the Poincaré oscillator captures important aspects of nonlinear
oscillators generated by ordinary differential equations, the current model
captures some important aspects of dynamics in nonlinear partial differen-
tial equations that support reentrant excitation. The resetting curves shown
in Figure 5.10 are discontinuous, similar to resetting curves observed from
stimulation of the nonlinear FitzHugh-Nagumo equation of a pulse circu-
lating on a one-dimensional ring (Glass and Josephson 1995; Nomura and
Glass 1996) or a two-dimensional annulus (Glass, Nagai, Hall, Talajic, and
Nattel 2002). By the continuity theorem discussed in Section 5.2.1 (p. 126),
the observation of a discontinuity in the resetting curves has an important
implication: that theére should exist stimulation parameters that would lead
to a transition so that the system no longer displays a single reentrant cir-

. culating wave (Glass and Josephson 1995; Gedeon and Glass 1998; Glass,

Nagai, Hall, Talajic, and Nattel 2002). This type of annihilation is observed




140 Glass

in numerical studies. Further, the observation of the annihilation of ventric-
ular tachycardia by a single pulse, shown in Figure 5.1, is consistent with
this theoretical concept and also the theoretical interpretation that the ven-
tricular tachycardia in the patient whose record is displayed in Figure 5.1
was generated by a reentrant excitation.

5.5 Resetting and Entrainment of Cardiac
Oscillations

The computational machinery outlined above can be applied in practi-
cal situations. I will very briefly recount work from our group, and give
references to more complete descriptions.

Extensive studies of the effects of single and periodic stimulation on
spontaneously beating aggregates of embryonic chick heart cells have been
carried out by Michael Guevara, Wanzhen Zeng, and Arkady Kunysz work-
ing in Alvin Shrier’s laboratory at McGill University. The objective has
been to determine the phase resetting behavior under single stimuli and to
apply these results to compute the effects of periodic stimulation (Guevara
et al. 1981; Guevara et al. 1986; Glass et al. 1983; Glass et al. 1984; Glass
ot al. 1987; Guevara et al. 1988; Zeng et al. 1990; Kowtha et al. 1994).

The results of the studies on the entrainment of the spontaneously beat-
ing aggregates of heart cells are summarized in Figure 5.11, which shows the
different main locking regions using numerical iteration of experimentally
determined resetting curves using the methods described above and shows

examples of representative rhythms. The main findings of the experimental
studies are:

- & There are many different phase locking regions. For low to moderate
stimulation amplitudes, the largest zones that can be readily observed
in every experiment, are 1:1, 1:2, 3:2, 2:1, 3:1, 2:3. In addition, other
zones corresponding to rational ratios p : m, where p and m are 4 or

less, can usually be observed near the theoretically predicted region
in Figure 5.11. '

o For several different sets of stimulation amplitude and frequency
there are aperiodic dynamics (Guevara, Glass, and Shrier 1981).
There is a particular zone, using moderate stimulation amplitude
and frequencies slightly less than the intrinsic frequency, that leads to
period-doubling bifurcations and deterministic chaos. In this region,
plots of ¢; 1) as a function of ¢; based on the experimental data are
approximately one-dimensional with characteristic shape agsociated
with one-dimensional maps that give chaotic dynamics.

As a second example, I briefly recount more recent results from experi-
ments in which reentrant excitation in an animal was subjected to single
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Figure 5.11. Locking zones for periodically stimulated heart cell aggregates. The
computations aie based on experimentally measured resetting curves. The time
bax is 1 sec. Adapted from Glass, Guevara, and Shrier (1987).

[ =1

and periodic stimuli carried out in the laboratory of Stanley Nattel at the
Montreal Heart Institute; see Glass, Nagai, Hall, Talajic, and Nattel (2002),
which should be consulted for full details.

Experiments were carried out in anesthetized dogs. One of the upper
chambers of the heart, the right atrium, had incisions made that result
in the establishment of a circulating excitation similar to the clinical ar-
rhythmia atrial flutter. During the course of this rhythm, both single and
periodic stimuli could be delivered from different places on the heart’s sur-
face, and the dynamics could be measured at other sites on the heart’s
surface. Figure 5.13 shows a schematic diagram of the surgery and the
observed activity during the tachycardia.

. During periodic stimulation the activity could be entrained in a 1:1 fash-
ion over a broad range of stimulation periods ranging from 115 ms to 145
ms; Figure 5.14. However, the experimental determination of the reset-




Figure 5.12. Return map for data obtained during aperiodic dynamics during
periodic stimulation of spontaneously beating aggregates of chick hearts cells.
The return map shows the phase of one stimulus plotted as a function of the
phase of the preceding stimulus. This form for the map is similar to the quadratic
map, which is known to give chaotic dynamics. Adapted from Glass, Guevara,
Bélair, and Shrier (1984).

N
Site 4ttt

150 ms

Figure 5.13. Schematic diagram of surgical procedures that led to the estab-
lishment of a reentrant rhythm in a canine model of human atrial flutter and
electrical recordings from different sites in the heart during atrial flutter. From
Glass, Nagai, Hall, Talajic, and Nattel (2002).

ting curve followed by the application of the theory in Section 5.2.2 led to
the conclusion that 1:1 entrainment should be possible over a more lim-
ited range of stimulation periods from 130 ms to 145 ms. The failure of
the resetting curve to predict the range of entrainment in this example
likely arises because the stimulus is some distance away from the circuit
responsible for the reentrant tachycardia.

5.6 Conclusions

Single stimuli reset or annihilate stable nonlinear oscillations. Periodic stim-
uli delivered during the course of nonlinear oscillations can lead to a wide
range of different behaviors including quasiperiodicity, entrainment, chaos,
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Figure 5.14. Experimental studies of the entrainment of atrial flutter with stim-
ulation at site 4 and recording from site 2 in Figure 5.13. A. {; = 145 ms,
ts/To = 0.97; B. t. = 130 ms, t,/Tp = 0.0.87; C. ¢, = 115 ms, ts/To = 0.77. From

(lass, Nagai, Hall, Talajic, and Nattel {2002).

and annihilation. Although the origin of all these different behaviors can be
interpreted using the iteration of low-dimensional maps, our studies have
shown that a number of different factors that exist in the real world tend to
limit our ability to predict the effects of periodic stimulation using iteration

of low-dimensional maps.

o Stimulation can change the properties of the oscillation. Although in

numerical models, time constants are often very fast and the ongoing
activity does not modify system properties, in experiments and in
clinical circumstances the parameters of cardiac oscillations are mod-
ified under the rapid repetitive activity. Thus, the idealizations that
the properties of oscillators are not affected by the stimulation need
to be modified for a more complete analysis. Though such modifica-
tions have been implemented occasionally (Kunysz, Glass, and Shrier
1997; Vinet 1999), the simplicity of the one-dimensional circle map
as a model for periodically forced biological oscillators is lost in the
process, and the resulting models, though more realistic, are often
less esthetically pleasing.

There can be slow relazation times to the limit cycle. Following a
stimulus, the limit cycle is not necessarily reestablished prior to the
time of the next stimulus (Zeng, Glass, and Shrier 1992). At fast
stimulation rates, the finite relaxation time to the limit cycle may
make it difficult to predict the effects of periodic stimulation based
on resetting curves. Even in-the Poincaré oscillator, when the relax-
ation time is finite, there are still only limited results on the fine
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structure of the dynamics as a function of the stimulation frequency 2.8 P roblems
and amplitude (Glass and Sun 1994).

Analysis of the followi;

o For systems distributed in space, the resetting may depend on the be useful for those who

spatial location of the stimulus. For limit cycle oscillations associated

with reentrant excitation in space, the failure of an excitation to reset 1. Suppose that you

the oscillation may result from the blocking of a wave originating
from the stimulus by a wave generated by the reentrant excitation.
Since periodic stimulation from the same location might entrain the
oscillation, there would be a failure to predict the effects of periodic
stimulation using the information about resetting (Glass, Nagai, Hall,
Talajic, and Nattel 2002).

To understand the resetting and entrainment of limit cycle oscillations in
biological systems, there needs to be a mix of theory and experiment. Fx-
perimental studies of the effects of single and multiple stimuli delivered to
biological oscillators yield beautiful data in which the timing of key events
can be measured over time. Since the rhythms that are observed depend
on the parameters of the stimulation (amplitude of stimuli, frequency of
stimuli, number of stimuli, initial phase of stimuli), systematic studies are
essential. This chapter has sketched out the basic mathematics that I be-
lieve is essential for understanding these experiments, and has given some
examples where the methods have yielded unexpected results.
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5.8 Problems

Analysis of the following problems will facilitate understanding and may
be useful for those who wish to do further research on these topics.

1. Suppose that you observe a biological oscillation with a period of
oscillation that is quite stable; say there is a coefficient of variation of
about 3%. Also assume that you have found a stimulus that can reset
the oscillation, as measured by a marker event of the oscillation. For
exarple, the stimulus might be a current pulse delivered to a neural

or cardiac oscillation, and the marker event would be the onset of an

action potential. How can the new phase induced by the stimulus be
measured experimentally?

. Annihilation of a limit cycle oscillation by a single stimulus can be
fatal, if the oscillation is essential for life, or helpful, if the oscillation
is a dangerous arrhythmia. Discuss the circumstances under which
knowledge about the resetting curves of biological systems can be
used to predict whether annihilation of a stable limit cycle oscillation
using & single stimulus is possible. Critically discuss and contrast the
postulated mechanisms for annihilation of limit cycles presented in
Jalife and Antzelevitch (1979), Paydarfar and Buerkel (1995), and

Glass and Josephson (1995).

. The Poincaré oscillator provides a simple model that is amenable
to significant algebraic analysis. The text gives the algebraic expres-
sion for the resetting curve, equation (5.7}, and also the boundaries
of the 1:1 locking regions in equations (5.8) and (5.9). Derive these

equations. ’

. Extending the results in the problem above to the finite relaxation
case is difficult; the current state of the art is in Glass and Sun (1994).
The problem is to analyze the loss of stability of the period-1 fixed
points in the Poincaré oscillator with finite relaxation times as a func-
tion of the stimulation strength b and the relaxation k. It is necessary
to keep in mind that there can be more than one fixed point for given
parameter values, and that the initial condition is important. Good

results would merit publication.

. Experimental project. Select any biological or physical oscillation that
can be reset using brief pulsatile stimuli. Determine the phase reset-
ting curves for a range of stimuli and amplitudes, and the phase
locking for a range of amplitudes and periods. Can the resetting

curves be used to predict the effects of periodic stimulation? Careful

studies would merit publication.
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5.9 Computer Exercises: Resetting Curves for the
Poincaré Oscillator

One of the simplest models of a limit cycle oscillation is the Poincaré
oscillator. The equations for this model are

dr

pri kr(1—7),

do

= =om, (5.16)

where k is a positive parameter. Starting at any value of r, except r = 0,
there is an evolution until » = 1. The parameter % controls the relaxation
rate. In these exercises, we consider the relaxation in the limit & — oo.

Software

There are 2 Matlab™ programs you will use for this exercise:

resetmap(b) This program computes the resetting curve (new phase
versus old phase) for a stimulus strength b. The output is a matrix
with 102 columns and 2 arrays. The first array is the old phase ranging
from O to 1. There are two points just less than and just greater than
¢ = 0.5. These points are needed especially for the case where b > 1.
The second array is the new phase.

poincare(phizero,b,tau,niter) This program does an iteration of the
periodically stimulated Poincaré oscillator, where phizero is the ini-
tial phase, b is the stimulation strength, tau is the period of the
stimulation, and niter is the number of iterations. It is valid for
0 < 7 < 1. The output consists of two arrays:

The first array (called phi in the following) is a listing of the
successive phases during the periodic stimulation.

The second array (called beats in the following) is a listing of the
number of beats that occur between successive stimuli.

How to Run the Programs
s To compute the resetting curve for b = 1.10, type
[phi,phiprime] =resetmap(l.10);

e To plot out the resetting curve just computed, type

plot(phi,phiprime, >*’)

*See Introduction to Matlab in Appendix B.
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i the . ¢ To simulate periodic stimulation of the Poincaré oscillator, type

[phi,beats]=poincare(.3,1.13,0.35,100);

This will generate two time series of 100 iterates from an initial con-
dition of ¢ = 0.3, with b = 1.13 and 7 = 0.35. The array phi is
the successive phases during the stimulation. The array beats is the
number of beats between stimuli.

Poincaré

To display the output as a return map, type
plot(phi(2:99),phi(3:100),’**)

ptr =20, : This plots out the successive phases of each stimulus as a function

-elaxation of the phase of the preceding stimulus. The points lie on a one-

— 0. dimensional curve. The dynamics in this case are chaotic. In fact,
what is observed here is very similar to wbat is actually observed
during periodic stimulation of heart cell aggregates described in the
first chapter.

(5.16)

To display the number of beats between stimuli, type

ew phase plot(beats, ’*’)

a matrix
e ranging
:ater than
ere b > 1.

The rotation number gives the ratio between the number of beats
and the number of stimuli during a stimulation. This is the average
number of beats per stimulus. To compute the rotation number, type

‘sum(beats) /length(beats)

on of the

is the ini- Ezercises
od of the
valid for Ex. 5.9-1. Compuie resetting curves for varying values of b. Use

the program resetmap to compute the resetting curves for several
values of b in the range from 0 to 2. In particular, determine the value
of b at which the topology of the resetting curve changes. Note: The
_ value b = 1 is a singular value, and the program does not work for
ng of the that value. You could try to compute the analytic form for b= 1, or
L you could consult (Keener and Glass 1984) for the surprising answer.

1g of the

Ex. 5.9-2. Test the periodicity of iterates of phi. Use the program
poincare to compute the succesive iterates of phi for different val-
ues of (b, 7) and use the program testper (see lab 2.8) to determine
whether or not the successive iterates of phi are periodic. You might
wish to modify the programs so that they loop through several val-
ues of (b, 7). Stable periodic points correspond to stable patierns of
entrainment between the stimulus and the oscillator.

(a) Refer to Figure 5.7. Select values of b and 7 that are expected to
give 1:1, 2:1, 3:2, 2:2 phase locking and try to confirm that these
behaviors are in fact observed in the simulations. In doing this,
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you should realize that the rotation number is given by the ratio
of the number of action potentials to the number of stimuli.

(b) Find values for which there are different asymptotic behaviors
depending on the initial condition.

(¢) Find values of b and 7 that give quasiperiodicity. How many
iterates do you need to carry out to convince yourself that the be-
havior is quasiperiodic rather that periodic with a long period?
Choose a value of b > 0.

(d) Find a period-doubling route to chaos.

Ex. 5.9-3. Dynamics over the (b,7) plane. (Hard): Determine the dy-
namics over the (b, 7) parameter plane and draw a diagram with the
results. You should get the diagram in Figure 5.7.

Ex. 5.9-4. Dynamics of 2-D Poincaré oscillator with finite relax-
ation time. (Research level). Consider the two-dimensional Poincaré
oscillator, equation (5.16), with finite relaxation time (k is finite). In-
vestigate the dynamics of this equation. What has been found out so
far is in (Glass and Sun 1994).

Any good results on the following questions merit a research
publication:

(a) What are the dynamics where the period-1 orbit becomes un-
stable? You need to get some analytic results giving particular
consideration to the presence of subcritical and supercritical
Hopf bifurcations.

(b) How many stable orbits can exist simultaneously? Describe the
different stable periodic orbits for some subset of parameter
space.

(¢) For what range of parameter values are there chaotic dynamics?

(d) Give an analytic proof of chaos in this example and explore the

routes to chaos.

Do you agree that it is important to understand this example as well as
the ionic mechanisms of heart cell aggregates to understand the effects of
periodic stimulation of the aggregates?
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