%% LANGEVIN integrates the Langevin equation % using the standard Euler-Maruyama method. % The solution is Ornstein-Uhlenbeck noise. % Solution can be seen using plot(t,x); % Histogram of solution can be seen using plot(rhox,rhoy); % % Copyright 2003 % Centre for Nonlinear Dynamics in Physiology and Medicine tot=20000; %total number of integration time steps per realizations navgs=10; %total number of realizations dt=0.01; % integration time step trans=1000; %number of time steps to discard as transients alf=1.0; % alpha dnz=1.0; %intensity of the Gaussian white noise process; dnz=0.5*sigma^2 xinit=1.0; %initial condition x(0) t=ones(1,tot); %time vector bins=200; %number of bins to use for histogram of solution rhoy=zeros(1,bins); %histogram of the solution transtime=trans+1; sig=sqrt(2*dnz); fac=sig*sqrt(dt); for realiznumber=1:navgs realiznumber rng(sum(100*clock)); % initialize the random number generator t=zeros(1,tot); x=xinit*ones(1,tot); %initialize solution vector for i=2:tot t(1,i)=(i-1)*dt; x(1,i)=x(1,i-1)-alf*x(1,i-1)*dt+fac*randn; end rhoy=rhoy+hist(x(transtime:tot),bins); end [rhodum,rhox]=hist(x(transtime:tot),bins);