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Effects of Noi se on N onlinear 
Dynamics 
Andre Longtin 

6.1 Introd uction 

The influence of noise on nonlinear dynamical systems is a very important 
area of research, since all systems, physiological and other, evolve in the 
presence of noisy driving forces. It is often thought that noise has only a 
blurring effect on the evolution of dynamical systems. It is true that that 
can be the case, especially for so-called "observational" or "measurement" 
noise, as well as for linear systems. However, in nonlinear systems with 
dynamical noise, i.e., with noise that acts as a driving term in the equa­
tions of motion, noise can drastically modify the deterministic dynamics. 
For example, the hallmark of nonlinear behavior is the bifurcation, which 
is a qualitative change in the phase space motion when the value of one or 
more parameter changes. Noise can drastically modify the dynamics of a 
deterministic dynamical system. It can make the determination of bifurca­
tion points very difficult, even for the simplest bifurcations. Noise can shift 
bifurcation points or induce behaviors that have no deterministic counter­
part, through what are known as noise-induced transitions (Horsthemke 
and Lefever 1984). The combination of noise and nonlinear dynamics can 
also produce time series that are easily mistakable for deterministic chaos. 
This is especially true in the vicinity of bifurcation points, where the noise 
has its greatest influence. 

This chapter considers these issues starting from a basic level of descrip­
tion: the stochastic differential equation. It discusses sources of noise, and 
shows how noise, or "stochastic processes," can be coupled to determin­
istic differential equations. It also discusses analytical tools to deal with 
stochastic differenti:al equations, as well as simple methods to numerically 
integrate such equations. It then focuses in greater detail on trying to pin­
point a Hopf bifurcation in a real physiological system, which will lead to 
the notion of a noise-induced transition. This system is the human pupil 
light reflex. It has been studied by us and others both experimentally and 
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theoretically. It is also the subject of Chapter 9, by John Milton; he has 
been involved in the work presented here, along with Jelte Bos (who car­
ried out some of the experiments at the Free University of Amsterdam) 
and Michael Mackey. This chapter then considers noise-induced firing in 
excitable systems, and how noise interacts with deterministic input such as 
a sine wave to produce various forms of "stochastic phase locking." 

Noise is thought to arise from the action of a large number of variables. 
In this sense, it is usually understood that noise is high-dimensional. The 
mathematical analysis of noise involves associating a random variable with 
the high-dimensional physical process causing the noise. For example, for 
a cortical cell receiving synaptic inputs from ten thousand other cells, the 
ongoing synaptic bombardment may be considered as a source of current 
noise. The firing behavior of this cell may then be adequately described by 
assuming that the model differential equations governing the excitability 
of this cell (e.g., Hodgkin-Huxley-type equations) are coupled to a random 
variable describing the properties of this current noise. 

Although we may consider these synaptic inputs as noise, the cell may 
actually make more sense of it than we can, such as in temporal and spatial 
coincidences of inputs. Hence, one person's noise may be another person's 
information: It depends ultimately on the phenomena you are trying to 
understand. This explains in part why there has been such a thrust in the 
last decades to discover simple low-dimensional deterministic laws (such as 
chaos) governing observed noisy fluctuations. 

From the mathematical standpoint, noise as a random variable is a quan­
tity that fluctuates aperiodically intime. To be a useful quantity to describe 
the real world, this random variable should have well-defined properties 
that can be measured experimentally, such as a distribution of values (a 
density) with a mean and other moments, and a two-point correlation func­
tion. Thus, although the variable itself takes on a different set of values 
every time we look atitor simulate it (i.e., for each of its "realizations" ), its 
statistica! and temporal properties remain constant. The validity of these 
assumptions in a particular experimental setting must be properly assessed, 
for example by verifying that certain stationarity criteria are satisfied. 

One of the difficulties with modeling noise is that in general, we do not 
have access to the noise variable itself. Rather, we usually ha ve access to a 
state variable of a system that is perturbed by one or more sources of noise. 
Thus, one may have to begin with assumptions about the noise and its cou­
pling to the dynamical state variables. The accuracy of these assumptions 
can later be assessed by looking at the agreement of the predictions of the 
resulting model with the experimental data. 
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6.2 Different Kinds of Noise 

There is a large literature on the different kinds of noise that can arise in 
physical and physiological systems. Excellent references on this subject can 
be found in Gardiner (1985) and Horsthemke and Lefever (1984). An excel­
lent reference for noise at the cellular level is the book by DeFelice (1981). 
These books provide background material on thermal noise ( also known as 
Johnson-Nyquist noise, fluctuations that are present in any system due to 
its tempera ture being higher than absolute zero), shot noise ( due to the 
motion of individual charges), 1/ fa noise (one-over- f noise or flicker noise, 
the physical mechanisms of which are still the topic of whole conferences), 
Brownian motion, Ornstein-Uhlenbeck colored noise, and the list goes on. 

In physiology, an important source of noise consists of conductance fluc­
tuations of ionic channels, due to the ( apparently) random times at which 
they open and close. There are many other sources of noise associated with 
channels (DeFelice 1981). In a nerve cell, noise from synaptic events can 
be more important than the intrinsic sources of noise such as conductance 
fluctuations. Electric currents from neighboring cells or axons are a form of 
noise that not only affects recordings through measurement noise but also 
a cell's dynamics. There are fluctuations in the concentrations of ions and 
other chemicals forming the milieu in which the cells live. These fluctua­
tions may arise on a slower time scale than the other noises mentioned up 
ta now. 

The integrated electrica! activity of nerve cells produces the electroen­
cephalogram (EEG) pattern with ali its wonderful classes of fluctuations. 
Similarly, neuromuscular systems are complex connected systems of neu­
rons, axons, and muscles, each with its own sources of noise. Fluctuations 
in muscle contraction strength are dependent to a large extent on the firing 
patterns of the motorneurons that drive them. AU these examples should 
convince you that the modeling of noise requires a knowledge of the basic 
physical processes governing the dynamics of the variables we measure. 

There is another kind of distinction that must be applied, namely, that 
between observational, additive, and multiplicative noise ( assuming a sta­
tionary noise). In the case of observational noise, the dynamical system 
evolves deterministically, but our measurements on this system are con­
taminated by noise. For example, suppose a one-dimensional dynamical 
system is governed by 

dx 
dt = f(x, J.L), (6.1) 

where J.L is a parameter. Then observational noise corresponds to the mea­
surement of y(t) = x(t) +~(t), where ~(t) is the observational noise process. 
The measurement y, but not the evolution of the system x, is affected by 
the presence of noise. While this is often an important source of noise with 
which analyses must contend, and the simplest to deal with mathemati-
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cally, it is also the most boring form of noise in a physical system: It does 
not give rise to any new effectso 

One can also have additive sources of noiseo These situations are 
characterized by noise that is independent of the precise state of the system: 

dx 
dt = f(x, p,) + ~(t) o 

(602) 

In other words, the noise is simply added to the deterministic part of the 
dynamicso Finally, one can have multiplicative noise, in which the noise is 
dependent on the value of one or many state variableso Suppose that f is 
separable into a deterministic part and a stochastic part that depends on 
x: 

dx 
dt = h(x) + g(x)~(t) o (603) 

We then have the situation where the effect of the noise term will depend 
on the value ofthe state variable x through g(x)o Of course, a given system 
may have one or more noise sources coupled in one or more of these wayso 
We will discuss such sources of noise in the context of our experiments on 
the pupil light reflex and our study of stochastic phase lockingo 

603 The Langevin Equation 

Modeling the precise effects of noise on a dynamical system can be very 
difficult, and can involve a lot of guesswork. However, one can already 
gain insight into the effect of noise on a system by coupling it addi­
tively to Gaussian white noiseo This noise is a mathematical construct 
that approximates the properties of many kinds of noise encountered in 
experimental situationso It is Gaussian distributed with zero mean and 
autocorrelation (~(t)~(s)) = 2D8(t- s), where 8 is the Dirac delta func­
tiono The quantity D = a 2 /2 is usually referred to as the intensity of 
the Gaussian white noise (the actual intensity with the autocorrelation 
scaling used in our example is 2D)o Strictly speaking, the variance of this 
noise is infinite, since it is equal to the autocorrelation at zero lag (i.eo at 
t = s)o However, its intensity is finite, and a times the square root of the 
time step will be the standard deviation of Gaussian random numbers used 
to numerically generate such noise (see below)o 

The Langevin equation refers to the stochastic differential equation 
obtained by adding Gaussian white noise to a simple first-order linear 
dynamical system with a single stable fixed point: 

dx 
dt = -ax+ ~(t) o (604) 

This is nothing but equation (602) with f(x, p,) = -ax, and ~(t) given 
by the Gaussian white noise process we have just definedo The stochastic 
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process x(t) is also known as Ornstein-Uhlenbeck noise with correlation 
time 1/a, or as lowpass-filtered Gaussian white noise. A noise process 
that is not white noise, i.e. that does not have a delta-function auto­
correlation, is called "colored noise". Thus, the exponentially correlated 
Ornstein-Uhlenbeck noise is a colored noise. The probability density of 
this process is given by a Gaussian with zero mean and variance u 2 /2a. 
(you can verify this using the Fokker-Planck formalism described below). 
In practica! work, it is important to distinguish between this variance, and 
the intensity D of the Gaussian white noise process used to produce it. 
It is in fact common to plot various quantities of interest for a stochastic 
dynamical system as a function of the intensity D of the white noise used 
in that dynamical system, no matter where it appears in the equations. 

The case in which the deterministic part is nonlinear yields a nonlinear 
Langevin equation, which is the usual interesting case in mathematical 
physiology. One can simulate a nonlinear Langevin equation with deter­
ministic fl.ow h(x, t, J.L) and a coeffi.cient g(x, t, J.L) for the noise process using 
various stochastic numerica! integration methods of different orders of pre­
cision (see Kloeden, Platen, and Schurz 1991 for a review). For example, one 
can use a simple "stochastic" Euler-Maruyama method with fixed time step 
/).t (stochastic simulations are much safer with fixed step methods). Using 
the definition of Gaussian white noise ~(t) as the derivative of the Wiener 
process W ( t) ( the Wiener process is also known as "Brownian motion"), 
this method can be written as 

x(t + /).t) = x(t) + /).t h(x, t, J.L) + g(x, t, J.L)f).Wn, (6.5) 

where the {f).Wn} are "increments" of the Wiener process. These incre­
ments can be shown to be independent Gaussian random variables with 
zero mean and standard deviation given by u..fllt. Because the Gaussian 
white noise ~(t) is a function that is nowhere differentiable, one must use 
another kind of calculus to deal with it ( the so-called stochastic calcu­
lus; see Horsthemke and Lefever 1984; Gardiner 1985). One consequence of 
this fact is the necessity to exercise caution when performing a nonlinear 
change of variables on stochastic differential equations: The "Stratonovich" 
stochastic calculus obeys the laws of the usual deterministic calculus, but 
the "Ito" stochastic calculus does not. One thus has to associate an Ito 
or Stratonovich interpretation with a stochastic differential equation be­
fore performing coordinate changes. Also, for a given stochastic differential 
equation, the properties of the random process x(t) such as its moments 
will depend on which calculus is assumed. Fortunately, there is a simple 
transformation between the Ito and Stratonovich forms of the stochastic 
differential equation. Further, the properties obtained with both calculi are 
identica! when the noise is additive. 

It is also important to associate the chosen calculus with a proper in­
tegration method (Kloeden, Platen, and Schurz 1991). For example, an 
explicit Euler-Maruyama scheme is an Ito method, so numerica! results 
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with this method will agree with any theoretical results obtained from an 
analysis of the Ito interpretation of the stochastic differential equation, or 
of its equivalent Stratonovich form. In general, the Stratonovich form is 
best suited to model "real colored noise" and its effects in the limit of van­
ishing correlation time, i.e. in the limit where colored noise is allowed to 
become white after the calculation of measurable quantities. 

Another consequence of the stochastic calculus is that in the Euler­
Maruyama numerical scheme, the noise term has a magnitude proportional 
to the square root of the time step, rather than to the time step itself. This 
makes this method an "order ~" method, which converges more slowly than 
the Euler algorithm for deterministic differential equations. Higher-order 
methods are also available (Fox, Gatland, Roy, and Vemuri 1988; Mannella 
and Palleschi 1989; Honeycutt 1992); some are used in the computer exer­
cises associated with this chapter and with the chapter on the pupil light 
reflex (Chapter 9). Such methods are especially useful for stiff stochastic 
problems, such as the Hodgkin-Huxley or FitzHugh-Nagumo equations 
with stochastic forcing, where one usually uses an adaptive method in the 
noiseless case, but is confined to a fixed step method with noise. Stochastic 
simulations usually require multiple long runs ( "realizations": see below) 
to get good averaging, and higher-order methods are useful for that as well. 

The Gaussian random numbers ~Wn are generated in an uncorrelated 
fashion, for example by using a pseudorandom number generator in combi­
nation with the Box-Miiller algorithm. Such algorithms must be "seeded," 
i.e., provided with an initial condition. They will then output numbers 
with very small correlations between themselves. A simulation that uses 
Gaussian numbers that follow one initial seed is called a realization. In cer­
tain problems, it is important to repeat the simulations using M different 
realizations of N points (i.e., M with different seeds). This performs an 
average of the stochastic differential equation over the distribution of the 
random variable. It also serves to reduce the variance of various statistica! 
quantities used in a simulation (such as power spectral amplitudes). In the 
case of very long simulations, it also avoids problems associated with the 
finite period of the random number generator. 

A stochastic simulation yields a different trajectory for each different 
seed. It is possible also to describe the action of noise from another point 
of view, that of probability densities. One can study, for example, how an 
ensemble of initial conditions, characterized by a density, propagates under 
the action of the stochastic differential equation. One can study also the 
probability density of measuring the state variable between x and x + dx at 
a given time. The evolution of this density is governed by a deterministic 
partial differential equation in the density variable p(x, t), known as the 
Fokker-Planck equation. In one dimension, this equation is 

ap 
at 

~ 02 [g2(x)p] 
2 ox2 

o [h(x)p] 
ox (6.6) 
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Setting the left-hand side to zero and solving the remaining ordinary differ­
ential equation yields the asymptotic density for the stochastic differential 
equation, p* = p(x, oo). This corresponds to the probability density of 
finding the state variable between x and x + dx once transients have died 
out, i.e., in the long-time limit. Since noisy perturbations cause transients, 
this long-time density somehow characterizes not only the deterministic at­
tractors, but also the noise-induced transients around these attractors. For 
simple systems, it is possible to calculate p*, and sometimes even p(x, t) 
( this can always be done for linear systems, even with time-dependent co­
efficients). However, for nonlinear problems, in general one can at best 
approximate p*. For delay differential equations such as the one studied in 
the next section, the Fokker-Planck formalism breaks down. Nevertheless, 
it is possible to calculate p* numerically, and even understand some of its 
properties analytically (Longtin, Milton, Bos, and Mackey 1990; Longtin 
1991a; Guillouzic, L'Heureux, and Longtin 1999). 

A simple example of a nonlinear Langevin equation is 

dx 3 
dt =X- X + ~(t), (6.7) 

which models the overdamped noise-driven motion of a partide in a bistable 
potential. The deterministic part of this system has three fixed points, an 
unstable one at the origin and stable ones at ±1. For small noise intensity 
D, the system spends a long time fl.uctuating on either side of the origin 
before making a switch to the other side, as shown in Figure 6.1. Increasing 
the noise intensity increases the frequency of the switches across the origin. 
At the same time, the asymptotic probability density broadens around 
the stable points, and the probability density in a neighborhood of the 
( unstable) origin increases; the vicinity of the origin is thus stabilized by 
noise. One can actually calculate this asymptotic density exactly for this 
system using the Fokker-Planck formalism (try it! the answer is p(x) = 

C exp [(x2 - x4 )/2D], where C is a normalization constant). Also, because 
this is a one-dimensional system with additive noise, the maxima of the 
density are always located at the same place as for the deterministic case. 
The maxima are not displaced by noise, and no new maxima are created; 
in other words, there are no noise-induced states. This is not always the 
case for multiplicative noise, or for additive or multiplicative noise in higher 
dimensions. 

6.4 Pupil Light Reflex: Deterministic Dynamics 

We illustrate the effect of noise on nonlinear dynamics by first considering 
how noise alters the behavior of a prototypical physiological control system. 
The pupillight reflex, which is the focus of Chapter 9, is a negative feedback 
control system that regulates the amount of light falling on the retina. The 
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Figure 6.1. Realizations of equation (6.7) at (A) low noise intensity D = 0.5 
and (C) high noise intensity D = 1.0. The corresponding normalized probability 
densities are shown in (B) and (D) respectively. These densities were obtained 
from 30 realizations of 400,000 iterates; the integration time step for the stochastic 
Euler method is 0.005. 

pupil is the hole in the middle of the colored part of the eye called the 
iris. If the ambient light falling on the pupil increases, the reflex response 
will contract the iris sphincter muscle, thus reducing the area of the pupil 
and the light flux on the retina. The delay between the variation in light 
intensity and the variation in pupil area is about 300 msec. A mathematical 
model for this reflex is developed in Chapter 9. It can be simplified to the 
following form: 

dA c 
- = - aA+ +k 
dt 1 + [ A(t0T)r ' (6.8) 

where A(t) is the pupil area, and the second term on the right is a sigmoidal 
negative feedback function of the area at a time T = 300 msec in the past. 
Also, a,() , c, k are constants, although in fact , c and k fluctuate noisily. The 
parameter n controls the steepness of the feedback around the fixed point, 
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Figure 6.2. Experimental time series of pupi! area measured on a human subject 
for four different values of the feedback gain . Gain values are (A) 1.41, (B) 2.0, 
(C) 2.82, and (D) 4.0 . From Longtin (1991b). 

which is proportional to the feedback gain. If n is increased past a certain 
value n 0 , or the delay T past a critical delay, the single stable fixed point 
will become unstable, giving rise to a stable limit cycle (supercritical Hopf 
bifurcation). It is possible to artificially increase the parameter n in an 
experimental setting involving humans (Longtin, Milton, Bos, and Mackey 
1990). We would expect that under normal operating conditions, the value 
of n is sufficiently low that no periodic oscillations in pup il area are seen. As 
n is increased, the deterministic dynamics tell us that the amplitude of the 
oscillation should start increasing proportionally to y'n- n0 • Experimental 
data are shown in Figure 6.2, in which the feedback gain, proportional to 
n, increases from panel A to D. 

What is apparent in this system is that noisy oscillations are seen even 
at the lowest value of the gain; they are seen even below this value (not 
shown). In fact, it is difficult to pinpoint a qualitative change in the oscil­
lation waveform as the gain increases. Instead, the amplitude of the noisy 
oscillation simply increases, and in a sigmoidal fashion rather than a square 
root fashion. This is not what the deterministic model predicts. It is possible 
that the aperiodic fluctuations arise through more complicated dynamics 
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Figure 6.3. Characterization of pupil area fluctuations obtained from numerica! 
simulations of equation (6.8) with multiplicative Gaussian colored noise on the 
parameter k; the intensity is D = 15, and the noise correlation time is a- 1 = 1. 
The bifurcation parameter is n; a Hopf bifurcation occurs (for D =O) at n = 8.2. 
(A) Realization for n = 4; the corresponding normalized probability density is 
shown in (B). (C) and (D) are the same as, respectively, (A) and (B) but for 
n = 10. The densities were computed from 10 realizations, each of duration equal 
to 400 delays. 

( e.g., chaos) in this control system. However, such dynamics are not present 
in the deterministic model for any combination of parameters and initial 
conditions. In fact, there are only two globally stable solutions, either a 
fixed point or a limit cycle. 

Another possibility is that noise is present in this reflex, and what we are 
seeing is the result of noise driving a system in the vicinity of a Hopf bifur­
cation. This would not be surprising, since the pupil has a well-documented 
source of fluctuations known as pupillary hippus. It is not known what the 
precise origin of this noise is, but the following section will show that we 
can test for certain hypotheses concerning its nature. Incorporating noise 
into the model can in fact produce fluctuations that vary similarly to those 
in Figure 6.2 as the feedback gain is increased, as we will now see. 
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6.5 Pupil Light Reflex: Stochastic Dynamics 

We can explain the behaviors seen in Figure 6.2 if noise is incorporated 
into our model. One can argue, based on the known physiology of this 
system (see Chapter 9), that noise enters the reflex pathway through the 
parameters c and k, and causes fluctuations about their mean values c and 
k, respectively. In other words, we can suppose that c = c + TJ(t), i.e., that 
the noise is multiplicative, or k = k + TJ( t), i.e., that the noise is additive, 
or both. This noise represents the fluctuating neural activity from many 
different areas of the brain that connect to the Edinger-Westphal nucleus, 
the neural system that controls the parasympathetic drive of the iris. It also 
is meant to include the intrinsic noise at the synapses onto this nucleus and 
elsewhere in the reflex arc. 

Without noise, equation (6.8) undergoes a supercritical Hopf bifurcation 
as the gain is increased via the parameter n. We have investigated both the 
additive and multiplicative noise hypotheses by performing stochastic sim­
ulations of equation (6.8). The noise was chosen tobe Ornstein-Uhlenbeck 
noise with a correlation time of one second (Longtin, Milton, Bos, and 
Mackey 1990). Some results are shown in Figure 6.3, where a transition 
from low amplitude fluctuations to more regular high-amplitude fluctua­
tions is seen as the feedback gain is increased. Results are similar with noise 
on either cor k. Even before the deterministic bifurcation, oscillations with 
roughly the same period as the limit cycle that appears at the bifurcation 
are excited by the noise. Increasing the gain just makes them more promi­
nent: In fact, there is no actual bifurcation when noise is present, only a 
graded appearance of oscillations. 

6.6 Postponement of the Hopf Bifurcation 

We now discuss the problem of pinpointing a Hopf bifurcation in the pres­
ence of noise. This is a difficult problem not only for the Hopf bifurcation, 
but for other bifurcations as well (Horsthemke and Lefever 1984). From 
the time series point of view, noise causes fluctuations on the deterministic 
solution that exists without noise. However, and this is the more interesting 
effect, it can also produce noisy versions of behaviors that occur nearby in 
parameter space for the noiseless system. For example, as we have seen in 
the previous section, near a Hopf bifurcation the noise will produce a mix­
ture of fixed-point and limit cycle solutions. In the most exciting examples 
of the effect of noise on nonlinear dynamics, even new behaviors having no 
deterministic counterpart can be produced. 

The problem of pinpointing a bifurcation in the presence of noise arises 
because there is no obvious qualitative change in dynamics from the time 
series point of view, in contrast with the deterministic case. The definition 
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of a bifurcation as a qualitative change in the dynamical behavior when a 
parameter is varied has to be modified for a noisy system. There is usually 
more than one way of doing this, depending on which order parameter 
o ne chooses, i.e., which aspect of the dynamics one focuses on; the location 
of the bifurcation may also depend on this choice of order parameter. 

In the case of the pupi! light reflex near a Hopf bifurcation, it is clear 
from Figure 6.3 that noisc causes oscillations even though the deterministic 
behavior is a fixed point. The noise is simply revealing the behavior beyond 
the Hopf bifurcation. It is as though noise causes the bifurcation parameter 
to fluctuate across the deterministic bifurcation. This is a useful way to 
visualize the effect of noise, but it may be misleading, since the parameter 
need not fluctuate across the bifurcation point to see a mixture of behaviors 
below and beyond this point. One can thus say, from the time series point 
ofview, that noise advances the bifurcation point, since (noisy) oscillations 
are seen where, deterministically, a fixed point should be seen. Further, one 
can compare features of the noisy oscillation in time with, for example, the 
same features predicted by a model (see below). 

This analysis has its limitations, however, because power spectral (or 
autocorrelation) measures of the strength of the oscillatory component of 
the time series do not exhibit a qualitative change as parameters (including 
noise strength) vary. Rather, for example, the peak in the power spectrum 
associated with the oscillation simply increases as the underlying determin­
istic bifurcation is approached or the noise strength is increased. In other 
words, there is no bifurcation from the spectral point of view. Also, this 
point of view does not necessarily give a clear picture of the behavior be­
yond the deterministic bifurcation. For example, can one say that the fixed 
point, which is unstable beyond the deterministic bifurcation, is stabilized 
by noise? In other words, does the system spend more time near the fixed 
point than without noise? This can be an important piece of information 
about the behavior of a real control system ( see also Chapter 8 on cell 
replication and control). 

There are measures that reveal a bifurcation in the noisy system. One 
measure is based on the computation of invariant densities for the solutions. 
In other words, Jet the solution run long enough so that transients have 
disappeared, and then build a histogram of values of the solution. It is 
better to repeat this process for many realizations of the stochastic process 
in order to obtain a smooth histogram. 

In the deterministic case, this will produce two qualitatively different 
densities, depending on whether n is below or above the deterministic Hopf 
bifurcation point n 0 • If it is below, then the asymptotic solution is a fixed 
point, and the density is a delta function at this fixed point: p*(x) = 
o(x- x*). If n > no, the solution is approximately a sine wave, for which 
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the density is 

p*(x) = 1rAcos [ar~sin(x/A)]' 
where A is the amplitude of the sine wave. 

(6.9) 

When the noise intensity is greater than zero, the delta function gets 
broadened to a Gaussian distribution, and the density for the sine wave 
gets broadened to a smooth double-humped or bimodal function. Exam­
ples are shown in Figure 6.3 for two values of the feedback parameter n. It 
is possible then to define the bifurcation in the stochastic context by the 
transition from unimodality to bimodality (Horsthemke and Lefever 1984). 
The distance between the peaks can serve as an order parameter for this 
transition ( different order parameters can be defined, as in the physics liter­
ature on phase transitions). It represents in some sense the mean amplitude 
of the fluctuations. 

We have found that the transition from a unimodal to a bimodal density 
occurs at a value of n greater than n 0 (Longtin, Milton, Bos, and Mackey 
1990). In this sense, the bifurcation is postponed by the noise, with the 
magnitude of the postponement being proportional to the noise intensity. 
In certain simple cases ( although not yet for the delay-differential equation 
studied here), it is possible to analytically approximate the behavior of the 
order parameter with noise. This allows one to predict the presence of a 
postponement, and to relate this postponement to certain model param­
eters, especially those governing the nonlinear behavior. A postponement 
does not imply that there are no oscillations if n < np, where np is the ex­
trapolated bifurcation point for the noisy case (it is very time-consuming 
to numerically determine this point accurately). As we have seen, when 
there is noise near a Hopf bifurcation, oscillations are present. However, a 
postponement does imply that if n > n 0 , the presence of noise stabilizes 
the fixed point. In other words, the system spends more time near the fixed 
point with noise than without noise. This is why the density for the stochas­
tic differential equation fills in between the two peaks of the deterministic 
distribution given in equation (6.9). 

One can try to pinpoint the bifurcation in the pupil data by comput­
ing such densities at different values of the feedback gain. The result is 
shown in Figure 6.4 for the data used for Figure 6.2. Even for the high­
est value of gain, there are clearly oscillations, and the distribution stiH 
appears unimodal. However, this is not to say that it is unimodal. A prob­
lem arises because a large number of simulated data points ( two orders 
of magnitude more than experimentally available) are needed to properly 
measure the order parameter, i.e., the distance between the two peaks of 
the probability density. The bifurcation is not seen from the density point 
of view in this system with limited data sets and large amounts of noise 
(the higher the noise, the more data points are required). The model does 
suggest, however, that a postponement can be expected from the density 
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point of view; in particular, the noisy system spends more time near the 
fixed point than without noise, even though oscillations occur. Further, the 
mean, moments, and other features of these densities could be compared 
to those obtained from time series of similar duration generated by models, 
in the hope of better understanding the dynamics underlying such noisy 
experimental systems. 

This lack of resolution to pinpoint the Hopf bifurcation motivated us to 
validate our model using other quantities, such as the mean and relative 
standard deviation of the amplitude and period fluctuations as gain in­
creases (Longtin, Milton, Bos, and Mackey 1990). That study showed that 
for noise intensity D = 15 and a noise correlation time around one, these 
quantities have similar values in the experiments and the simulations. This 
strengthens our belief that stochastic forces are present in this system. ln­
terestingly, our approach of investigating fluctuations across a bifurcation 
(supercritical Hopf in this case) allows us to amplify the noise in the sys­
tem, in the sense that it is put under the magnifying glass. This is because 
noise has a strong effect on the dynamics of a system in the vicinity of a 
bifurcation point, since there is loss of linear stability at this point (neither 
the fixed point nor the zero-amplitude oscillation is attracting). 

Finally, there is an interesting theoretical aspect to the postponements. 
We are dealing here with a first-order differential-delay equation. Noise­
induced transitions such as postponements are not possible with additive 
noise in one-dimensional ordinary differential equations (Horsthemke and 
Lefever 1984). But our numerica! results show that in fact, additive noise­
induced transitions are possible in a first-order delay-differential equation. 
The reason behind this is that while the highest-order derivative is one, 
the delay-differential equation is infinite-dimensional, since it evolves in 
a functional space (an initial function must be specified). More details 
on these theoretical aspects of the noise-induced transitions can be found 
in Longtin (1991a). 

6. 7 Stochastic Phase Locking 

The nervous system has evolved with many sources of noise, acting from 
the microscopic ion channel scale up to the macroscopic scale of the EEG 
activity. This is especially true for cells that transduce physical stimuli into 
neuroelectrical activity, since they are exposed to environmental sources of 
noise, as well as to intrinsic sources of noise such as ionic channel conduc­
tance fluctuations, synaptic fluctuations, and thermal noise. Traditionally, 
sources of noise in sensory systems, such as the senses of audition and touch, 
have been perceived as a nuisance. For example, they have been thought 
to limit our aptitude for detecting or discriminating between stimuli. 
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Figure 6.4. Densities corresponding to the time series shown in Figure 6.2 (more 
data were used than are shown in Figure 6.2). From Longtin (1991b). 

In the past decades, there have been studies that revealed a more con­
structive role for neuronal noise. For example, noise can increase the 
dynamic range of neurons by linearizing their stimulus-response charac­
teristics (see, e.g., Spekreijse 1969; Knight 1972; Treutlein and Schulten 
1985). In other words, noise smoothes out the abrupt increase in mean fir­
ing rate that occurs in many neurons as the stimulus intensity increases; 
this abruptness is a property of the deterministic bifurcation from nonfiring 
to firing behavior. Noise also makes detection of weak signals possible (see, 
e.g., Hochmair-Desoyer, Hochmair, Motz, and Rattay 1984). And noise 
can stabilize systems by postponing bifurcation points, as we saw in the 
previous section (Horsthemke and Lefever 1984). 

In this section, we focus on a special kind of firing behavior exhibited by 
many kinds of neurons across many different sensory modalities. In gen­
eral terms, it can be referred to as "stochastic phase locking," but in more 
specific terms it is known as "skipping." An overview of physiological ex­
amples of stochastic phase locking in neurons can be found in Segundo, 
Vibert, Pakdaman, Stiber, and Martinez (1994). Figure 6.5 plots the mem­
brane potential versus time for a model cell driven by a sinusoidal stimulus 
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Figure 6.5. Numerica! simulation of the FitzHugh-Nagumo equations in the sub­
threshold regime, in the presence of noise and sinusoidal forcing. (A) Time series 
of the membrane potential. (B) Interspike interval histogram obtained from 100 
realizations of this stochastic system yielding a total of 2048 intervals. (C) An 
a periodic sequence of interspike intervals (ISI). (D) Power spectrum of the spike 
train, averaged over 100 realizations. 

and noise (the model is the FitzHugh-Nagumo equations; see below). The 
sharp upstrokes superimposed on the "noisy" oscillation are action poten­
tials. The stimulus period here is long in comparison to the action potential 
duration. The feature of interest is that while the spikes are phase locked 
to the stimulus, they do not occur at every cycle of the stimulus. Instead, a 
seemingly random integer number of periods of the stimulus are "skipped" 
between any two successive spikes, thus the term "skipping." This is shown 
in the interspike interval histogram in Figure 6.5B. The peaks in this in­
terspike interval histogram line up with the integer multiples of the driving 
period (Ta = 1.67 msec). The lack of periodicity in the firing pattern can be 
inferred from Figure 6.5C, where the interval value is plotted as a function 
of the interval number ( 80 intervals are plotted). 

In practice, one usually does not have access to the membrane voltage 
itself, since the sensory cells or their afferent nerve fibers cannot be impaled 
by a microelectrode. Instead, one has a sequence of interspike intervals from 
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which the mechanisms giving rise to signal encoding and skipping must be 
inferred. 

In the rest of this chapter, we describe some mechanisms of skipping in 
sensory cells, as well as the potential significance of such firing patterns for 
sensory information processing. We discuss the phenomenology of skipping 
patterns, and then describe efforts to model these patterns mathematically. 
We describe the stochastic resonance effect in this context, and discuss its 
origins. We also discuss skipping patterns in the context of "bursting" firing 
patterns. We consider the relation of noise-induced firing to linearization 
by noise. We also show how noise can alter the shape of tuning curves, and 
end with an outlook onto interesting issues for future research. 

6.8 The Phenomenology of Skipping 

A firing pattern in which cycles of a stimulus are skipped is a common 
occurrence in physiology. For example, this behavior underlies p : m phase 
locking seen in cardiac and other excitable cells, i.e., firing patterns with m 
responses to p cycles of the stimulus. The main additional properties here 
are that the phase locking pattern is aperiodic, and remains qualitatively 
the same as stimulus characteristics are varied. In other words, abrupt 
changes between patterns with different phase locking ratios are not seen 
under "skipping" conditions. For example, as the amplitude of the stimulus 
increases, the skipping pattern remains aperiodic, but there is a higher 
incidence of short skips rather than long skips. 

A characteristic interspike interval histogram for a skipping pattern is 
shown in Figure 6.5B, and again in Figure 6.6A for in a bursty P-type 
electroreceptor of a weakly electric fish. The stimulus in this latter case is 
a 660 Hz oscillatory electric field generated by the fish itself (its "electric 
organ discharge"). It is modulated by food particles and other objects and 
fish, and the 660 Hz carrier along with its modulations are read by the 
receptors in the skin of the fish. This electrosensory system is used for elec­
trolocation and electrocommunication. The interspike interval histogram 
in Figure 6.6A again consists of a set of peaks located at integer multiples 
of the driving period. Note from Figure 6.6B that there is no apparent 
periodicity in the interval sequence. The firing patterns of electroreceptors 
were first characterized in Scheich, Bullock, and Hamstra Jr (1973). These 
receptors are known are P-units or "probability coders," since it is thought 
that their probability of firing is proportional to, and thus encodes, the 
instantaneous amplitude of the electric organ discharge. Hence this prob­
ability, determined by various parameters including the intensity of noise 
sources acting in the receptor, is an important part of the neuronal code 
in this system. 
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Figure 6.6. Interspike interval histogram and sequence of interspike intervals (ISI) 
measured from a primary afferent fiber of an electroreceptor of the weakly electric 
fish Apteronotus leptorhynchus. The stimulus frequency is 660 Hz, and is gener­
ated by the fish itself. Data provided courtesy of Joe Bastian, U. Oklahoma at 
Norman. 

Another classic example of skipping is found in mammalian auditory 
fibers. Rose, Brugge, Anderson, and Hind (1967) show that skipping pat­
terns occur at frequencies from below 80 Hz up to 1000 Hz and beyond in 
a single primary auditory fiber of the squirrel monkey. For all amplitudes, 
the modes in the interspike interval histogram line up with the integer mul­
tiples of the stimulus period, and there is a mode centered on each integer 
between the first and last visible modes. At low frequencies, multiple fir­
ings can occur in the preferred part of the stimulus cycle, and thus a peak 
corresponding to very short intervals is also seen. At frequencies beyond 
1000 Hz, the first peak is usually missing due to the refractory period of 
the afferent fiber; in other words, the cell cannot recover fast enough to 
fire spikes one millisecond apart. Nevertheless, phase locking persists as 
evidenced by the existence of other modes. This is true for electroreceptors 
as well (Chacron, Longtin, St-Hilaire, and Maler 2000). 

The degree of phase locking in all cases is evident from the width of the 
interspike interval histogram peaks: Sharp peaks correspond to a high de­
gree of phase locking, i.e., to a narrow range of phases of the stimulus cycle 
during which firing preferentially occurs. As amplitude increases, the multi­
moda! structure of the interspike interval histogram is still present, but the 
intervals are more concentrated at low values. In other words, the higher 
the intensity, the lower the (random) integer number of cycles skipped be­
tween firings. What is astonishing is that these neurons are highly "tunable" 
across such a broad range of stimulus parameters, with the modes always 
lining up with multiples of the driving period. There are many examples 
of skipping in other neurons, sensory and otherwise, e.g., in mechanorecep­
tors and thermoreceptors (see Longtin 1995; Segundo, Vibert, Pakdaman, 
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Stiber, and Martinez 1994; Ivey, Apkarian, and Chialvo 1998 and references 
therein). 

Another important characteristic of skipping is that the positions of 
the peaks vary smoothly with stimulus frequency, and the envelope of 
the interspike interval histogram varies smoothly with stimulus amplitude. 
This is different from the phase-locking patterns governed, for example, by 
phase-resetting curves leading to an Arnold tongue structure as stimulus 
amplitude and period are varied. We will see that a plausible mechanism 
for skipping involves the combination of noise with subthreshold dynamics, 
although suprathreshold mechanisms exist, as we will see below (Longtin 
1998). In fact, we have recently found (Chacron, Longtin, St-Hilaire, and 
Maler 2000) that suprathreshold periodic forcing of a leaky integrate-aud­
fire model with voltage and threshold reset can produce patterns close to 
those seen in electroreceptors of the nonbursty type ( interspike interval 
histogram similar to that in Figure 6.6A, except that the first peak is miss­
ing). We focus below on the subthreshold scenario in the context of the 
FitzHugh-Nagumo equations, with one suprathreshold example as well. 

6.9 Mathematical Models of Skipping 

The earliest analytical/numerical study of skipping was performed by Ger­
stein and Mandelbrot (1964). Cat auditory fibers recorded during auditory 
stimulation with periodic "clicks" of noise (at frequencies less than 100 
clicks/sec) showed skipping behavior. Gerstein and Mandelbrot were in­
terested in reproducing experimentally observed spontaneous interspike 
interval histograms using "random walks to threshold models" of neuron 
firing activity. In one of their simulations, they were able to reproduce the 
basic features of the interspike interval histogram in the presence of the 
clicks by adding a periodically modulated drift term to their random walk 
model. The essence of these models is that the firing activity is entirely 
governed by noise plus a constant and/or a periodically modulated drift. 
A spike is associated with the crossing of a fixed threshold by the random 
variable. 

Since this early study, there have been other efforts aimed at under­
standing the properties of neurons driven by periodic stimuli and noise. 
The following examples have been excerpted from the large literature on 
this subject. French et al. (1972) showed that noise breaks up patterns of 
phase locking to a periodic signal, and that the mean firing rate is propor­
tional to the amplitude of the signal. Glass et al. (1980) investigated an 
integrate-aud-fire model of neural activity in the presence of periodic forc­
ing and noise. They found unstable zones with no phase locking, as well as 
quasi-periodic dynamics and firing patterns with stochastic skipped beats. 
Keener et al. (1981) were able to analytically investigate the dynamics of 
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phase locking in a leaky integrate-and-fire model without noise. Alexander 
et al. (1990) studied phase locking phenomena in the FitzHugh-Nagumo 
model of a neuron in the excitable regime, again without noise. There have 
also been studies of noise-induced limit cycles in excitable cell models like 
the Bonhoeffer-van der Pol equations (similar to the FitzHugh-Nagumo 
model), but in the absence of periodic forcing (Treutlein and Schulten 
1985). 

The past two decades have seen a revival of stochastic models of neural 
firing in the context of skipping. Hochmair-Desoyer et al. (1984) have looked 
at the infl.uence of noise on firing patterns in auditory neurons using models 
such as the FitzHugh-Nagumo equations, and shown that it can alter the 
tuning curves (see below). This model generates real action potentials with 
a refractory period. It also has many other behaviors that are found in real 
neurons, such as a resonance frequency. It is a suitable model, however, only 
when an action potential is followed by a hyperpolarizing after-potential, 
i.e., the voltage goes below the resting potential after the spike, and slowly 
increases towards it. It is also a good simplified model to study certain 
neural behaviors qualitatively; better models exist ( they are usually more 
complex) and should be used when quantitative agreement between theory 
and experiment is sought. The study of the FitzHugh-Nagumo model in 
Longtin (1993) was motivated by the desire to understand how stochastic 
resonance could occur in real neurons, as opposed to bistable systems where 
the concept had been confined. In fact, the FitzHugh-Nagumo model has 
a cubic nonlinearity, just as does the standard quartic bistable system in 
equation ( 6. 7); however, it has an extra degree of freedom that serves to 
reset the system after the threshold for spiking is crossed. 

We illustrate here the behavior of the FitzHugh-Nagumo model with 
simultaneous stimulation by a periodic signal and by noise. The latter 
can be interpreted as either synaptic noise, or signal noise, or conduc­
tance fl.uctuations (although the precise modeling of such fiuctuations is 
better done with conductance-based models such as Hodgkin-Huxley-type 
models). The model equations are (Longtin 1993) 

dv 
Edt =v(v-a)(1-v)-w+ry(t), 

dw 
- = v - dw - b - r sin (3t 
dt ' 
dry 
dt = ->.ry + >.~(t). 

(6.10) 

(6.11) 

(6.12) 

The variable vis the fast voltage-like variable, while w is a recovery variable. 
Also, ~(t) is a zero-mean Gaussian white additive noise, which is lowpass 
filtered to produce an Ornstein-Uhlenbeck-type additive noise denoted by 
11· The autocorrelation of the white noise is (~(t)~(s)) = 2D8(t- s); i.e., 
it is delta-correlated. The parameter D is the intensity of the white noise. 
This Ornstein-Uhlenbeck noise is Gaussian and exponentially correlated, 
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with a correlation time (i.e., the 1/e time) of te =A-l. The periodic signal 
of amplitude r and frequency f3 is added here to the recovery variable w 
as in Alexander, Doedel, and Othmer (1990), yielding qualitatively similar 
dynamics as in the case in which it is added to the voltage equation (after 
proper adjustment ofthe amplitude; see Longtin 1993). The periodic forcing 
should be added to the voltage variable when the period of stimulation is 
smaller than the refractory period of the action potential. 

The parameter regime used to obtain the results in Figure 6.5 can be 
understood as follows. In the absence of periodic stimulation, one would 
see a smooth unimodal interspike interval histogram ( close to a gamma-type 
distribution) governed by the interaction of the two-dimensional FitzHugh­
Nagumo dynamics with noise. The periodic stimulus thus carves peaks out 
of this "background" distribution of the interspike interval histogram. If the 
noise is turned off and the stimulus is turned on, there would be no firings 
whatsoever. This is a crucial point: The condition for obtaining skipping 
with the tunability properties described in the previous section is that the 
deterministic dynamics must be subthreshold. This feature can be controlled 
by the parameter b, which sets the proximity of the resting potential (i.e., 
the single stable fixed point) to the threshold. In fact, this dynamical system 
goes through a supercritical Hopf bifurcation at bH = 0.35. It can also be 
controlled by a constant current that could be added to the left hand side 
of the first equation. 

Figure 6.7 contrasts the subthreshold (r = 0.2) and suprathreshold 
(r = 0.22) behavior in the FitzHugh-Nagumo system. In the subthresh­
old case, the noise is essential for firings to occur: No intervals are obtained 
when the noise intensity, D, is zero. For r = 0.22 and D =O, only one kind 
of interval is obtained, namely, that corresponding to the period of the de­
terministic limit cycle. For D > O, the limit cycle is perturbed by the noise, 
and sometimes comes close to but misses the separatrix: No action potential 
is generated during one or more cycles of the stimulus. In the subthreshold 
case, one also sees skipping behavior. At higher noise intensities, the inter­
spike interval histograms hardly differ, and thus we cannot tell from such 
an interspike interval histogram whether the system is suprathreshold or 
subthreshold. This distinction can be made by varying the noise level as 
illustrated in this figure. In the subthreshold case, the mean of the distri­
bution will always move to lower intervals as D increases, although this is 
not true for the suprathreshold case. 

There have also been numerous modeling studies based on noise and 
sinusoidally forced integrate-and-fire-type models (see, e.g., Shimokawa, 
Pakdaman, and Sato 1999; Bulsara, Elston, Doering, Lowen, and Lin­
denberg 1996; and Gammaitoni, Hanggi, Jung, and Marchesoni 1998 and 
references therein). Other possible generic dynamical behavior might lurk 
behind this form of phase locking. In fact, the details of the phase locking, 
and of the physiology of the cells, are important in determining which spe­
cific dynamics are at work. Subthreshold chaos might be involved (Kaplan, 
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Figure 6. 7. Comparison of interspike interval histograms with increasing noi se 
intensity in the subthreshold regime (left panels) and suprathreshold regime (right 
panels). 

Clay, Manning, Glass, Guevara, and Shrier 1996), although probably with 
noise as well if one seeks smooth interspike interval histograms with sym­
metric modes and without missing modes between the first and the last 
(as with the data in Rose, Brugge, Anderson, and Rind 1967; see Longtin 
1998). An example of these effects of noise on the multimodal interspike 
interval histograms produced by the chaos (with pulsatile forcing) is shown 
in Figure 6.8. In other systems, chaos may be the main player, as in the 
experimental system (pulsatile stimulat ion of squid axons) considered in 
Kaplan et al. (1996). 

In Figure 10 of Longtin (1993), a "chaos" hypothesis for skipping was 
investigated using the FitzHugh-Nagumo model with sinusoidal forcing (in­
stead of pulses as in Kaplan, Clay, Manning, Glass, Guevara, and Shrier 
1996). Without noise, this produced subthreshold chaos, as described in Ka­
plan, Clay, Manning, Glass, Guevara, and Shrier (1996), although clearly, 
when spikes occur ( using some criterion for graded responses) these are 
"suprathreshold" responses to this "subthreshold chaos"; in other words, 
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Figure 6.8. Interspike interval histogram from the FitzHugh-Nagumo system 
dv/dt = v(v- 0.139)(1- v)- w + I + 'T)(t), dw/dt = 0.008(v- 2.54w), where 
I consists of rectangular pulses of duration 1.0 msec and height 0.28, repeated 
every 28.5 msec. Each histogram is obtained from one realization of 5 x 107 time 
steps. The Ornstein-Uhlenbeck noise 'T)(t) has a correlation time of 0.001 msec. 
(A) Noise intensity D = o. (B) D = 2.5 X w-5 . 

the chaos could just as well be referred to as "suprathreshold." In this 
FitzHugh-Nagumo chaos case, some features of the Rose et al. data could 
be reproduced, but others not. For example, multimodal histograms were 
found. But the individual peaks had more "internal" structure than seen in 
the data (including electroreceptor and mechanoreceptor data); they were 
not aligned very well with the integer multiples of the driving period; and 
some peaks were missing, as in the case of pulsatile forcing shown in Fig­
ure 6.8. Further, the envelope did not have the characteristic exponential 
decay (past the second mode) seen in the Rose et al. data (which is what 
is expected for uncorrelated intervals). Additive dynamical noise on top 
of this chaos did a better job at reproducing these qualitative features, at 
least for the parameters explored (Longtin 1998). The modes of the inter­
spike interval histogram were still a bit lopsided, and the envelopes were 
different from those of the data. Interestingly, solutions that "look chaotic" 
often end up on periodic orbits after a long while. A bit of noise would 
probably keep these solutions bouncing around irregularly. 

The other reason that some stochastic component may be a necessary 
ingredient is the smoothness observed in the transitions between interspike 
interval histograms as stimulation parameters are changed. Changing pe­
riod or amplitude in the chaotic models leads to sometimes abrupt changes 
in the multimodal structure (and some peaks just keep on missing). Noise 
induced firing with deterministically subthreshold dynamics does produce 
the required smooth transitions in the proper sequence seen in Rose et 
al. (1967). Note, however, that in certain parameter ranges, it is possible 
to get multimodal histograms with suprathreshold forcing. This is shown 
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Figure 6.9. Interspike interval histogram from the FitzHugh-Nagumo system with 
fast sinusoidal forcing /3 = 32. Other parameters are a = 0.5, b = 0.15, d = 1, 
E = 0.005, 1 = 0.04 and r = 0.06. The histogram is obtained from 10 realizations 
of 500,000 time steps. 

in Figure 6.9, for which the forcing frequency is high, and the deterministic 
solution is a periodic 3:1 solution. 

All this discussion does not exclude the possibility that chaos alone (e.g., 
with other parameters or in a more refined model) might give the right 
picture for this kind of data, or that deterministic chaos or periodic phase 
locking combined with noise might give it as well. Only good intracellular 
data can ultimately settle the issue of the origin of the stochastic phase 
locking, and provide an explanation for the smooth skipping patterns. 

6.10 Stochastic Resonance 

The notion that skipping neurons in the subthreshold regime rely on noise 
to fire is interesting from the point of view of signal processing. In order 
to transmit information about the stimulus (the input) to a neuron in its 
spike train (the output), noise must be present. Without noise, there are 
no firings, and with too much noise, we expect to see a very noisy output 
with again no information ( or very little) about the stimulus. Hen ce, there 
must be a noise value for which information about the stimulus is optimally 
transmitted to the output. In other words, starting from zero noise, adding 
noise will increase the signal-to-noise ratio, and an optimal noise level can 
be found where the signal-to-noise ratio peaks. This is indeed the case 
in the FitzHugh-Nagumo model studied above. This effect, in which the 
signal-to-noise ratio is optimal for some intermediate noise intensity, is 
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known as stochastic resonance. It has been studied for over a decade, 
usually in bistable systems. It had been studied theoretically in bistable 
neurons (Bulsara, Jacobs, Zhou, Moss, and Kiss 1991), and predicted to 
occur in real neurons (Longtin, Bulsara, and Moss 1991). Thereafter, it 
was studied theoretically in an excitable system (Longtin 1993; Chialvo 
and Apkarian 1993; Chapeau-Blondeau, Godivier, and Chambet 1996) and 
a variety of other systems (Gammaitoni, Hănggi, Jung, and Marchesoni 
1998), and shown to occur in real systems (see, e.g., Douglass, Wilkens, 
Pantazelou, and Moss 1993; Levin and Miller 1996). It is one of many 
constructive roles for noise discovered in recent decades (Astumian and 
Moss 1998). 

This resonance can be studied from the points of view of spectral 
amplitude at the signal frequency, signal-to-noise ratio, residence-time his­
tograms (i.e., interspike interval histograms), and others as well. In the first 
case, one computes for a given value of noise intensity D the power spec­
trum averaged over many spike trains obtained with as many realizations 
of the noise process. The spectrum is usually in the form of a flat or curved 
background, on which the harmonics of the small stimulus signal are su­
perimposed (see Figure 6.5D). A dip at low frequencies is often seen, which 
is due to phase jitter and to the refractory period. A signal-to-noise ratio 
can then be computed by dividing the height of the fundamental stimu­
lus peak by the noise fioor (i.e., the value of the noise background at the 
frequency of the stimulus). This signal-to-noise ratio can be plotted as a 
function of D, and the resulting curve will be unimodal, with the maximum 
corresponding to the stochastic resonance. Alternatively, one can measure 
the heights of the different peaks in the interspike interval histogram, and 
plot these heights as a function of D. The different peaks will go through 
a maximum at different values of D. While there is yet no direct analytical 
connection between stochastic resonance from these two points of view, it 
is usually the case that systems exhibiting stochastic resonance from one 
point of view will also exhibit it from the other. 

The power spectrum measures the synchrony between firings and the 
stimulus. From the point of view of the interspike interval histogram, the 
measure of synchrony depends not only on the prevalence of intervals at 
integer multiples of a fundamental interval, but also on the width of the 
peaks of the interspike interval histogram. As noise increases past the res­
onance value, these widths increase, with the result that the phase locking 
is disrupted by the noise, even though there are many firings. 

A simple theory of stochastic resonance for excitable systems is being 
developed. Wiesenfeld et al. (1994) have shown that stochastic resonance 
will occur in a periodically modulated point process. By redoing the cal­
culation of the classic shot noise effect for the case of a periodic stimulus 
(the point process is then inhomogeneous, i.e., time-dependent), they have 
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found an expression for the signal-to-noise ratio (SNR) (in decibels): 

SNR = 10 log10 [ ~f(~~) exp( -U 1 D)] , (6.13) 

where In is the modified Bessel function of order n, z = rU 1 D, and U is 
a measure of the proximity of the fixed point to the firing threshold (i.e., 
some kind of activation barrier). For small z, this equation becomes 

[ U2r2 ] 
SNR = 10 log10 ----yj2 exp( -U 1 D) , (6.14) 

which is almost identica! to a well-known result for stochastic resonance in a 
bistable potential. More recently, analytical techniques have been devised to 
study stochastic resonance in two-variable systems such as the FitzHugh~ 
Nagumo system (Lindner and Schimansky-Geier 2000). 

The shape of the interspike interval histogram, and in particular, its 
rate of decay, is very sensitive to the stimulus characteristics. This is to 
be contrasted with the transition from sub- to suprathreshold dynamics 
in the absence of noise. There are no firings before the stimulus exceeds a 
threshold amplitude. Once the suprathreshold regime is reached, however, 
amplitude increases can bring on various p : m locking patterns and even 
chaos. Noise allows the firing pattern to change smoothly and sensitively 
over a larger range of stimulus parameters. 

The firing patterns of the neuron in the excitable regime are also inter­
esting in the presence of noise only, i.e., without periodic forcing. In fact, 
such a noisy excitable system can be seen as a stochastic oscillator (Longtin 
1993; Pikovsky and Kurths 1997; Longtin and Chialvo 1998; Lee and Kim 
1999; Lindner and Schimansky-Geier 2000). The presence of a resonance 
in the deterministic dynamics will endow this oscillator with a well-defined 
preferred time between firings; this time scale is closely associated with 
the period of the limit cycle that arises when the system is biased into its 
autonomously firing regime. Recently, Pikovsky and Kurths (1997) showed 
that increasing the noise intensity from zero will lead to enhanced period­
icity in the output firing pattern, followed by a decreased periodicity. This 
has been termed coherence resonance, and is related to the induction 
by noise of the limit cycle that exists in the vicinity of the excitable regime 
(Wiesenfeld 1985). The effect has also been predicted to occur in bursting 
neurons (Longtin 1997). 

We close this section with a brief discussion of the origin of stochastic 
resonance in excitable neurons. Various aspects of this question have been 
discussed in Collins, Chow, and Imhoff 1995a; Collins, Chow, and Imhoff 
1995b; Bulsara, Jacobs, Zhou, Moss, and Kiss 1991; Bulsara, Elston, Doer­
ing, Lowen, and Lindenberg 1996; Chialvo, Longtin, and Miiller-Gerking 
1997; Longtin and Chialvo 1998; Neiman, Silchenko, Anishchenko, and 
Schimansky-Geier 1998; Lee and Kim 1999; Shimokawa, Pakdaman, and 
Sato 1999; Lindner and Schimansky-Geier 2000. Here we focus on the distri-
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but ion of the phases at which firings occur, the so-called "cycle histogram." 
Figure 6.10 shows cycle histograms for the FitzHugh-Nagumo model with 
subthreshold parameter settings similar to those used in previous figures, 
for high (left panels) and low frequency forcing (right panels). The lower 
panels (low noise) show that the cycle histogram is rectified, with firings 
occurring only in a restricted range of phases. The associated interspike 
interval histograms (not shown) are multimodal as a consequence of this 
phase preference. The rectification is due to the fact that the firing rate for 
zero forcing is low: When this rate is modulated downward by the signal, 
the rate goes to zero (and cannot go lower). The rectification for T = 0.5 
is even stronger, because at higher frequencies, phase locking also occurs 
(Longtin and Chialvo 1998; Lee and Kim 1999): This is a consequence 
of the refractory period of the system, responsible for phase locking pat­
terns in the suprathreshold regime, and increasingly important at higher 
frequencies. At higher noise, the rectification has disappeared: The noise 
has linearized the cycle histogram. The spectral power of the spike train at 
the signal frequency is maximal near the noise intensity that produces the 
"most sinusoidal" cycle histogram (as measured, for example, by a linear 
correlation coefficient). 

This linearization is dependent on noise amplitude only for low frequen­
cies (i.e., forT> 2 or so), such as those used in Collins, Chow, and Imhoff 
1995a; Collins, Chow, and Imhoff 1995b; Chialvo, Longtin, and Miiller­
Gerking 1997: The neuron then essentially behaves as a static threshold 
device. As the frequency increases, linearization requires more noise, due 
to the increased importance of phase locking. This higher noise also pro­
duces an increased spontaneous rate of firing when the signal is turned off. 
Hence, this rate for the unmodulated system must increase in parallel with 
the frequency in order for the firings to be maximally synchronized with 
the stimulus. Also, secondary resonances at lower noise occur for higher fre­
quencies (Longtin and Chialvo 1998) in both the spectra and in the peak 
heights of the interspike interval histogram, corresponding to the excitation 
of stochastic subharmonics of the driving force. The noise producing the 
maximal signal-to-noise ratio is itself minimal for frequencies near the best 
frequency (i.e., the resonant frequency) of the FitzHugh-Nagumo model 
(Lee and Kim 1999). 

6.11 N oise May Alter the Shape of Tuning Curves 

Tuning curves are an important characteristic of neurons and cardiac cells. 
They describe the sensitivity of these cells to the amplitude and frequency 
of periodic signals. For each sinusoidal forcing frequency, one determines 
the minimum amplitude needed to obtain a specific firing pattern, such as 
1:1 firing. The frequency-amplitude pairs are then plotted to yield the 



176 Longtin 

T=0.5 T=10 

300 1600 

1200 
200 

800 

100 
cn 400 -c:: 
Q) 
> o w 0.6 0.8 1.0 - 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 
o .... 
Q) 

300 40 .o 
E 
:::l 
z 30 

200 

20 

100 
10 

o 
0.0 0.6 0.8 1.0 

Normalized phase 

Figure 6.10. Probability of firing as a function of the phase of the sinusoidal 
forcing (left, T = 0.5; right, T = 10), obtained by averaging over 50 realizations 
of 100 cycles. The amplitude of the forcing is 0.01. For the upper panels, noise 
intensity D = 8 X 10-6 ' and for the lower ones, D = 5 X w-7 . 

tuning curve. We have recently computed the behavior of the 1:1 and 
Arnold tongues of the excitable FitzHugh-Nagumo model with and with­
out noise (Longtin 2000). Our work was motivated by recent findings (Ivey, 
Apkarian, and Chialvo 1998) that mechanoreceptor tuning curves can be 
significantly altered by externally added stimulus noise, and by an ear­
lier numerical study that reported that noise could alter tuning curves 
(Hochmair-Desoyer, Hochmair, Motz, and Rattay 1984). It was also mo­
tivated by the tuning properties of electroreceptors (see, e.g., Scheich, 
Bullock, and Hamstra Jr 1973), and generally by ongoing research into 
the mechanisms underlying aperiodic phase locked firing in many excitable 
cells including cardiac cells. 

Figure 6.11 shows the boundary (Arnold tongue) for 1:1 firing for noise 
intensity D = O. It is V-shaped, highlighting again the resonant aspect of 
the neuronal dynamics. The minimum threshold occurs for the so-called 
best frequency which is close to the frequency of autonomous oscillations 
seen past the Hopf bifurcation in this system. For period T > 1, the region 
below these curves is the subthreshold 1:0 region. For A > O, ratios as 
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Figure 6.11. Effect of noise on the tuning curves of the FitzHugh-N agumo model. 
Only the curves for 1:1 phase locking are shown; when noise intensity is greater 
than zero, the 1:1 pattern is obtained only on average. 

parameters change (instead of the usual discontinuous Devil's staircases). 
We also compute the stochastic Arnold tongues for D > 0: For each T, the 
amplitude that produces a pattern with a temporal average of 1 spike per 
cycle is numerically determined. Such patterns are not periodic, but firings 
still exhibit phase preference. In contrast to the noiseless case, noise creates 
a continuum of locking ratios in the subthreshold region. For mid-to-long 
periods, noise "fans out" into this region all the tongues that are confined 
near the noiseless 1:1 tongue when D =O. These curves can be interpreted 
as stochastic versions of the resonances that give rise to phase locking. 

Increasing D opens up the V-shaped 1:1 tongue at mid-to-long periods, 
while slightly increasing the threshold at low periods. Noise thus increases 
the bandwidth at mid-to-low frequency. The relatively invariant shape at 
low T is due to the absolute refractory period, which cannot easily be 
overcome by noise. For larger D, such as for D = 5 x 10-6 , the tongue 
reaches zero noise, namely, at T = 2 for the mean 1:1 pattern. This implies 
that for T = 2, noise alone (i.e., even for A = O) can produce the desired 
mean ratio of one, while for T > 2, noise alone produces a larger than 
desired ratia. A more rigorous analysis of these noisy tuning curves, one that 
combines the noise-induced threshold crossing statistics with the resonance 
properties of the model, successfully accounts for the changes in shape for 
T < 1 (Longtin 2000). Our result opens the way for understanding the 
effect on tuning of changes in internal and external noise levels, especially 
in the presence of the filters associated with a given specialized transducer. 
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6.12 Thermoreceptors 

We now turn our attention in these last two sections to physiological 
systems that exhibit multimodal interspike interval histograms in the ab­
sence of any known periodic forcing. The best-known examples are the 
mammalian cold thermoreceptors and the ampullae of Lorenzini (passive 
thermal and electroreceptors of certain fish such as sharks). The temper­
ature fluctuates by less than 0.5 degrees Celsius during the course of the 
measurements modeled in Longtin and Hinzer (1996). The mean firing rate 
of these receptors is a unimodal function of temperature. Over the lower 
range of temperatures they transduce, they increase their mean firing rate 
with temperature, behaving essentially like warm receptors. Over the other 
half of their range, they decrease their mean firing rate. This higher range 
includes the normal body temperature, and thus an increase in firing rate 
signals a decrease in temperature. 

This unimodal stimulus-response curve implies that a given firing rate 
can be associated with two constant temperatures. It has been suggested 
that the central nervous system resolves this ambiguity by responding to 
the pattern of the spike train. In fact, at lower temperatures, the firing is 
of bursting type with a long period between bursts and many spikes per 
burst (see Figure 6.12). As the temperature increases, the bursting period 
shortens, and the number of spikes per burst decreases, until there is on 
average only one spike per burst: This is then a regular repetitive firing, 
also known as a "beating" pattern. As the temperature increases further, 
a skipping pattern appears, as cycles of the beating pattern drop out ran­
domly. The basic interval in the skipping pattern is close to the period of 
the beating pattern. This suggests that there is an intrinsic oscillation in 
these receptors that underlies all the patterns (see Longtin and Hinzer 1996 
and references to Schafer and Braun therein). 

Cold receptors are free nerve endings in the skin. The action potentials 
generated there propagate to the spinal cord and up to the thalamus. An 
ionic model for the firing activity of mammalian cold receptors has re­
cently been proposed (Longtin and Hinzer 1996). The basic assumption 
of this model is that cold reception arises by virtue of the thermosensi­
tivity of various ionic currents in a receptor neuron, rather than through 
a specialized mechanism. Other assumptions, also based on the anatomy 
and extracellular physiology of these receptors (intracellular recordings are 
not possible), include the following: (1) The bursting dynamics are of the 
slow-wave type, i.e., action potentials are not necessary to sustain the slow 
oscillation that underlies bursting; (2) the temperature modifies the rates of 
the Hodgkin-Huxley kinetics, with Q10 's of 3; (3) the temperature increases 
the maximal sodium (Q10 = 1.4) and potassium (Q10 = 1.1) conductances; 
(4) the rate of calcium kinetics increases with temperature (Q10 = 3); (5) 
the activity of an electrogenic sodium-potassium pump increases linearly 
with temperature, producing a hyperpolarization; and (6) there is noise 



6. Effects of Noise on Nonlinear Dynamics 179 

added to these deterministic dynamics, to account for skipping and for 
fl.uctuations in the number of spikes per burst and the interburst period. 

Our model is modified from Plant's model (Plant 1981) of slow-wave 
bursting in the pacemaker cell of the mollusk Aplysia. For the sake of sim­
plicity, we have assumed that the precise bursting mechanism is governed 
by an outward potassium current whose activation depends on the con­
centration of intracellular calcium. The model with stochastic forcing is 
governed by the equations 

dV 3 
CMdt = G1m=(V)h(V1- V)+ Gxx(VI- V) 

4 [Ca] 
+ GKn (VK- V)+ GK-CaO.S +[Ca] (VK- V) (6.15) 

+ GL(VL- V)+ Ip + ry(t), 
dh 
dt = ,\ [h=(V)- h] /Th(V), (6.16) 

dn 
dt =A [n=(V)- n] /Tn(V), (6.17) 

dx 
dt = ,\ [x=(V)- x] /Tx, (6.18) 

d [Ca] 
~ = p [Kex(V[ca]- V)- [Cal), (6.19) 

dry = - !L + ~ ( t) . 
dt te te 

(6.20) 

Here h, n, and x are gating variables, and [Ca] is the intracellular calcium 
concentration. There is no periodic input: The simulations are done for 
constant temperatures. The precise form of the voltage dependencies of 
the gating variables and time constants can be found in Plant (1981). The 
correlation time of the noise ry(t) (an Ornstein-Uhlenbeck process) was 
chosen as Te = 1.0 msec, so that the noise has a larger bandwidth than 
the fastest events in the deterministic equations. Our choice of parameters 
yields action potential durations of 140 msec at T = 17.8°C down to 20 
msec at T = 40°C. The noise, which is intended to represent mainly the 
effect of conductance fl.uctuations in the ionic channels and ionic pumps, is 
made additive on the voltage variable for simplicity. 

This model reproduces the basic firing patterns seen at different tem­
peratures (Longtin and Hinzer 1996). The dynamics of our model can be 
separated into a fast subsystem and a slow subsystem. The slow subsystem 
oscillates autonomously with a period corresponding to the interval between 
the beginning of two bursts. When this oscillation sufficiently depolarizes 
the cell, the fast action potential dynamics become activated. These action 
potentials "ride" on top of the slow wave. The effect of the temperature is 
to decrease the period of the slow wave, to speed up the kinetics governing 
the action potentials, and to hyperpolarize the slow wave ( due mostly to 
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Figure 6.12. Interspike interval histograms and spike trains from cold receptors 
of the cat lingual nerve at different constant temperatures. From Braun, Schă.fer, 
and Wissing 1990. 

the Na- K pump). At higher temperatures, the slow wave is hyperpolarized 
so much that the threshold for the activation of the fast dynamics is not 
reached: The slow wave is subthreshold. From this point on, noise is im­
portant, since it can induce firings in synchrony with the slow wave. This 
is similar, then, to the situation seen above for neurons with externa! stim­
ulation. The main difference is that the cold receptor has a stimulus built 
into its interna! dynamics. 

More recently, we have proposed a simplified phase model with periodic 
and stochastic forcing for the temperature dependence of such bursting 
activity (Roper, Bressloff, and Longtin 2000) . The amplitude is propor­
tional to the slow-wave amplitude, while the frequency is approximately 
J>;P in our modified Plant model. This phase model can be analyzed for 
the boundaries between different solutions with different numbers of spikes 
per burst, and for the effect of noise on these boundaries. 

6.13 Autonomous Stochastic Resonance 

Near or in the skipping regime, i.e., at higher temperatures, the degree of 
phase locking between the spikes and the slow wave, as well as the char-
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acteristics of the interspike interval histogram, are again highly sensitive 
to variations in noise level, or in the period, amplitude, and bias of the 
slow wave. All these characteristics can change in response to changes in 
the physicochemical environment of the cold receptor. Thus, in this regime, 
the cell is sensitive to such changes, due to the presence of noise. In partic­
ular, noise appears to be essential for encoding higher temperatures, since 
without noise, there would be no firings (Braun, Wissing, Schăfer, and 
Hirsch 1994). The behavior of the interspike interval histogram as a func­
tion of the aforementioned parameters is similar to that seen in skipping 
neurons with external stimulation. 

Noise helps express the characteristics of the slow wave in the output 
spike train. This sensitivity can be characterized by computing averaged 
power spectra and signal-to-noise ratios. For the slow-wave burster, the 
spectra are more complicated than in the cases studied above (Longtin 
1997). In particular, the background is bumpy, i.e., there are more peaks 
than the usual harmonics, and the harmonics themselves are broader. This 
latter feature is expected because the phase of the autonomous oscillation 
fluctuates. Nevertheless, one finds that there is an increase in the signal­
to-noise ratio with noise intensity D, from O up to large values. At the 
point when the signal-to-noise ratio starts to drop again, the numerical 
simulations, and indeed, the stochastic model itself become doubtful. In 
fact, at these high noise levels, the action potential waveforms themselves 
become noisy. 

This autonomous stochastic resonance behavior can be contrasted to that 
studied in Gang, Ditzinger, Ning, and Haken (1994). In that paper, the 
first claim of autonomous stochastic resonance, the stochastic resonance 
behavior was characterized in a system right at a saddle-node bifurca­
tion. There, the noise induces a limit cycle that has zero amplitude in 
the absence of noise. As the noise becomes too large, the coherence of 
this limit cycle decreases. Thus this behavior is similar to stochastic res­
onance. However, it requires a saddle-node bifurcation. Our study of the 
slow-wave burster shows that autonomous stochastic resonance does not 
directly require a saddle-node bifurcation. Neural dynamics are often suf­
ficiently complex to generate their own autonomous oscillations (through 
a Hopf bifurcation in the case of our modified Plant model), and can be 
expected to exhibit stochastic resonance phenomena as the noise intensity 
varies. A related effect known as coherence resonance has been analyzed in 
the FitzHugh-Nagumo system (Pikovsky and Kurths 1997). In this latter 
case, the induction by noise of regularity in the firing pattern can be the­
oretically linked to the specific statistica! dependencies of the escape time 
to threshold and of the refractory period on noise intensity. 
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6.14 Conclusions 

We have given a brief overview of recent modeling efforts of noise in phys­
iologically relevant dynamical systems, and studied in detail the response 
of excitable cells to periodic input and noise. We have shown how noise 
can interact with bifurcations, produce smooth transitions between firing 
patterns as stimulus parameters are varied, and alter the frequency sen­
sitivity of neurons. In most neural stochastic resonance studies, a neuron 
was chosen in which the addition of noise to the periodic stimulus could 
better transduce this stimulus. This approach of adding noise is warranted 
because the noise level cannot be reduced in any simple way in the system 
(and certainly not by cooling it down, as we suspect from our study of cold 
receptors). It is interesting to pursue studies of how interna! noise can be 
changed. 

There ha ve been predictions of stochastic resonance in summing networks 
of neurons (Pantazelou, Moss, and Chialvo 1993), in which the input was 
aperiodic. There have also been theoretical studies of stochastic resonance 
in a summing neuron network for slowly varying aperiodic signals, i.e., for 
situations where the slowest time scale is that of the signal (Collins, Chow, 
and Imhoff 1995a; Collins, Chow, and Imhoff 1995b; Chialvo, Longtin, and 
Miiller-Gerking 1997). There has also been a recent experimental study 
of the enhancement by noise of the transduction of broadband aperiodic 
signals (Levin and Miller 1996); in particular, that study investigated the 
effect of the amount of overlap between the frequency contents of the signal 
and of the noise added to the signal. In these latter two studies with aperi­
odic signals, the resonance is characterized by a maximum, as a function of 
noise, in the cross-coherence between the input signal and the output spike 
train, and by related information-theoretic measures such as the transin­
formation. Further work has been done, using simple neuron models driven 
by periodic spike trains and Poisson noise, to address situations of peri­
odic and noisy synaptic input (Chapeau-Blondeau, Godivier, and Chambet 
1996). Since correlations in spike trains increase the variance of the asso­
ciated input currents, stochastic resonance has been recently studied from 
the point of view of increased coherence between presynaptic spike trains 
(Rudolph and Destexhe 2001). There have been experimental verifications 
of the stochastic resonance effect away from the sensory periphery, namely, 
in a cortical neuron (Stacey and Durand 2001). In addition, there is an 
increasing number of interesting applications of the concept of stochastic 
resonance to human sensory systems (Collins et al. 1996; Cordo et al. 1996; 
Morse and Evans 1996). All these studies emphasize the usefulness of the 
combinat ion of the subthreshold regime and noise, and in some cases such as 
electroreceptors, of suprathreshold dynamics with noise (Chacron, Longtin, 
St-Hilaire, and Maler 2000) to transduce biologically relevant signals. 
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To summarize our stochastic phase locking analysis, we have shown the 
following: 

• Many neurons exhibit skipping in the presence of periodic stimula­
tion. 

• Modeling shows that skipping results readily from the combination 
of subthreshold dynamics and noise. In other words, no deterministic 
firings can occur; firings can occur only in the presence of noise. It 
can occur with suprathreshold dynamics, namely, with chaos and/or 
noise, with some deviations from the skipping picture presented here 
(such as tunability of the pattern). 

• Noise helps in the detection of low-amplitude stimuli through an effect 
known as "stochastic resonance." This means that adding noise to 
these neurons allows them to transduce small stimuli that cannot by 
themselves make the cell fire. The effect relies on a linearization of the 
firing probability versus stimulus phase characteristic, which occurs 
in a stimulus-frequency-dependent fashion except when signals are 
slower than all neuron time scales. The simplest version of this effect 
in the presence of periodic forcing can be found in simple threshold­
crossing systems when the signal is slow compared to all other time 
scales. 

• Noise can extend the physical range of stimuli that can be encoded. 

• Noise can alter the shape of tuning curves, and thus the frequency 
response characteristics of neurons. 

• These results apply qualitatively to systems without external forcing, 
such as thermoreceptors. 

Some important unresolved questions worthy of fu ture investigations are 
the following: 

• Can we identify more precise ionic mechanisms for the skipping 
patterns, based on data from intracellular recordings? 

• To what extent are neurons in successive stages of sensory processing 
wired to benefit from stochastic resonance? 

• What aspects of the skipping pattern determine the firing properties 
of the neurons they connect to, and why is this code, which com­
bines aspects of a "random carrier" with "precisely timed firings," so 
ubiquitous? 

• Another important issue to consider in modeling studies is that the 
axons connecting to receptor cells are driven synaptically, and the 
synaptic release is governed by the receptor generating potential. In 
the presence of periodic forcing on the receptor, such an axon can 
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arguably be seen as driven by both a deterministic and a stochas­
tic component. It will be useful to study how the synaptic noise can 
produce realistic skipping patterns, and possibly assist signal detec­
tion; such investigations will require using more detailed knowledge 
of synapses and conncctivity between neurons. 

• More generally, there is still plenty of work tobe done, and, probably, 
effects to be discovered at the interface of stochastic processes and 
nonlinear physiological dynamics. Among the tasks ahead are the 
analysis of noise in systems with some form of memory, such as the 
pupillight reflex, or excitable systems that do not "recover" totally 
after a firing. 

6.15 Computer Exercises: Langevin Equation 

Software 

There is 1 Matlab* program you will use for these exercises: 

langevin A Matlab script that integrates the Langevin equation, 
equation (6.4), using the standard Euler-Maruyama method, equa­
tion (6.5). The solution is Ornstein-Uhlenbeck noise. The program 
generates the solution x(t) starting from an initial condition x(O). 
Time is represented by the vector t, and the solution by the 
vector x. The solution x(t) can be seen using the command 
plot(t,x). The histogram of solution can be seen using the command 
plot ( r hox,r hoy). 

The following exercises are to be carried out using the Matlab program 
langevin.m. The parameters of the equation, i.e., the decay rate a alpha, 
the intensity of the Gaussian white noise D dnz, and the initial condition 
for the state variable xinit, are in langevin.m. The integration parameters 
are also in that program. They are the integration time step dt, the total 
number of integration time steps tot, the number of times steps to discard 
as transients trans, and the number of sweeps ( or realizations) navgs. The 
description of the program parameters is given in comment in the Matlab 
file. These parameters can thus be changed by editing langevin.m, and 
then the numerica! integration can be launched from the Matlab command 
window. The program generates the solution x(t) starting from an initial 
condition x(O). Time is rcpresented by the vector t, and the solution by the 
vector x. A solution x(t) can thus be plotted at the end of the simulation 
using the command plot(t,x). 

*See Introduction to Matlab in Appendix B. 
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A simulation involving a given set of random numbers is called a "real­
ization." These random numbers provide the source of noise for the code, 
and thus mimic the noise in the stochastic differential equation (which, as 
we have seen, models the noise in the system under study). For our prob­
lems, Gaussian-distributed random numbers are needed; they are generated 
internally by Matlab using the function randn. A random number gener­
ator such as the one built into Matlab needs a "seed" value from which it 
will generate a sequence of independent and identically distributed random 
numbers. Matlab automatically handles this seeding. Since random number 
generation is done on a computer using a deterministic algorithm, the in­
dependence is not perfect, but good enough for our purposes; nevertheless, 
one should keep this in mind if one uses too many random numbers, since 
such "pseudorandom" number genera tors will repeat after a ( usually very 
large) number of iterations. 

From a time series point of view, each realization will differ from the 
other, since it uses different sets of random numbers. However, each re­
alization has the same statistica! properties (such as, e.g., moments of 
probability densities of the state variables and correlation functions). In 
order to get a good idea of these properties, one typically has to average 
over many realizations. Each realization can start from the same initial 
condition for the state variables, or not, depending on which experimental 
protocol you are trying to simulate, or what kind of theory you are com­
paring your results to. In some cases, it is also possible to estimate these 
properties from one very long simulation. But generally, it is best to average 
over many shorter realizations, each one using a different initial value for 
the noise variable. This avoids the problem of finite periods for the random 
number generator, and allows good averaging over the distribution of the 
noise process. A veraging over multiple realizations also has the advantage 
of reducing the estimation error of various quantities of interest, such as 
the amplitude of a peak in the power spectrum. The codes provided here 
can easily be modified to perform one or many realizations. 

The numerica! integration scheme used here is a stochastic version of the 
Euler algorithm for ordinary differential equations, known as the Euler­
Maruyama algorithm (6.5). 

Exercises 

The purpose of these exercises is to study the effect of the noise intensity 
and of the parameter a on the dynamics of the Langevin equation 

dx 
dt = -ax+ ~(t). (6.21) 

Note that this equation has, in the absence of noise, only one fixed point, 
at x =O. 

Ex. 6.15-1. Effect of the parameter a on the dynamics. 
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Run simulations for various values of a and Gaussian white noise 
intensity D. You should find that the solution looks smoother when 
a is larger. Also, you should find Gaussian densities for the state 
variable x; note that the program actually estimates these densities 
by unnormalized histograms of the numerically generated solution. 
Increasing a for a given noise intensity will reduce the variance of the 
histogram of the x-solution. You should also find that the variance is 
given by D /a; you can try to show this by calculating the stationary 
solution of the associated Fokker-Planck equation. 

Ex. 6.15-2. Effect of noise intensity on the dynamics. Also, increasing 
the noise intensity while keeping a constant has the opposite effect. 
The solution of this equation can be used as a source of "Ornstein­
Uhlenbeck" colored noise. 

6.16 Computer Exercises: Stochastic Resonance 

These exercises use the Matlab file flmnoise.m to simulate the FitzHugh­
Nagumo excitable system with sinusoidal forcing and colored (Ornstein­
Uhlenbeck) additive noise on the voltage equation: 

dv 
E dt = v(v- a)(1- v)- w + I + rsinf1t + ry(t), (6.22) 

dw 
- =v-dw-b 
dt ' 

(6.23) 

dry 
dt = ->..ry + >..~(t). (6.24) 

Here>..= 1/tcor; i.e., >.. is the inverse ofthe correlation time of the Ornstein­
Uhlenbeck process; we have also chosen a commonly used scaling of the 
noise term by >... You can explore the dynamical behaviors for different 
system, stimulus, and noise parameters. Note that in this program, the 
periodic forcing is added to the voltage equation. The simulations can be 
lengthy if smooth interspike interval histograms are desired, so you will 
have to decide, after a few tries, how long your simulations should be to an­
swer the questions below. An integral (order-1) stochastic Euler-Maruyama 
algorithm is used here to integrate this system of stochastic differential 
equations. The time step has to be chosen very small, which limits the 
integration speed. 

Software 

There is one Matlabt program you will use for these exercises: 

tsee Introduction ta Matlab in Appendix B. 
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fhnnoise A Matlab script ( operates in the same way as langevin.m) 
integrates the FitzHugh-Nagumo system equations (6.12) driven 
by sinusoidal forcing and colored noise. The colored noise is the 
Ornstein-Uhlenbeck process ry(t). The program uses the integral 
Euler-Maruyama algorithm proposed in Fox, Gatland, Roy, and Ve­
muri (1988). The outputs of the program are the solution x(t) and the 
interspike interval histogram p(I). The solution can be seen using the 
command plot(t,v). The interspike interval histogram can be seen 
using the command plot(rhox,rhoy). The sequence of intervals can 
be plotted using plot(interv). 
The description of the program parameters is given in comment in 
the Matlab file. These parameters can thus be changed by editing 
fhnnoise.m, and then the numerica! integration can be launched 
from the Matlab command window. 

The program fhnnoise.m operates in the same way as langevin.m. 
The main equation parameters you may be interested in changing are the 
amplitude amp and frequency f of the sinusoidal forcing; the bias current 
ibias, which brings the system closer to threshold as it increases; and the 
noise intensity dnz. The noise intensity specified in the file refers to the 
intensity of the Gaussian white noise D, which, when lowpass filtered, gives 
the colored Ornstein-Uhlenbeck noise. This latter noise is also Gaussian, 
with an exponentially decaying autocorrelation function, and its variance 
is given by D /tcor, where tcor is the noise correlation time. 

The simulation parameters are controlled by the total number of inte­
gration time steps tot, the number of time steps considered as transients 
trans, and the number of sweeps ( or realizations) navg. The integration 
time step is controlled by dt, and may have to be made smaller than its ref­
erence value 0.0025 for higher sinusoidal forcing frequencies, i.e., for f > 1 
or so. You can always check that results are accurate with a given time step 
by checking that they are statistically the same as for a new simulation with 
smaller time step. 

Exercises 

Ex. 6.16-1. Hopf bifurcation in the absence of noise. In the absence 
of noise and periodic forcing, find the Hopf bifurcation point in the 
FitzHugh-Nagumo model by varying the bias current parameter I. 
You can also try to calculate this value analytically. This parameter 
controls the distance between the resting potential and the threshold. 
Below the Hopf bifurcation, the system is said to be in the subthresh­
old or excitable regime. Above this bifurcation, it is said to be in the 
repetitive firing regime. 
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Ex. 6.16-2. Effect of 1 on firing frequency. For the same conditions as 
above, how does the frequency of firing depend on I? (It changes 
abruptly near the bifurcation point, but varies little thereafter.) 

Ex. 6.16-3. Effect of noise intensity on interspike interval histogram 
(ISIH) with noise. Compute the interspike interval histogram with 
noise only (amplitude of sinusoidal forcing is set to zero), and study 
the behavior of this interspike interval histogram as a function of noise 
intensity D. (You should find that the maximum of the distribution 
shifts slightly to smaller interval values, but that the mean shifts over 
more significantly.) 

Ex. 6.16-4. Effect of stimulus amplitude on the interspike interval 
histogram envelope. Study the behavior of the interspike interval 
histogram envelope as a function of stimulus amplitude, in the sub­
threshold regime. Can the second peak be the highest? (The envelope 
decays more rapidly the higher the amplitude of the sinusoidal forc­
ing. Yes, the second peak can be the highest, especially at higher 
frequencies or low noise.) 

Ex. 6.16-5. Effect of stimulus frequency on interspike interval his­
togram envelope. Study the behavior of the interspike interval 
histogram envelope as a function of stimulus frequency f3/(27r), in 
the subthreshold regime. Is the first peak always the highest? (No; 
see previous question.) 

Ex. 6.16-6. Effect of noise intensity on interspike interval histogram 
envelope. Study the behavior of the interspike interval histogram as 
a function of the noise intensity D, in the subthreshold regime. (The 
noise plays a similar role to the amplitude of the sinusoidal forcing: 
The higher the noise, the faster the decay of the histogram envelope. 
However, increasing noise also broadens the peaks in the interspike 
interval histogram.) 

Ex. 6.16-7. Subthreshold and suprathreshold regimes. Compare the 
behavior of the interspikc interval histogram in the subthreshold 
and suprathreshold regimes. In the subthreshold regime, increasing 
noise always increases the probability of shorter intervals. In the 
suprathreshold regime, noise can perturb the limit cycle, producing 
longer intervals than the cycle period. Hence, in this case, increasing 
noise does not necessarily decrease the intervals. 

Ex. 6.16-8. Stochastic Resonance 
Plot the maximum of the peaks ( or some area in the interspike in­
terval histogram around this peak, to average out fluctuations) as a 
function of the noise intensity in the subthreshold regime, and in the 
suprathreshold regime. You should find that the value of the maxi­
mum for the first peak goes through a maximum as a function of D. 
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Note that, in this regime, no spikes can be generated without noise, 
and too much noise leads to solutions dominated by noise. Hence, 
a moderate value of noise causes a predominance of firing intervals 
around the stimulus period, which is a manifestation of stochastic res­
onance. You should find that the other peaks also go through maxima. 
You can also modify the code to compute power spectral densities for 
the spike trains generated by this stochastic system. For example, 
you can generate a vector of zeros and ones that resamples the so­
lution v(t) at a lower frequency; a zero represents no spike in the 
corresponding time bin of this vector, while a one represents one ( or 
more) firing events in that time bin. You can then call the spectral 
functions (such as the fast Fourier transform) in Matlab, and average 
the results over many realizations to reduce the fluctuations in the 
spectra. This computation requires more background material and is 
not pursued here. 




