Notes de cours Algèbre Linéaire et Analyse Matricielle

3BIM INSA Lyon 2014-2015 v19112014

Ces notes de cours sont inspirées des livres de Algèbre des matrices de J Fresnel [1] et Numerical Linear Algebra de LN Trefethen et D Bau III [2].

3 Décomposition en valeurs singulières

On a vu que pour certaines matrices carrées, on pouvait faire une décomposition en valeurs propres:

$$A = XDX^{-1},\tag{1}$$

où D est une matrice diagonale de valeurs propres et X est une matrice inversible de vecteurs propres. Quand on fait le produit matrice-vecteur $Ax = (XDX^{-1})x$, on prend x, on l'exprime dans la base donnée par les vecteurs propres $(X^{-1}x)$, on multiplie les éléments de ce vecteur par les valeurs propres D une à une, et on refait le changement de base inverse en multipliant par X. Si on a un système linéaire Ax = b, on peut effectuer les changements de base $\hat{x} = X^{-1}x$, $\hat{b} = X^{-1}b$ et on obtient le système $D\hat{x} = \hat{b}$. Limitations: pour effectuer cette transformation, la matrice A doit être carrée et diagonalisable.

L'idée de la décomposition en valeurs singulière est similaire à la décomposition en valeurs propres, mais fonctionne pour n'importe quelle matrice A de taille $m \times n$: on factorise A en produit de trois matrices:

$$A = U\Sigma V^* \tag{2}$$

avec U une matrice $m \times m$ unitaire, V une matrice $n \times n$ unitaire et Σ une matrice $m \times n$ diagonale avec coefficients réels et positifs.

3.1 Interprétation géométrique

L'image d'une sphère unité dans \mathbb{R}^n par une matrice A $m \times n$ est une hyperellipse dans \mathbb{R}^m . Soit les longueurs des axes principaux $\{\sigma_1, \sigma_2, ..., \sigma_m\}$ et les directions des axes principaux $\{u_1, u_2, ..., u_m\}$. On a $\sigma_i \geq 0$ et $u_i \in \mathbb{R}^m$, avec les l'ensemble $\{u_i\}$ orthonormal (on peut prendre $||u_i|| = 1$). Les vecteurs $\sigma_i u_i$ sont alors les semi-axes principaux de l'hyperellipse. Si rang A = r, alors exactement r valeurs de σ_i seront non-nulles. Si $m \geq n$, alors au plus n axes seront de longueurs positives.

3.2 Décomposition en valeurs singulières réduite

Soit S la boule (sphère) unité dans \mathbb{R}^n (ou \mathbb{C}^n), et soit une matrice A $m \times n$ avec $m \geq n$ à coefficients dans \mathbb{R} (ou \mathbb{C}). La matrice A définit une application de \mathbb{R}^n dans \mathbb{R}^m . On suppose que rang A = n. L'image de la boule S par A, notée AS est une hyperellipse dans \mathbb{R}^m .

On définit les n valeurs singulières de A comme les longueurs σ_i des n semi-axes principaux de AS. Par convention, on numérote les valeurs singulières par ordre décroissant: $\sigma_1 \geq \sigma_2 \geq ... \geq \sigma_n > 0$. On définit les n vecteurs singuliers à gauche de A ou les n vecteurs de sortie de A, $\{u_1, u_2, ..., u_n\}$ orientés dans les direction des semi-axes principaux, où u_i est la direction de du semi-axe de longueur σ_i . On définit les n vecteurs singuliers à droite de A ou les n vecteurs d'entrée de A, $\{v_1, v_2, ..., v_n\}$, $v_i \in S$ qui sont les pré-images des semi-axes principaux: $Av_i = \sigma_i u_i$ pour i = 1, ..., n. Sous forme matricielle:

$$A \quad \left[\begin{array}{c|c|c} v_1 & v_2 & \cdots & v_n \end{array} \right] = \left[\begin{array}{c|c|c} u_1 & u_2 & \cdots & u_n \end{array} \right] \left[\begin{array}{c|c|c} \sigma_1 & & & \\ & \sigma_2 & & \\ & & \ddots & \\ & & & \sigma_n \end{array} \right],$$

ou bien

$$AV = \hat{U}\hat{\Sigma}.\tag{3}$$

La matrice $\hat{\Sigma}$ est une matrice $n \times n$, diagonale avec coefficients positifs et réels. \hat{U} est une matrice $m \times n$ avec colonnes orthonormales et V est une matrice $n \times n$ avec colonnes orthonormales. V est unitaire et on peut réécrire l'équation

$$A = \hat{U}\hat{\Sigma}V^*. \tag{4}$$

Cette factorisation est appelée décomposition en valeurs singulières réduite.

$$egin{bmatrix} A & egin{bmatrix} = & \hat{U} \ \end{pmatrix} & egin{bmatrix} \hat{\Sigma} & egin{bmatrix} V^* \ \end{pmatrix} \end{bmatrix}$$

3.3 Décomposition en valeurs singulières complète

 \hat{U} est une matrice $m \times n$ et, sauf si m = n, les colonnes de \hat{U} ne forment pas une base de \mathbb{C}^m . En ajoutant m - n colonnes orthonormales manquantes à \hat{U} , on peut

en faire une matrice unitaire, que l'on appellera U. Si \hat{U} est remplacée par U dans la factorisation, la matrice $\hat{\Sigma}$ doit être augmentée, en ajoutant m-n lignes de zéros. On obtient alors une **décomposition en valeurs singulières complète**:

$$egin{bmatrix} A \ \end{bmatrix} = egin{bmatrix} \hat{U} \ \end{bmatrix}$$

ou encore

$$A = U\Sigma V^*. (5)$$

Si rang A = r < n, la factorisation se fait de la même façon, mais avec r vecteurs singuliers à gauche. La matrice V aura besoin de n - r vecteurs additionnels.

Définition 1. Une décomposition en valeurs singulières (SVD – Singular Value Decomposition) est une factorisation $A = U\Sigma V^*$ où

- $U \in \mathbb{C}^{m \times m}$ est unitaire
- $V \in \mathbb{C}^{n \times n}$ est unitaire
- $\Sigma \in \mathbb{C}^{m \times n}$ est diagonale et les coefficients $\sigma_1 \geq \sigma_2 \geq ... \geq \sigma_p$, où $p = \min(m, n)$.

 $U\Sigma V^*S$ est une ellipse: V^* préserve la sphère ($||V^*x|| = ||x||$), Σ étire la sphère dans chaque direction de la base canonique et U préserve l'ellipse (une matrice unitaire ne fait que des rotations ou des réflections).

Théorème 3.1. existence et unicité de la SVD. Toute matrice $A \in \mathbb{C}^{n \times n}$ possède une SVD. Les valeurs singulières $\{\sigma_i\}$ sont déterminées de façon unique. Si A est carrée (m=n) et les valeurs singulières σ_j sont distinctes, les vecteurs d'entrée et de sorties v_j et u_j sont déterminés de façon unique à un facteur complexe unité près.

Théorème 3.2. Les valeurs singulières d'une matrice A sont les racines carrées des valeurs propres non-nulles de A^*A et AA^*

Preuve. $A^*A = (U\Sigma V^*)^*(U\Sigma V^*) = V\Sigma^*U^*U\Sigma V^* = V\Sigma^*\Sigma V^*$. La matrice A^*A est donc semblable à $\Sigma^*\Sigma$, ce qui implique qu'elles ont les mêmes valeurs propres. Les valeurs propres de $\Sigma^*\Sigma$ sont $\sigma_1^2, \sigma_2^2, ..., \sigma_n^2$.

Théorème 3.3. Les colonnes de U sont les vecteurs propres orthogonaux de AA^* et les colonnes de V sont les vecteurs propres orthogonaux de A^*A à unité complexe près.

Éléments de la preuve. Les matrices AA^* et A^*A sont **hermitiennes**, c.-à-d. qu'elles sont auto-adjointes, ou égales à leurs adjointes. Les matrices hermitiennes sont diagonalisables, leurs valeurs propres sont réelles et positives et les vecteurs propres forment un ensemble orthogonal.

Exemples Calculs de SVD à la main.

Exemple 1.

$$A = \begin{bmatrix} 3 & 0 \\ 0 & -2 \end{bmatrix}. \tag{6}$$

i) Calcul des valeurs singulières. Les valeurs propres de

$$A^*A = \begin{bmatrix} 9 & 0 \\ 0 & 4 \end{bmatrix}. \tag{7}$$

sont 9 et 4, d'où les valeurs singulières $\sigma_1 = 3$ et $\sigma_2 = 2$.

ii) Calcul de V et U. Les vecteurs propres de AA^* sont $x_1={}^t(1,0)$ et $x_2={}^t(0,1)$. Les vecteurs propres de A^*A sont $y_1={}^t(1,0)$ et $y_2={}^t(0,1)$. Ces vecteurs propres déterminent les colonnes de U et V a constante près: $v_i=\mu_i y_i$ et $u_i=\mu_i' x_i$. On a, par la décomposition en valeurs singulières $Av_1=\sigma_1 u_1$, ou $A\mu_1 y_1=\sigma\mu_1' x_1$. On peut choisir μ_1 et μ_1' de façon, par exemple, a minimiser le nombre de signe négatifs dans les matrices U et V. Ici, comme les vecteurs propres son réels, les facteurs $\mu=\pm 1$. En prenant $\mu_1'=1$, on a $u_1=x_1$ et $A\mu y_1=\sigma u_1$:

$$A = \begin{bmatrix} 3 & 0 \\ 0 & -2 \end{bmatrix} \mu_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 3\mu_1 \\ 0 \end{bmatrix} = \begin{bmatrix} 3\mu_1 \\ 0 \end{bmatrix}$$
 (8)

d'où $\mu_1=1$ et $v_1=y_1$. Pour v_2 et u_2 on a $A\mu y_2=\sigma_2\mu_2'x_2$. En prenant $\mu_2'=1$ on obtient

$$A = \begin{bmatrix} 3 & 0 \\ 0 & -2 \end{bmatrix} \mu_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ -2\mu_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \end{bmatrix} \tag{9}$$

d'où $\mu_2 = -1$, et $v_2 = {}^t(0, -1)$. La décomposition en valeurs singulières est donc

$$A = U\Sigma V^*, \begin{bmatrix} 3 & 0 \\ 0 & -2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
 (10)

Exemple 2.

$$A = \begin{bmatrix} 0 & 3 \\ -2 & 0 \\ 0 & 0 \end{bmatrix} . \tag{11}$$

La matrice est de taille 3×2 et est de rang 2, on cherchera donc 2 valeurs singulières. i) Calcul des valeurs singulières. La matrice A^*A est

$$\begin{bmatrix} 0 & -2 & 0 \\ 3 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 3 \\ -2 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 0 & 9 \end{bmatrix}$$
 (12)

Les valeurs propres sont 9 et 4, donc $\sigma_1 = 3$ et $\sigma_2 = 2$.

ii) Calcul de V et U. Les vecteurs propres de AA^* (une matrice 3 par 3) sont $x_1 = {}^t(1,0,0), x_2 = {}^t(0,1,0)$ et $x_3 = {}^t(0,0,1)$. Les vecteurs propres de A^*A sont $y_1 = {}^t(0,1)$ et $y_2 = {}^t(1,0)$. On choisit les constantes μ de façon à avoir des signes positifs dans U: $\mu_1' = 1$ et $\mu_2' = 1$. On a alors $A\mu_1 y_1 = \sigma u_1$:

$$\begin{bmatrix} 0 & 3 \\ -2 & 0 \\ 0 & 0 \end{bmatrix} \mu_1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 3\mu 1 \\ 0 \\ 0 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \tag{13}$$

d'où $\mu_1=1$. De la même façon, $A\mu_2y_2=\sigma_2x_2$ implique que $\mu_2=-1$. La décomposition est donc

$$A = U\Sigma V^*, \begin{bmatrix} 0 & 3 \\ -2 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
(14)

References

- [1] Jean Fresnel. Algebre des matrices. Hermann, 2013.
- [2] Lloyd N Trefethen and David Bau III. *Numerical linear algebra*, volume 50. Siam, 1997.