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Abstract

The quasi-stationary distribution of the stochastic logistic model is studied in the parameter region where its body is

approximately normal. Improved asymptotic approximations of its first three cumulants are derived. It is shown that the same

results can be derived with the aid of the moment closure method. This indicates that the moment closure method leads to

expressions for the cumulants that are asymptotic approximations of the cumulants of the quasi-stationary distribution.
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1. Introduction

The stochastic logistic model takes the form of a
birth-death process with finite state space, and with an
absorbing state at the origin. The stationary distribution
of this process is degenerate, with probability one at the
origin, corresponding to extinction of the population
studied. To study the long-term behaviour of a non-
extinct population we use instead the so-called quasi-
stationary distribution, which is a stationary distribu-
tion, conditional on non-extinction.
The mathematical analysis of this model is concerned

with two entities, namely the time to extinction and the
quasi-stationary distribution. A detailed analysis is
given by Nåsell (2001a,b). One of the features of the
model is that it contains a phase transition phenomen-
on. It is described in terms of three parameter regions in
which both the quasi-stationary distribution and the
time to extinction behave in qualitatively distinct ways.
Thus, the time to extinction is long, and the quasi-
stationary distribution is approximately normal, in one
of the regions. This is the region that normally is studied
with the deterministic logistic model, and also the region
that we are concerned with in this paper. The time to
extinction is short, and the quasi-stationary distribution
is approximately geometric, in a second region. A third

region is a transition region between these two. In this
region, the time to extinction is moderately long, and the
quasi-stationary distribution is more complicated than
in the other two. The results in Nåsell (2001a) give
explicit approximate expressions for both the quasi-
stationary distribution and for the time to extinction in
each of these three parameter regions. In the present
paper we shall be concerned with the first three
cumulants of the quasi-stationary distribution in one
of the parameter regions, namely the one where the time
to extinction is long, and where the quasi-stationary
distribution is approximately normal. We shall, how-
ever, derive three terms (of different order in the
maximum population size) in an approximation of the
mean, two terms in an approximation of the variance,
and one term in an approximation of the third
cumulant. This represents an extension of earlier results,
where only one term was derived for each of the first two
cumulants.
The stochastic logistic model is of basic importance in

mathematical population biology. It is useful for models
in both ecology and epidemiology. Its transition rates
depend nonlinearly on the population size. These non-
linearities lead to mathematical difficulties in the
analysis of the stochastic model. Thus, the cumulants
of the quasi-stationary distribution cannot be deter-
mined explicitly. Progress therefore rests on finding
useful approximations. In this paper we shall use bothE-mail address: ingemar@kth.se.
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the moment closure method first described in the
classical paper by Whittle (1957) and the alternative
method introduced by Nåsell (2001a), where asymptotic
approximations play an important role. The latter
method gives mathematically more satisfying results,
but it requires considerably more work than the moment
closure method. The two methods give essentially the
same results. We can therefore conclude that the
moment closure method leads to asymptotic approx-
imations of the first several cumulants of the quasi-
stationary distribution.

2. Model formulation

The stochastic logistic model that we are concerned
with is a finite-state birth–death process. The model
formulation requires us to define the birth rate ln and
the death rate mn as functions of the population size n:
We use the same notation as in Nåsell (2001a). Thus, we
start out by introducing N to denote the maximum
possible population size. This means that the state space
is equal to f0; 1; 2;y;Ng: On the state space we allow
the birth rate per individual ln=n to be a linearly
decreasing function of n and the death rate per
individual mn=n to be a linearly increasing function of
n: Thus, we make the following specifications:

ln ¼
mR0 1� a1

n

N

� �
n; n ¼ 0; 1;y;N � 1;

0; n ¼ N;

8<
:

and

mn ¼ m 1þ a2
n

N

� �
n; n ¼ 0; 1;y;N:

The parameters a1 and a2 are assumed to satisfy the
inequalities 0pa1p1 and a2X0: In order to assure
density dependence we assume that at least one of them
is strictly positive.
The parameter R0 serves to identify the three

parameter regions discussed in the introduction. In the
present study it is confined to values strictly larger than
one. This is the region where the quasi-stationary
distribution is approximately normal.
Our specification of the transition rates differs some-

what from the formulations used by most other authors,
including Bartlett et al. (1960), Keeling (2000), Matis
and Kiffe (1996, 1998), Renshaw (1991, 1998). These
papers express ln and mn as some variation of ln ¼
a1n � b1n

2 and mn ¼ a2n þ b2n
2: The differences may

appear minor, but they are indeed essential for the kind
of results we present here. Our formulation is based on
the concepts of dimensional analysis and scaling, which
are known to be powerful ideas in many parts of applied
mathematics. A general discussion is given by Lin and
Segel (1974), while some specifics for population models,

including the concept of quasi-dimension, are contained
in Nåsell (1985).
Application of these ideas commonly leads to a

reparametrization, where parameters are of two differ-
ent types, ‘‘essential’’ and ‘‘innocent’’, as described in
Nåsell (2002b). A parameter is called innocent if it can
be eliminated by a rescaling of the state variables, or by
time. If this is not possible, the parameter is called
essential. Our formulation of the model identifies five
parameters, namely m;N;R0; a1; and a2: Among these, m
is innocent, while the other four are essential. One notes
that m has the quasi-dimension inverse time, while the
other four parameters are free of quasi-dimension. Note
also that the parameter N; although essential for the
stochastic model, is innocent for the deterministic
version. The innocent parameter m will not affect the
results concerning the cumulants of the quasi-stationary
distribution.
Our parametrization has the advantage that the

maximum population size is explicitly represented by
the parameter N: This will be important in our later
development of asymptotic approximations as N

becomes large.
The corresponding deterministic model leads to the

differential equation

Y 0 ¼ r 1� Y

K

� �
Y ;

where the intrinsic growth rate per individual is

r ¼ mðR0 � 1Þ;
and the carrying capacity is given by

K ¼ R0 � 1

a1R0 þ a2
N:

The stochastic model has a quasi-stationary distribu-
tion which in the present case with R041 is approxi-
mately normal in its body with mean K and standard
deviation

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða1 þ a2ÞR0

p
a1R0 þ a2

ffiffiffiffiffi
N

p
: ð1Þ

A derivation is given in Nåsell (2001a). An alternate
derivation uses a diffusion approximation. It leads to
the result that K is the solution of the equation ln ¼ mn;
and that the variance can be determined from the
expression

s2 ¼ lK

m0K � l0K
; ð2Þ

where the primes are used to denote derivatives with
respect to n: This expression for s2 can easily be derived
from the following expression given already by Bartlett,
et al. (1960):

s2 ¼ � 1
dðln=mnÞ

dn







n¼K

:
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For the evaluations that follow it is useful to
introduce the notation

f1 ¼
R0 þ 1

R0 � 1
;

f2 ¼
a1R0 � a2
a1R0 þ a2

;

and to note that s2 can be determined from f1; f2; and K

via the relation

s2 ¼ 1
2
ð f1 � f2ÞK :

3. Model analysis

The method used in Nåsell (2001a,b) for analysis of
the quasi-stationary distribution fqng of the stochastic
logistic model fXðtÞg can be adapted to the situation
that we are concerned with here, namely analysis of the
first few cumulants of the quasi-stationary distribution
in case R041 and N is large. The results in Nåsell
(2001a) are based on the study of two auxiliary
processes fX ð0ÞðtÞg and fX ð1ÞðtÞg; as briefly described
in Appendix A. The auxiliary processes have non-

degenerate stationary distributions, p
ð0Þ
n

n o
and p

ð1Þ
n

n o
;

that can be determined explicitly. The explicit expres-
sions for these stationary distributions are, however,
complicated and uninformative. Progress rests on
deriving asymptotic approximations of these two
stationary distributions. The results in Nåsell (2001a)
use the first term only in the asymptotic approximations
of each of these two distributions. The adaptation here
requires an extension to five such terms in the
asymptotic approximation of one of these stationary

distributions, namely fp
ð0Þ
n g:

We recall that the first three cumulants k1; k2; and k3
of a distribution are equal to the expected value, the
variance, and the centered third moment, respectively.
The results concerning the first three cumulants

kiðX ð0ÞÞ; i ¼ 1; 2; 3; of the stationary distribution

p
ð0Þ
n

n o
can be expressed in the following form:

k1ðX ð0ÞÞBK � s2

K
� f1

s2

K2
; N-N; ð3Þ

k2ðX ð0ÞÞBs2 þ 1

2
ðf1 þ f2Þ

s2

K
; N-N; ð4Þ

k3ðX ð0ÞÞB� f2s2; N-N: ð5Þ
The derivation of these results is lengthy. Some steps in
the derivation are indicated in Appendix A, while
additional details are given through a Maple worksheet
in Nåsell (2002a).
We note that three terms are given in the approxima-

tion of the mean k1; while the number of terms is two for

the variance k2 and one for the third cumulant k3: The
three terms for k1 are of the orders OðNÞ;Oð1Þ; and
Oð1=NÞ; respectively, since K and s2 are both OðNÞ:
Similarly, the two terms for k2 are of the orders OðNÞ
and Oð1Þ; while the one term for k3 is of order OðNÞ: It
follows that the measure of skewness g1 ¼ k3=s3 ¼
�f2=s; which is known to be equal to zero for the
normal distribution, approaches zero as N-N:
We conjecture that the right–hand sides in (3)–(5) are

actually asymptotic approximations of the correspond-
ing cumulants of the quasi-stationary distribution.
Strong support for this conjecture is given by the
numerical evaluations in Table 1. It indicates that the
difference between the first cumulant k1 and its three-
term approximation in (3) is Oð1=N2Þ; the difference
between the second cumulant k2 and its two-term
approximation in (4) is Oð1=NÞ; and that the difference
between the third cumulant k3 and its one-term
approximation in (5) is Oð1Þ; all as N-N:
Numerical illustrations of the approximations in (3)–

(5) are given in Figs. 1–3. The first term in each of the
approximations of the three cumulants is seen to be of
the order OðNÞ: One can therefore expect that each
cumulant divided by N is approximately constant as a
function of N: The three figures show the first three
cumulants of the quasi-stationary distribution, divided
by N; as a function of N for given values of the
parameters R0; a1; and a2: Furthermore, the three
approximations of the first cumulant divided by N

formed by including one, two, and three terms of the
asymptotic approximation in (3) are included in Fig. 1.
Similarly, Fig. 2 shows also the two approximations of
the second cumulant divided by N formed by including
one and two terms of the asymptotic approximation in
(4). Finally, Fig. 3 includes the approximation of the
third cumulant divided by N given by (5).

Table 1

Numerical evaluations of the first three cumulants of the quasi-

stationary distribution of the stochastic logistic model are shown in the

third column.

N Cumulant Value Difference

10 k1 6.1 �1.7
10�2
10 k2 3.4 1:3
 10�1

10 k3 �2:1 �2:8
 10�1

100 k1 66.2 �4:1
 10�4

100 k2 28.2 1:9
 10�2

100 k3 �19:1 �6:1
 10�1

1000 k1 666.2 �3:9
 10�6

1000 k2 278.2 1:8
 10�3

1000 k3 �185:8 �5:7
 10�1

The parameters are R0 ¼ 5; a1 ¼ 1; and a2 ¼ 1: The last column shows

the difference between the third column values and the corresponding

approximations from (3)–(5).
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The first term in each of approximations (3)–(5) was
given as an approximation of the corresponding cumu-
lant already in the insightful paper by Bartlett et al.

(1960). They also give the second term in the asymptotic
approximation of the mean k1: However, they did not
claim that the approximations are asymptotic.

10 15 20 25 30 35 40
0.61

0.62

0.63

0.64
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0.66

0.67

N

κ1
/N

Fig. 1. Numerical illustration of k1=N with R0 ¼ 5; a1 ¼ 1; and a2 ¼ 1: The lowest curve shows k1=N for the quasi-stationary distribution, as a

function of N: The three approximations of k1=N formed by including one, two, and three terms from the right-hand side of (3) are shown as the first,

second, and third curves from above.
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Fig. 2. Numerical illustration of k2=N with R0 ¼ 5; a1 ¼ 1; and a2 ¼ 1: The uppermost curve shows k2=N for the quasi-stationary distribution, as a

function of N: The two approximations of k2=N formed by including one and two terms from the right-hand side of (4) are shown as the first and

second curves from below.
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4. Differential equations for the cumulants

The starting point for the moment closure method is a
set of differential equations for the first three cumulants
k1ðtÞ; k2ðtÞ; and k3ðtÞ of the original process fXðtÞg: A
derivation is given by Matis and Kiffe (1996). Using our
notation, the three equations can be written as follows:

k01 ¼
r

K
½ðK � k1Þk1 � k2�; ð6Þ

k02 ¼
r

K
½ð f1K � f2k1Þk1 þ ð2K � f2Þk2 � 4k1k2 � 2k3�;

ð7Þ

k03 ¼
r

K
½ðK � k1Þk1 � 6f2k1k2 � 6k1k3

þ ð3f1K � 1Þk2 � 6k22 þ 3ðK � f2Þk3 � 3k4�: ð8Þ

These equations cannot be solved, since the number
of unknowns exceeds the number of equations. The
moment closure method is based on the assumption that
the distribution of states is approximately normal. One
consequence of this assumption is that the cumulants of
order higher than 2 are small. Accordingly, we put k3 ¼
0 and study the steady-state solution of the two Eqs. (6)
and (7) in Section 5, while Section 6 is concerned with
the steady-state solution of the three Eqs. (6)–(8) with
k4 ¼ 0:
Two other consequences of the assumption that the

distribution of states is approximately normal are that

the variance k2ðtÞ is positive, and that the mean k1ðtÞ
divided by the standard deviation

ffiffiffiffiffiffiffiffiffiffi
k2ðtÞ

p
is large, since

the state variable that measures the number of
individuals is nonnegative. These two consequencies
will be used below to reject spurious solutions.
The moment closure method can be used both for

processes that have a non-degenerate stationary dis-
tribution, and for processes with an absorbing state,
where the long-term behaviour of the non-absorbed
process is described by a quasi-stationary distribution.
The limiting values of the cumulants of the original
process as t-N are equal to the cumulants of the
stationary distribution in the first case, while they are
equal to zero in the second case. In contrast, we find that
the limiting values of the solutions of the moment
closure equations above are equal to the cumulants of
the stationary distribution in the first case, as expected,
while they deviate strongly from the true cumulants, and
will be used to derive approximations of the cumulants
of the quasi-stationary distribution in the second case. It
is the second case that holds for the stochastic logistic
model that we consider in this paper.

5. Approximations of steady-state solutions for the first

two cumulants

The steady-state solutions of the two differential
equations (6) and (7) with k3 ¼ 0 are denoted kð1Þ1 and

10 15 20 25 30 35 40
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Fig. 3. Numerical illustration of k3=N with R0 ¼ 5; a1 ¼ 1; and a2 ¼ 1: The lowest curve shows k3=N for the quasi-stationary distribution, as a

function of N: The approximation of k3=N formed from the right-hand side of (5) is shown as the uppermost (constant) curve.
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kð1Þ2 : We find that the two approximations of the
cumulants are related by

kð1Þ2 ¼ ðK � kð1Þ1 Þkð1Þ1 ; ð9Þ

and that kð1Þ1 ¼ x satisfies the third-degree equation

4x3 � 6Kx2 þ 2ðK2 þ s2Þx ¼ 0: ð10Þ

This equation has one root equal to zero, while the
other two roots are given by

x ¼ 3

4
K7

1

4
K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8s2

K2

s
: ð11Þ

Observe that the ratio s2=K2 appearing in the square
root is of the order of 1=N: We can use this fact to
determine an arbitrary number of terms in an asympto-
tic approximation of the square root as N-N: Clearly,
the one-term expansion is equal to one. This implies that
the one-term approximations of the two roots in (11) are
equal to K and K=2; respectively.
The assumption that k3 ¼ 0 made above is incon-

sistent with the model. The inconsistency leads to
spurious critical points of the system of differential
equations. Only one of the three critical points is
consistent with the stronger assumption that the
distribution is approximately normal. The point for
which the one-term approximation of x ¼ kð1Þ1 is equal
to K=2 is rejected, since the ratio of mean to standard

deviation, kð1Þ1 =

ffiffiffiffiffiffiffiffi
kð1Þ2

q
; is by (9) asymptotically equal to

one, which is not sufficiently large. The point for which

x ¼ 0 is also rejected, since kð1Þ1 =

ffiffiffiffiffiffiffiffi
kð1Þ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x=ðK � xÞ

p
is

an increasing function of x ¼ kð1Þ1 for 0pxoK : We

conclude that only the critical point whose one-term
asymptotic approximation is x ¼ K remains.
The rejection of spurious critical points can also be

based on showing that they are locally unstable. This
basis for rejection was introduced by Whittle (1957).
Keeling (2000) replaces the assumption of approximate
normality of the quasi-stationary distribution by the
assumption of approximate log-normality. This excludes
spurious critical points in this case.
The remaining critical point with xBK corresponds

to the positive square root in (11). Inclusion of two
terms in the asymptotic approximation of the square
root in (11) as N-N leads to the following result:

kð1Þ1 BK � s2

K
; N-N; ð12Þ

kð1Þ2 Bs2; N-N: ð13Þ

These terms agree with the corresponding terms in (3)
and (4). Thus, they give asymptotic approximations of
the cumulants of the quasi-stationary distribution.
Inclusion of one additional term in the asymptotic
approximation of the square root in (11) will lead to an

improved approximation of the root of (11). However, a
comparison with (3) shows that the additional term does
not agree with the corresponding term in the asymptotic
approximation of k1 in (3). Therefore, additional terms
in the expansion of the square root do not improve our
approximations of the first two cumulants of the quasi-
stationary distribution.
We note, incidentally, that the ratio of mean to

standard deviation is asymptotically equal to K=s;
which is of the order of

ffiffiffiffiffi
N

p
: This ratio grows arbitrarily

large as N-N; as required for acceptability of the
normal approximation.

6. Approximations of steady-state solutions for the first

three cumulants

We set k4 ¼ 0 and denote the steady-state solution of
the resulting three differential equations (6)–(8) by
kð2Þ1 ; kð2Þ2 ; kð2Þ3 : We find then from the first two equations
that kð2Þ2 and kð2Þ3 can be determined from kð2Þ1 by the two
relations

kð2Þ2 ¼ ðK � kð2Þ1 Þkð2Þ1

and

kð2Þ3 ¼ 1
2
ð f1K � f2k

ð2Þ
1 Þkð2Þ1 þ ð2K � f2Þkð2Þ2 � 4kð2Þ1 kð2Þ2

h i
:

Insertion into the third equation shows that kð2Þ1 ¼ x

satisfies the fourth-degree equation

6x4 � 12Kx3 þ ð7K2 þ 4s2Þx2

� ½K3 þ ð3K � f2Þs2�x ¼ 0: ð14Þ

Clearly, one root of this equation is x ¼ 0: The
remaining roots satisfy a third-degree equation. Explicit
solutions are too complicated to be useful, as already
remarked in Matis and Kiffe (1996). We determine
instead asymptotic approximations for large values of
N: To do this, we search for solutions of the form x ¼
AN þ B þ C=N: In doing this, the N-dependencies of
the two parameters K and s are made explicit by writing
K ¼ a1N and s2 ¼ a2N: After insertion of these expres-
sions for x;K ; and s2 into the third-degree equation, we
determine three equations by setting the coefficients of
N raised to the powers 3, 2, and 1 equal to zero. One of
these equations contains A as the only unknown. The
equation has three roots. Arguments similar to those of
the preceding section show that two of them must be
rejected as corresponding to spurious solutions. The
value retained is A ¼ a1: This is consistent with the
result of the preceding section. The remaining two
equations for B and C are easily solved. The resulting
asymptotic approximations for the three cumulants
agree with the results in (3)–(5). Thus, we conclude that
the moment closure approximations of the cumulants
derived in this section agree with the actual cumulants of
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the quasi-stationary distribution to a higher order than
the approximations of the preceding section.
We note that these results are noticeably easier to

derive than those reported in Section 3.

7. Concluding comments

We have dealt here with two competing methods for
deriving approximations of the three lowest cumulants
of the quasi-stationary distribution of the stochastic
logistic model in the case when R041 and N is large.
The moment closure method has the definite advantage
over its competitor that the mathematical work required
for applying it is reasonably brief. The alternative
method allows us to derive asymptotic approximations
of the first few cumulants of the stationary distribution
of the auxiliary process fX ð0ÞðtÞg: We combine this with
the conjecture, strongly supported by numerical evalua-
tions, that these are asymptotic approximations of the
corresponding cumulants of the quasi-stationary dis-
tribution, to conclude that the cumulant approximations
derived from the moment closure method are indeed
asymptotic approximations of the true cumulants. This
is a desirable property of the moment closure method
which has not been known previously.
The distinction between the processes fX ðtÞg and

fX ð0ÞðtÞg is subtle. The reason is that these two
processes have the same transition rates as long as the
first one has not gone extinct. It is mentioned in Nåsell
(2001a) that several authors use the stationary distribu-

tion p
ð0Þ
n

n o
to represent the quasi-stationary distribution

that we denote by fqng; without noting that the first one
is actually an approximation of the second one. The
same is true also for Bartlett et al. (1960), Keeling
(2000), Matis and Kiffe (1996, 1998), Renshaw (1991,
1998). This conceptual mis-hap is not expected to lead to
any serious errors in the case considered here. It is,
however, important to distinguish between fqng and

p
ð0Þ
n

n o
if one wants to study the left tail of the quasi-

stationary distribution when R041; which is important
for the estimation of the time to extinction, or if one is
concerned with the transition region near R0 ¼ 1 or the
region where R0o1:
Three closely related moment closure problems are

studied by Matis and Kiffe (1996). In fact, the first and
third of their problems concide with the problems we
have studied in Sections 5 and 6, respectively. In
addition, the second problem they study is to determine
an approximation of the admissible critical point for the
two differential equations (6) and (7), after inserting the
expression in (5) for k3: As mentioned above, this result
for k3 was found already by Bartlett et al. (1960).

Matis and Kiffe (1996) give explicit expressions for
their approximations of the first two cumulants in the
first two of their problems. With regard to their third
problem, they report that closed form solutions are
available, but that they are too complex to be useful.
Therefore, they refrain from giving them. One may
comment that the closed form solutions given for the
first two of the problems are also rather complicated and
difficult to interpret. In contrast, we note that our results
in (3)–(5) contain a small number of terms that are easy
to understand.
It is straightforward to show that asymptotic approx-

imations of the approximations given in Matis and Kiffe
(1996) for the mean and variance of their first problem
coincide with our results in (12), (13), and that
asymptotic approximations of the solutions of their
second and third problems are found in our (3)–(5). This
means in particular that problems 2 and 3 have the same
asymptotic approximations.
Matis and Kiffe (1996) make numerical comparisons

of their approximations for a number of test cases as a
basis for recommendations for the choice of approxima-
tion. With the availability of asymptotic approxima-
tions, the need for such comparisons disappears.
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Appendix A. Approximations of the cumulants of the

stationary distribution p
ð0Þ
n

A brief summary is given here of the main steps in the
derivation of the asymptotic approximations for the
three cumulants reported in Section 3. The theoretical
background for this work is given in Nåsell (2001a,b),
while the Maple commands needed for the analysis are
contained in Nåsell (2002a).
Two auxiliary processes fX ð0ÞðtÞg and fX ð1ÞðtÞg play

an important role in this work. They are both birth-
death processes that are close to the original process
fXðtÞg; but lack absorbing states. The state space of
each of the two auxiliary processes coincides with the set
of transient states f1; 2;y;Ng for the original process.

The process fX ð0ÞðtÞg can be described as the original

process with the origin removed. Its death rate mð0Þ1 is

equal to 0, while all other transition rates are the same as

in the original process. The process fX ð1ÞðtÞg is found
from the original process by allowing for one immortal

individual. Here, the death rate mn is replaced by mð1Þn ¼
mn�1; while the birth rates are unchanged.
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The stationary distributions of the two auxiliary
processes can be determined explicitly from knowledge
of the transition rates ln and mn: In order to describe
them we introduce two sequencies rn and pn as follows:

r1 ¼ 1; rn ¼ l1l2?ln�1
m1m2?mn�1

; n ¼ 2; 3;y;N;

pn ¼ m1
mn

rn; n ¼ 1; 2;y;N:

The stationary distributions of the two auxiliary
processes can be simply expressed in terms of these
sequencies. The stationary distribution of the process
fX ð1ÞðtÞg is given by

pð1Þ
n ¼ rnp

ð1Þ
1 ; n ¼ 1; 2;y;N; where p

ð1Þ
1 ¼ 1PN

n¼1 rn

;

while the stationary distribution of fX ð0ÞðtÞg equals

pð0Þ
n ¼ pnp

ð0Þ
1 ; n ¼ 1; 2;y;N; where p

ð0Þ
1 ¼ 1PN

n¼1 pn

:

The quantities rn can be expressed in terms of gamma
functions as follows:

rn ¼ 1

R0

1

1� a1n=N

GðN=a1ÞGðN=a2Þ
GðN=a1 � nÞGðN=a2 þ nÞ

a1R0

a2

� �n

;

0oa1p1; 0oa2:

(The treatment if either a1 or a2 equals zero follows that
in Nåsell, 2001b). An asymptotic approximation for rn

can then be derived by applying asymptotic approxima-
tions of the gamma functions. Only the first term of this
approximation (the Stirling formula) is used in Nåsell
(2001b), while we require three terms here. Thus, we use
the following asymptotic approximation of the gamma
function:

GðxÞB x

e

� �x
ffiffiffiffiffiffi
2p
x

r
SðxÞ; x-N;

where

SðxÞ ¼ 1þ 1

12x
þ 1

288x2
:

The expression for pn can be expressed in the following
form

pnBsðnÞf ðnÞgðnÞ expðhðnÞÞ; N-N; N � n-N:

Here, the functions g and h are given in Nåsell (2001b).
They are equal to

gðnÞ ¼ 1

R0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2n=N

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a1n=N

p
and

hðnÞ ¼ n log R0 �
N

a1
� n

� �
log 1� a1

N

� �

� N

a2
þ n

� �
log 1þ a2n

N

� �
:

Furthermore, the ratio pn=rn is given by

f ðnÞ ¼ m1
mn

¼ f0afaðnÞ;

where

f0a ¼ 1þ a2
N

and

faðnÞ ¼
1

ð1þ a2n=NÞn:

Finally, the extra terms in the asymptotic approximation
of the gamma functions give rise to the factor sðnÞ: It
can be expressed as follows:

sðnÞ ¼ s0as1ðnÞs2ðnÞ;

where

s0a ¼ SðN=a1ÞSðN=a2Þ;

s1ðnÞ ¼
1

SðN=a1 � nÞ;

and

s2ðnÞ ¼
1

SðN=a2 þ nÞ:

We start out with expanding all the functions of n

above as Taylor series about n ¼ K ; which is the value
of n for which hðnÞ has a maximum. By including seven
terms in the series expansion of hðnÞ we find that hðnÞ
can be approximated as follows:

hðnÞEg1N � y1ðnÞ2

2
þ haðnÞ;

where

haðnÞ ¼ h3y
3
1ðnÞ þ h4y

4
1ðnÞ þ h5y

5
1ðnÞ þ h6y

6
1ðnÞ;

and where we have introduced the notations

g1 ¼
1

a1
log R0 �

a1 þ a2
a2

log
ða1 þ a2ÞR0

a1R0 þ a2

� �

and

y1ðnÞ ¼
n � K

s
:

It is straightforward to determine the coefficients
h32h6: Here, h3 is of order Oð1=

ffiffiffiffiffi
N

p
Þ; h4 is of order

Oð1=NÞ; and generally hk is of order Oð1=Nk=2�1Þ: It
follows that the approximation of hðnÞ above is actually
asymptotic if y1ðnÞ ¼ Oð1Þ as N-N: This is the
condition that characterizes the body of the distribution
we are concerned with.
We introduce A2ðFðnÞÞ to denote a specific asympto-

tic approximation of FðnÞ as N-N; namely the one
that includes terms up to the order of 1=N2: (We
assume, of course, that FðnÞ depends on N; although
this is not apparent from the notation.) We assume
throughout that y1ðnÞ ¼ Oð1Þ as N-N:
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The asymptotic approximation of expðhaðnÞÞ; up to
terms of order 1=N2; and under the assumption that
y1ðnÞ ¼ Oð1Þ as N-N; is denoted hbðnÞ:
hbðnÞ ¼ A2ðexpðhaðnÞÞÞ:
We conclude that

expðhðnÞÞB
ffiffiffiffiffiffi
2p

p
h0jðy1ðnÞÞhbðnÞ; y1ðnÞ ¼ Oð1Þ;

N-N;

where

h0 ¼ expðg1NÞ;
and where

jðxÞ ¼ 1ffiffiffiffiffiffi
2p

p expð�x2=2Þ

denotes the normal density function.
By including five terms in the Taylor series expansion

of gðnÞ about n ¼ K we find that gðnÞ can be
approximated as follows:

gðnÞBg0gbðnÞ; y1ðnÞ ¼ Oð1Þ; N-N;

where

g0 ¼
1ffiffiffiffiffiffi
R0

p

and

gbðnÞ ¼ 1þ g1y1ðnÞ þ g2y
2
1ðnÞ þ g3y

3
1ðnÞ þ g4y

4
1ðnÞ:

This approximation is asymptotic, since gk is of order
Oð1=Nk=2Þ:
Inclusion of five terms in the Taylor expansion of

faðnÞ about n ¼ K leads to the following approximation:

faðnÞBf0bfbðnÞ; y1ðnÞ ¼ Oð1Þ; N-N;

where

fbðnÞ ¼ 1þ f1y1ðnÞ þ f2y
2
1ðnÞ þ f3y

3
1ðnÞ þ f4y

4
1ðnÞ;

with fk ¼ Oð1=Nk=2Þ: Also, we put f0 ¼ f0af0b:
The asymptotic approximation of sðnÞ is derived in

steps, as follows:

s0 ¼ A2ðs0aÞ;

s1bðnÞ ¼ A2ðs1ðnÞÞ;

s2bðnÞ ¼ A2ðs2ðnÞÞ;

sbðnÞ ¼ A2ðs1bðnÞs2bðnÞÞ:
A result of these evaluations is that the asymptotic

approximation for pn can be expressed as follows:

pnB
ffiffiffiffiffiffi
2p

p
p0pbðnÞjðy1ðnÞÞ; y1ðnÞ ¼ Oð1Þ; N-N;

where

p0 ¼ A2ðs0f0g0h0Þ
and

pbðnÞ ¼ A2ðsbðnÞfbðnÞgbðnÞhbðnÞÞ:

It is useful to express the function pbðnÞ in the
following way:

pbðnÞ ¼
X12
j¼0

kjy
j
1ðnÞ:

By using the well-known formulas for the moments of
a normal random variable we are led to the following
relation:

XN

n¼1
y

j
1ðnÞjðy1ðnÞÞ=s

B
0; j ¼ 1; 3; 5;y;

1  3  5?ðj � 1Þ; j ¼ 2; 4; 6;y :

(

Applying this, we get

XN

n¼1
pn ¼

ffiffiffiffiffiffi
2p

p
p0spd ;

where

pd ¼ k0 þ k2 þ 3k4 þ 15k6 þ 105k8 þ 945k10 þ 10395k12:

It follows that

pð0Þ
n B

pbðnÞjðy1ðnÞÞ
spd

; y1ðnÞ ¼ Oð1Þ; N-N:

This approximation of the stationary distribution p
ð0Þ
n

in its body can be used to derive approximations of the
moments. We get the following approximation for the
expectation:

EX ð0ÞBK þ sðk1 þ 3k3 þ 15k5 þ 105k7 þ 945k9Þ
pd

;

N-N;

since k11 ¼ 0: Similarly, the variance is approximated by

VX ð0Þ ¼ EðX ð0Þ � EX ð0ÞÞ2

B
s2ðk0 þ 3k2 þ 15k4 þ 105k6 þ 945k8 þ 10395k10 þ 135135k12Þ

pd

� ðEX ð0Þ � KÞ2; N-N;

and the third central moment by

EðX ð0Þ � EX ð0ÞÞ3

B
s3ð3k1 þ 15k3 þ 105k5 þ 945k7 þ 10395k9Þ

pd

� 3VX ð0ÞðEX ð0Þ � KÞ � ðEX ð0Þ � KÞ3; N-N;

since k11 ¼ 0:
The evaluations in the Maple worksheet in Nåsell

(2002a) of these complicated expressions for the
asymptotic approximations of the first three cumulants
lead very surprisingly to the simple results in (3)–(5).
(The same Maple worksheet also gives approximations
of the first three cumulants of the stationary distribution
fp

ð1Þ
n g:)
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Nåsell, I., 2002b. Endemicity, persistence, and quasi-stationarity. In:

Carlos-Castillo, C., Blower, S., van den Driessche, P., Kirschner,

D., Yakubu, A.-A. (Eds.), Mathematical Approaches for Emerging

and Reemerging Infectious Diseases: An Introduction, The IMA

Volumes in Mathematics and its Applications, Vol. 125. Springer,

New York.

Renshaw, E., 1991. Modelling Biological Populations in Space and

Time. Cambridge University Press, Cambridge.

Renshaw, E., 1998. Saddlepoint approximations for stochastic

processes with truncated cumulant generating function. IMA J.

Math. Appl. Med. Biol. 15, 41–52.

Whittle, P., 1957. On the use of the normal approximation in the

treatment of stochastic processes. J. Roy. Statist. Soc., Ser. B 19,

268–281.

I. N (asell / Theoretical Population Biology 63 (2003) 159–168168

http://www.math.kth.se/~ingemar/forsk/verhulst/verhulst.html
http://www.math.kth.se/~ingemar/forsk/verhulst/verhulst.html
http://www.math.kth.se/~ingemar/forsk/verhulst/moments/moments.html
http://www.math.kth.se/~ingemar/forsk/verhulst/moments/moments.html

	Moment closure and the stochastic logistic model
	Introduction
	Model formulation
	Model analysis
	Differential equations for the cumulants
	Approximations of steady-state solutions for the first two cumulants
	Approximations of steady-state solutions for the first three cumulants
	Concluding comments
	Acknowledgements
	Approximations of the cumulants of the stationary distribution pn(0)
	References


