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Skills acquired Modelling cell population dynamics and complex systems. Themost
widely used dynamical system formalisms will be intriduced: Stochastic processes,
ordinary and stochastic differential equation, and discrete systems. Emphasis will
be put on qualitative study of dynamical systems and on the numerical methods and
analysis.

Synopsis
• Birth/Death stochastic processes. Master equations, Langevin and Fokker-Planck

equations, link with deterministic systems, examples
• Nonlinear ODEs. Existence/uniqueness, Hartman-Grobman theorem, lineari-

sation and linear stability, classification of equilibria, bifurcations co-dimension
1 and 2: saddle-node, transcritical, pitchfork, Hopf, numerical analysis with
XXPAUT, examples

• Discrete systems. Existence/uniqueness, linearisation and linear stability, com-
parison with ODEs, Poincaré map, bifurcations, chaos, examples

• Systems in large dimension. Coupled oscillators, Kuramoto model, numerical
simulations

• Functional and delay differential equations. Existence/uniqueness, linearisa-
tion and linear stability, comparison with ODEs
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Figure 1. Modelling approaches in systems biology.
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1 Birth/death processes

Birth and death are the two basic events that can occur in a cell population, nomatter
how complex the population is, so it makes sense to start here. In any finite size, or
discrete, population, these event have a large part of randomness in their occurrence
an their timing.
Cell survival and death depends on the environmental conditions (temperature, oxy-
gen, nutrient, pH, mechanical stress, cytokines...), but cell intrinsic factors can lead
to different outcomes in the same conditions. Mutations are mostly deleterious, and
cells with damaged DNA will usually undergo programmed cell death, or apoptosis.
In some case, mutations confer resistance to apoptosis, enabling cells to survive even
with DNA damage.
Birth occurs through cell division, whereby a mother cell gives rise to two daughter
cells. As with cell death, cell division is affected by the environment, but it is well
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established the capacity for cells to divide depends also on their differentiation state.
Most human tissues are organized hierarchically, where a small subset of cells, call
stem cells, have the capability of self-renewing, that is, dividing to give rise to at least
one stem cell. Stem cells also produce progenitor cells that will be able to proliferate
through successive cell divisions. Some of the progenitors will also differentiate
(acquire a stable phenotype) into mature cells and integrate the tissue to replace
dead cells. Once differentiated, most cells lose their ability to divide. Heart muscle
cells and neurons probably cannot divide. Red blood cells, which have lost their
nucleus, cannot divide either. Once differentiated, lymphocytes can divide at high
rate when activated during an immune response. After liver injury, hepatocytes can
de-differentiate and divide again to heal. Even though differentiated cells can have
the ability to divide, most tissue have stem cells to support regeneration. The extent
at which human tissues renew vary by orders of magnitude depending on the tissue
and the age of the person. White blood cells, part of the innate immune system, are
renewed daily, while neurons of the cortex are never replaced. Skin, liver, epithelial
cell in the gut, fat cells have renewal time ranging from days to years. In all tissues,
controls are in place to ensure that cells do not accumulate mutations that would
favor the development of tumors. This includes making stem cell division a rare
event, limiting the number of division progenitors can undergo, and maintaining
active survival factors within the tissue to make cells non-viable outside their natural
environment.
Therapeutic strategies for heart failure or neurodegenerative disease include trans-
planting stem cells or reprogrammed stem cells to induce regeneration. Character-
izing the mechanisms that allows or prevent regeneration these tissues is an area of
active research.
By definition, cancer occurs when a subset of cells have evaded controls, and can
survive, proliferate and migrate to other tissues.

1.1 Birth/death processes

Let n(t) be the number of cells in a population. We assume that all cell are identical.
We will track three events: cell death, cell division, and the recruitment of a new cell
in the population. The last two event have the same effect, but cell division must
depend on the number of cells n(t), while recruitment is not necessary linked. We
assume that events are independent in probability. The propensity or the rate of a

propensity
ratebirth (division or recruitment) is λn and the propensity of a death is µn. This means

that, during a time interval∆t, the probability for a birth or a death to occur is

Pr(birth) = λn∆t+O(∆t2).

Pr(death) = µn∆t+O(∆t2).

Several events can happen during an interval∆t, but because they are independent,
the probability of multiple events is of order ∆tk, k ≥ 2. Taking ∆t small enough
ensures at most one event. With these events, the number of cells n(t) is a positive-
integer valued, piecewise constant, right-continuous stochastic process (a random

stochastic pro-
cess
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variable that depends on time).
What is the law of n(t)? Let pn(t) be the probability for the number of cells to be n
at time t, for n ≥ 0. Then

pn(t+∆t) =λn−1pn−1(t)∆t

+ µn+1pn+1(t)∆t

+ pn(t)−
(
λn + µn

)
pn(t)∆t+O(∆t2).

The number of cells n is non-negative. This means that the coefficient µ0 must be
equal to 0 (no death can occur). The coefficient λ−1 can also be set to 0. Collecting
terms in ∆t and dividing by ∆t,

pn(t+∆t)− pn(t)

∆t
=λn−1pn−1(t) + µn+1pn+1(t)−

(
λn + µn

)
pn(t) +O(∆t).

Taking the limit ∆t → 0, we obtain the master equation master equa-
tion

pn(t)

dt
=λn−1pn−1(t) + µn+1pn+1(t)−

(
λn + µn

)
pn(t).

The master equation is a system of ODEs (of infinite dimension), and must be sup-
plemented by appropriate initial conditions. Here we choose

pn(0) = δmn,

(1 ifm = n and 0 otherwise). The probability generating function is a helpful tool
probability
generating
function

to solve the master equations, at least in simple cases. The probability generating
function is

φ(z, t) =
∑
n≥0

znpn(t).

The partial derivatives of φ have nice properties:
• φ(1, t) = 1.
• ∂kφ(0, t)/∂z = k!pk(t).

1.1.1 Linear rates, no recruitment

We assume rates are linear: λn = λn and µn = µn.
Then, we can derive the following PDE
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dφ

dt
= (1− z)(µ− λz)

∂φ

∂z
.

with initial condition φ(z, 0) = zm, which corresponds to our initial condition. The
solution for φ is

φ(z, t) =

[
µ− λz − µ(1− z)ε(t)

]m[
µ− λz − λ(1− z)ε(t)

]m , (1)

ε(t) = exp((λ− µ)t
)
. (2)

In the following, we set m = 1. The expected value (denoted ⟨·⟩) of n(t) is

⟨n(t)⟩ =
∑
n≥0

npn(t) =
∂φ(1, t)

∂z
= ε(t).

The variance of the size of the population σ2(t) = ⟨
(
n(t)−⟨n(t)⟩

)2⟩ is found by using
the relationship ⟨n(n− 1)⟩ = ∂2φ(1, t)/∂z2:

σ2(t) =
λ+ µ

µ− λ
ε(t)

(
1− ε(t)

)
.

The probability of extinction by time t is p0(t) = φ(0, t),

p0(t) =
µ− µε(t)

µ− λε(t)
.

What about the law of n(t)? The distribution of n(t), conditional to n(t) > 0, is a
geometric law with parameter

geometric law

p(t) =
µ− λ

µ− λε(t)
.

The geometric law has a probability function for cell number k ≥ 1

Pr(n(t) = k|n(t) > 0) = p(t)(1− p(t))k−1.

1.1.2 Linear rates and recruitment

We assume the death rate is linear: µn = µ, the division rate is linear and there is
recruitment: λn = α+ βn.
When there is recruitment, using the probability generating function is more tricky.
Instead, we will work directly from the master equation, and find ODEs for the first
two moments of n(t). The first moment satisfies the ODE
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d⟨n(t)⟩
dt

=
d

dt

∑
n≥0

npn(t)

=
∑
n≥0

n
dpn(t)

dt

=
∑
n≥0

n
[
λn−1pn−1(t) + µn+1pn+1(t)−

(
λn + µn

)
pn(t)

]
.

On re-organising terms on the same indices, we obtain that

d⟨n(t)⟩
dt

=
∑
n≥0

[λn − µn]pn(t) = α+ β⟨n(t)⟩ − µ⟨n(t)⟩.

The second moment ⟨n2(t)⟩ satisfies the equation

d⟨n2(t)⟩
dt

=
∑
n≥0

n2 pn(t)

dt

=
∑
n≥0

(n+ 1)2λnpn(t) + (n− 1)2µnpn(t)− n2(λn + µn)pn(t)

=
∑
n≥0

2n(α+ βn− µn)pn(t) + (α+ βn+ µn)pn(t)

= 2α⟨n(t)⟩+ 2(β − µ)⟨n2(t)⟩+ α+ (β + µ)⟨n(t)⟩.

The variance σ2(t) of the population is

d⟨σ2(t)⟩
dt

=
d⟨n2(t)⟩

dt
− d⟨n(t)⟩2

dt

= 2α⟨n(t)⟩+ 2(β − µ)⟨n2(t)⟩+ α+ (β + µ)⟨n(t)⟩+ 2⟨n(t)⟩d⟨n(t)⟩
dt

= 2(β − µ)σ2(t) + (β + µ)⟨n(t)⟩+ α.

Definition 1 [Coefficient of Variation] The coefficient of variation (CV) is defined as
σ/⟨n⟩. Compute it its limits when t → ∞.
We have derived for the birth and death process closed form differential equations
on macroscopic quantities: the mean population size ⟨n(t)⟩ and the variance σ2(t).

macroscopicThe equation for the mean was uncoupled from the higher order moments, and this
suggest that given a birth rate λn and a death rate µn, one could write down a macro-
scopic equation for the population density in a given domain V , x = ⟨n⟩/V ,
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dx

dt
=

1

V
λ(xV )− V µ(xV ).

For instance, with the rates λn = α + βn and µn = µn, the equation for the cell
density is

dx

dt
=

α

V
+ βx− µx.

This worked only because the rates are linear; nonlinear terms would make higher
order moments of n appear in the equations. It is usual, when writing nonlinear
population models based on ODEs, to neglect these higher order moments. This
means that the population densities x obey deterministic system of equation that
describes the production of new cells P (x) (birth, recruitment) and the loss of cell
D(x) (death, loss through migration, differentiation or change):

dx

dt
= P (x)−D(x).

For a system where x ∈ Rd, the rate functions P and D are non-negative function
from Rd to Rd. The coefficient of the state vector x are the population densities
(usually cell number per unit volume). Ideally the densities should be close to the
mean of the underlying stochastic process. If noise (as defined by the coefficient of
variation) is small, then it is reasonable to neglect σ2 in front of langlen⟩ and the
deterministic system is a good approximation of the stochastic process.
As a rule of thumb, the noise acts on the system as

CV ≈ 1√
⟨n⟩

.

Therefore, as the population size goes to infinity, the noise should decrease to 0. This
is a rule that should guide modelling only, and we can easily find examples where
CV does not converges to 0 as the population goes to infinity.
When noise cannot be neglected, what can we do? One among many approaches
is to expand the master equation and approximate it at the second order. This lead
to an equation that will have two terms: one for the deterministic part, and one for
the noise, or the stochastic part. The deterministic part will follow an equation sim-
ilar to the one above, and the stochastic part will be described by a diffusion. The
final equations have two different expressions: they can take the form of stochas-
tic differential equations or deterministic convection-diffusion equations, called the
Fokker-Planck equations.
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1.2 Stochastic simulation algorithm (SSA)

In a discrete birth/death process, the variables are piecewise constant. If, for a given
state at time t, we can generate the time of the next event, then this time is ex-
act in the sense that the state cannot change before the time of the (known) next
event.

t

N
(t
)

dt ∼ Exp(λN)

The Stochastic Simulation Algorithm is a numerical algorithm that takes advantage
Stochastic
Simulation
Algorithm

of the discrete nature of jumps in N(t). For a n-dimensional birth/death process
N(t) ∈ Nn, we need the define

• the initial conditions N0 ∈ Nn at time t0 ∈ R, such that N(t0) = N0,
• a list of all events, numbered from 1 to r,
• for each event k, k ∈ {1, ..., r}, the propensity λ

(k)
N . The propensities can have

nonlinear dependence on the population size N , but cannot depend on the
occurrence of other events; event probabilities are independent.

• the law of birth or death conditional to event k, given a population size N

before the event, Pr(add j individuals) = w
(N)
k (j), j ∈ Z.

The propensites define a memoryless process. That is, the time to the next event has
an exponential distribution. Neglecting all other events, the time τk to event k has
an exponential distribution with parameter λ(N)

k . When the r events are considered
together, the time τ to the next event will be just min1≤k≤r{τk}. This is because
during the interval [t, t + τ), the event probabilities are independent. At time t, the
law of τ is a exponential with parameter λ(N(t)), with

λ(N) =

r∑
k=1

λ
(N)
k . (3)

Independence also ensures that no two events can occur at the same time. When the
event k is realised, the solution to the process will be N(t+ θ) = N(t) for θ ∈ [0, τ),
and N(t+ τ) = j, with probability w

(N(t−))
k (j). The probability to choose event k is

proportional to its propensity λ
(N)
k . After re-normalization,

Pr(choose event k) = λ
(N)
k

λ(N)
. (4)

A realization of N(t) can be computed iteratively, by advancing in time by steps of
size τ .
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The algorithm goes as follows

################# SSA algorithm #################
# input:
# N0: array of integers of size n, initial conditions
# t0: real value, initial time
# T : positive real value, time interval
# output:
# N: array of integers of size n, the solution at N(t0 + T)
N = N0;
t = t0;

while ( t < t0 + T ) {
lambda = sum(lambda_k);
tau = draw from exponential distribution with parameter lambda;
k = draw from distribution with probabilities lambda_k/lambda;
j = draw from distribution with probabilities w_k_j;
N = N + j;
t = t + tau;

}

Notes. Parameters tau, k, j are drawn from specific distributions that can be easily
reproduced using only a standard pseudo-random number generator by using the
reciprocal of the repartition function. If the random variable X has a repartition
function F (x) = Pr(X < x) and U is random variable with a uniform density on the
[0, 1] interval, then the random variable F−1(U) has the same distribution asX. The
time to the next event can be computed with these steps

### Generate an exponential covariate ###
u = rand01(); # u drawn from a uniform distribution on [0,1]
tau = -log(u)/lambda; # log: natural log
return tau;

For discrete probability laws, the repartition function is piecewise constant, and can-
not be inverted. However, the repartition functon induces a partition of the unit
interval. The i-th sub-interval has the size of the i-th probability. This means that
drawing a integer i with probability pi is equivalent to identifying which sub-interval
contains a random variable drawn from a uniform distribution in the unit inter-
val.

### Generate a discrete covariate ###
# p: array of size I of probabilities, p[i] = prob(choose i)
# If needed, the values of i are rescaled between 1 and I

u = rand01(); # u drawn from a uniform distribution on [0,1]
c = cumsum(p); # c array with right-ends of sub-intervals
i = find_first( u < c ); # find first index i such that u < c[i]
return i;
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The algorithm can be adapted for distributions with an infinite number of possibe
values.

1.3 Links

Solutions for the birth and death process: Kendall (1948) On the Generalized ”Birth
and Death” Process.
Moment closure and the stochastic logistic equation model (Nåsell, 2003).
Stochastic equations in Matlab: An algorithmic introduction to numerical simulation
of stochastic differential equations.

2 Dynamical systems approach to ODEs

The dynamical systems approach focuses on the qualtiative behaviour of the so-
dynamical sys-
tems

lutions, by opposition to the quantitative behaviour of the solution. As such, for a
dynamical system described by ordinary differential equations, the aim will be to
re-construct the phase portait and how it is modified by changes in the system pa-

phase portaitrameters. Re-construction of the phase portrait relies on a combination of linear
stability analysis, nonlinear global stability analysis, and geometrical and numer-

linear stability
global stability
analysis

ical methods. Bifurcation analysis studies the changes in the topological structure

Bifurcation
analysis

of the phase portrait.

2.1 Linear systems

Let n be a positive integer, A be a n-by-n real matrix, c be a vector in Rn, t0 and T
in R and x : [t0, t0 + T ] → Rn. The equations

dx

dt
(t) = Ax(t), (5)

x(t0) = c. (6)

form a linear system of ordinary differential equations. The vector x0 is the initial linear system
of ordinary
differential
equations

condition. The phase space is the space in which the solution x(y) lies, here it is Rn.

phase space

A trajectory or an orbit is the curve in the phase space defined by the solution x for

trajectory
orbit

t ∈ [t0, t0 + T ]. The phase portrait is defined as the set of all trajectories generated

phase portrait

by all initial conditions and all values of T (trajectories include curves with negative
values of T ).
The dynamical system defined by the system (5, 6) is the map ϕ : R × Rn → Rn,

dynamical sys-
tem

which, for (t, c) ∈ R×Rn, is defined by the solution x(t; c), where x(0; c) = c.
The right-hand-sideAx of equation (5) defines a vector field in the phase space.

vector fieldTheorem 1 (Fundatmental theorem for linear systems) The system (5, 6) has a
unique solution x(t) = eAtc.
In particular, if c = 0, the solution dx/dt = 0 and x(t) = 0 for all t. The value x = 0
is an equilibrium point.

equilibrium
point
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For n = 2, there are only four distinct phase portraits. Let PBP−1 be a Jordan
decomposition ofA, with P an invertible matrix, andB is an upper triangular matrix.
The eigenvalues of A have either distinct real values λ, µ, repeated values λ ∈ R, or
complex conjugate values ν, ν̄. The eigenvalue matrix B has one of the following
form: (

λ 0
0 µ

)
,

(
λ 1
0 λ

)
,

(
ν 1
0 ν̄

)
. (7)

After a change of coordinates y = P−1x, the phase portrait associated to the linear
system is one of the following.

Case I—Distinct eigenvalues of opposite signs. Assume λ < 0 and µ > 0. The equi-
librium point x = 0 is a saddle.

saddle

y1

y2

Case II—Eigenvalues of the same sign. Assume λ ≤ µ < 0. The equilibrium point
x = 0 is a node.

node

y1

y2

λ < µ

y1

y2

λ = µ, B diagonal

y1

y2

λ = µ, B triangular

Case III—Complex eigenvalues. Assume ν = a+ ib, with a and b real, a, b ̸= 0. The
equilibrium point x = 0 is a focus.

focus
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y1

y2

sign(a) ̸= sign(b)

y1

y2

sign(a) = sign(b)

Case IV—Pure imaginary eigenvalues. Assume ν = ib, for a real value b. The equi-
librium point x = 0 is a centre. centre

y1

y2

b > 0

y1

y2

b < 0

For n ≥ 1, the phase space can be decomposed as a direct sum of linear subspaces
associated to subset of eigenvalues with different signs. Denote wj = uj + ivj the
j-th eigenvector and λj = aj + ibj the j-th eigenvalue. The stable subspace ES

stable sub-
space

is the linear span of the eigenvectors associated to eigenvalues with negative real
part.

ES = Span{uj , vj : aj < 0
}
. (8)

The unstable subspaceEU is the linear span of the eigenvectors associated to eigen-
unstable sub-
space

values with positive real parts.

EU = Span{uj , vj : aj > 0
}
. (9)

The centre subspace EC is the linear span of the eigenvectors associated to eigen-
centre sub-
space

values with zero real parts.

EC = Span{uj , vj : aj = 0
}
. (10)

The following statement are equivalent
• For all c ∈ Rn, limt→∞ eAtc = 0 and for c ̸= 0, limt→−∞ |eAtc| = +∞.
• There exists positive constants M, c such that for all x0, |eAtx0| < Me−ct|x0|.
• The eigenvalues of A all have negative real parts.
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2.2 Nonlinear systems

Let n be a positive integer, c a vector in Rn, t0 and T in R and x : [t0, t0 + T ] → Rn,
and f : Rn → Rn. The equations

dx

dt
= f(x), (11)

x(t0) = c. (12)

form a nonlinear system of ordinary differential equations. The vector c is the
nonlinear
system of
ordinary
differential
equations

initial condition.
The point x̄ is an equilibrium point or a fixed point if f(x̄) = 0. Let A be the n-by-n
matrix defined by A = Df(x̄), where Df is the Jacobian matrix of f :

Df =


∂f1
∂x1

∂f1
∂x2

... ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

... ∂f2
∂xn

...
∂fn
∂x1

∂fn
∂x2

... ∂fn
∂xn

 . (13)

The notation Df(x̄) means that the Jacobian matrix is evaluated at the point x̄. The
coefficients of A are

aij =
∂fi
∂xj

∣∣∣∣
x=x̄

. (14)

The following theorem establishes that if the Jacobian matrix has no eigenvalue with
zero real part, then the phase portrait of the linear system is topologically equiva-
lent to the phase portrait of the nonlinear system, in a neighbourhood of the equi-

topologically
equivalent

librium point. Topological equivalent means that there exist a continuous transfor-
mation H with a continous inverse (a homeomorphism) that 1) maps trajectories

homeomorphismfrom one system to the other, and 2) preserves time orientation in the sense that if
a trajectory goes from x1 to x2, then it goes from H(x1) to H(x2). If, in addition,
the homeomorhism preserves time parametrization, then the to systems are said to
be topologically conjugate. While topological equivalence requires the direction of

topologically
conjugate

time to be preserved, topological conjugacy requires H not only to map trajectories,
but corresponding points on the trajectories at the right times.
Let E be an open subset of Rn containing the origin, let f : E → E be continuously
differentiable, and let ϕt be the flow if the system (11). Suppose that f(0) = 0,
and let the Jacobian matrix A = Df(0). The next result is the Hartman-Grobman
Theorem, taken from [15].

Hartman-
Grobman
Theorem

Theorem 2 If A has no eigenvalues with zero real part, then there exists a homeo-
morhism H of an open open subset U of E containing the origin to an open subset V
of Rn containing the origin such that there is an open interval I0 ⊂ R containing zero
such that for all x0 ∈ U and t ∈ I0,

H ◦ ϕt(x0) = eAtH(x0). (15)
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Figure 2. Illusration of the phase portrait of the system y′ = −y, z′ = z + y2 (a), and its linearized
system x′1 = −x1, x

′
2 = x2 (b).

That is, H maps trajectories of the nonlinear system onto the trajectories of the as-
sociated linear system, in a neighbourhood of the origin, and preserves the param-
eterization in time. The linear system is locally (in time and space) topologically
conjugate to the nonlinear system (Figure 2).
The importance of this theorem lies in the fact that the asymptotic behaviour of the
trajectories of the nonlinear system can be characterized locally by the linearized
system around a equilibrium.
Definition 2 A equilibrium x̄ of the system (11) is stable if for all ε > 0, there exists

stable
δ > 0 such that for all x0 in a neighbourhoodBδ(x̄) of size δ centred at x̄, the solution
ϕt(x0) remains in a neighbourhood Vε(x̄).
Definition 3 A equilibrium x̄ of the system (11) is asymptotically stable if it is

asymptotically
stable

stable, and there exists δ > 0 such that for all x0 in a neighbourhood Bδ(x̄) of size δ
centred at x̄, limt→∞ ϕt(x0) = x̄.
An equilibrium is unstable if it is not stable. An stable equilibrium that is not asymp-

unstabletotically stable is sometimes called neutrally stable.
neutrally
stableThe Hartman-Grobman theorem ensures that an equilibrium x̄ of the system (11)

is asymptotically stable if the origin of the associated linear system x′ = Df(x̄) is
asymptotically stable.
For a linear system with a matrix A, the origin is stable if and only if A has no
eigenvalue with a positive real part. The origin is asymptotically stable if and only
if all eigenvalues have a negative real part. The origin is neutrally stable if A has
eigenvalues with zero real parts, but none with positive real parts. The stability of
the four types of planar equilibria can therefore be characterized by the location of
the eigenvalues

• A saddle is always unstable.
• A node is aymptotically stable if all eigenvalues are negative (the usual case),

and is unstable if all roots are positive.
• A focus is stable if the real parts of the eigenvalues are negative, and in unstable

14



if they are positive.
• A centre is always neutrally stable.

The planar equilibrium types for linear systems can be extended to nonlinear sys-
tems. For an equilibrium, we distinguish the stability and type associated to the non-
linear system (nonlinear equilibrium), and the stability and type associated to the
linearized system (linear equilibrium). A nonlinear equilibrium is an asymptotically
stable node if the linear equilibrium is an asymptotically stable node. A nonlinear
equilibrium is an asymptotically stable focus if the linear equilibrium is an asymp-
totically stable focus. A nonlinear equilibrium is a saddle if and only if it is a linear
saddle. However, if the equilibrium is a linear centre, the nonlinear equilibrium can
be stable, asymptotically stable or unstable. Indeed, the Hartman-Grobman theo-
rem says nothing about the qualitative structure of the nonlinear system when the
Jacobian matrix possesses eigenvalues with zero real parts. We note however that
is there are eigenvalues with positive real parts, the equilibrium is always unstable,
regardless of the existence of a centre subspace.
Example 1 The equation x′ = −x2 has an equilibrium x̄ the origin. It is unstable,
because for an initial condition x0 < 0 the solution diverges from 0. The linearized
equation, x′ = 0, has a centre, which is neutrally stable. We say that the equilibrium
is a nonlinear saddle and a linear centre.
Example 2 The equation x′ = −x3 has a nonlinear asymptotically stable node at the
origin, but the origin is only a linear centre.
These two examples reveal the importance of the nonlinear terms in the nonlinear
stability of linear centres.
In higher dimensions, linear equilibria can combine several planar types, for instance
a stable focus and an unstable saddle. Regardless of the dimension, negative (real)
eigenvalues play no role in determining the stability and type of equilibrium. The
characterization will be based on the dominant eigenvalues, that is, those with the
largest real parts. If the dominant eigenvalue is real and positive, we will call the
equilibrium a saddle. If it is negative, we will call the equilibrium a node. If the dom-
inant eigenvalues are complex with non zero real parts, we will call the equilibrium
a focus. If the dominant eigenvalues are imaginary, we will call the equilibrium a
linear centre.
Linear subpaces EC , ES and EU can be generalized to nonlinear systems. Assume
f(0) = 0, and let k, j, and m be the number of eigenvalues of Df(0) with negative,
positive and zero real parts, respectively. The stable manifold of an equilibrium x̄,

stable mani-
fold

denoted WS is a k-dimensional manifold tangent to ES containing all values x0 in
Rn such that ϕt(x0) → x̄ when t → ∞. The unstable manifold of an equilibrium x̄,

unstable man-
ifold

denotedWU is a j-dimensional manifold, tangent to EU , containing the values x0 in
Rn such that ϕt(x0) → x̄ when t → −∞. The centre manifold is a m-dimensional

centre mani-
fold

manifold tangent to EC . These manifold are invariant under the flow ϕ.

2.3 Bifurcations

Bifurcation analysis is a set of methods to study changes in the topological structure
Bifurcation
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of the phase portrait of a dynamical system with respect to changes in system pa-
rameters. By the Hartman-Grobman theorem, the local topological structure around
an equilibrium cannot change unless the equilibrium becomes a centre. Bifurcations
will then usually occur when the dynamical system is modified so that eigenvalues of
the linearized system cross the imaginary axis. Bifurcations at nonlinear equilibria
include: transcritical bifurcations, saddle-node bifurcations, pitchfork bifurcations,
and Hopf bifurcations. Bifurcations can also occur far from equilibirum points. In
such cases, the linear phase portrait is not sufficient to re-construct the nonlinear
phase portrait and nonlinear methods have to be used. Global bifurcations include:
homoclinic and heteroclinic bifucations, and saddle-node bifurcations on invariant
cycles. We first study bifurcations at equilibria.
For each bifurcation type, it will be useful to look at a generic, archetypical system.
This generic system is called the normal form. Since the bifurcation will occur at a
linear centre, it is enough to look at what happens at the center manifold, which is
usually of low dimension compared to the dimension of the full system. Eigenvalues
can cross the imaginary axis at 0, in such case the centre manifold will be of dimen-
sion 1, or they can cross as pairs of complex values, in such case the centre manifold
will be of dimension 2.
Around an equilibirum, the system 11 can be decomposed into a linear part Ax and
a nonlinear part F (x),

dx

dt
= Ax+ F (x), (16)

The goal is to make a suitable invertible nonlinear transformation to remove as many
linear and quadratic terms (and higher order terms if possible). This simplified form
is called the normal form. Once this is done, the higher order terms can be ne-

normal formglected, as they will not affect the qualitative structure of the phase portrait.

2.3.1 Saddle-node bifurcation

The normal form the the saddle-node bifurcation is the one-dimensional equa-
saddle-node
bifurcation

tion
dx

dt
= r + x2. (17)

The parameter r is called the bifurcation parameter. As this parameter changes the
bifurcation pa-
rameter

phase portrait undergoes qualitative changes: the appearance/disappearance of two
equilibria. The bifurcation point r = 0. At this point there is a single equilibrium
x̄ = 0.
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x

x′

r < 0

x

x′

r = 0

x

x′

r > 0

The bifurcation diagram is the one parameter-family of phase portraits with re-
bifurcation di-
agram

spect to the bifurcation parameter. The bifurcation diagram is usually represented
graphically, with the bifurcation parameter on the x-axis, and a suitable projection
of the phase space on the y-axis. The normal form of the saddle-node bifurcation is
one-dimensional, so the whole phase space can be put on the y-axis. Only the most
important trajectories should be present on the diagram. In one-dimensional sys-
tems, these are equilibria, and possible the directions of other trajectories. Equilibra
will appear as curves.

r

x

2.3.2 Transcritical bifurcation

The normal form the the transcritical bifurcation is the one-dimensional equa-
transcritical
bifurcation

tion
dx

dt
= rx− x2. (18)

As r changes the phase portrait undergoes qualitative changes: the exchange of sta-
bility of two equilibria. The bifurcation point r = 0. At this point there is a single
equilibrium x̄ = 0.
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The bifurcation diagram is

r

x

This is a common bifurcation in biological models that include “threshold” effect.
Nucleation, a process of initiation is self-organization, can often be described in

Nucleationsimple models by a transcritical bifurcation [6]. Below threshold, organization is
unlikely to occur, and the system remains at a stable basal state, corresponding to
the zero equilibrium in the normal form. At the bifurcation point The organized
state, represented by the equilibrium x̄ = r, is unstable. (r = 0) the organized state
merges with the basal state, and acquires stability for r > 0.

2.3.3 Pitchfork bifurcation

The normal form the the pitchfork bifurcation is the one-dimensional equation
pitchfork
bifurcationdx

dt
= rx− x3. (19)

As r changes the phase portrait undergoes qualitative changes: the exchange of sta-
bility of two equilibria. The bifurcation point r = 0. At this point there is a single
equilibrium x̄ = 0.
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The bifurcation diagram reveals why this bifrucation is called “pitchfork”.

r

x

The normal form of the pitchfork bifurcation involves a third-degree term, because
the quadratic term is absent. This absence means that the pitchfork bifurcation re-
quires a specific model structure to appear. Thus, unlike the transcritical and the
saddle-node bifurcations, the pitchfork bifurcation is not generic and will not play a
major role in the qualitative analysis of biological systems. The pitchfork bifurcation
is an example of a co-dimension 2 bifurcation, which, loosely stated, requires two
bifrucation parameter to appear: one to set the quadratic term to zero, and one to
change the number of equilibria.

2.3.4 Hopf bifurcation

The three previous bifurcations (saddle-node, transcritical, and pitchfork) occured as
one real eigenvalue crosses zero, and involved only equilibria. TheHopf bifurcation

Hopf bifurca-
tion

occurs when a pair of dominant complex conjugate eigenvalues cross the imaginary
axis at a non-zero value. At the bifurcation, the origin goes from a stable focus to
an unstable focus. In the generic nonlinear case, which the normal form captures, a
single limit cycle appears. A limit cycle is a non-constant, closed trajectory, which

limit cycleattracts or repel neighbouring trajectories. Limit cycles are a type of periodic solu-
tions.
The normal form for the Hopf bifurcation is best expressed in polar coordinates. Let
z be a complex value , let λ be a real number, and b a complex number. The normal
form is

dz

dt
= z

(
(λ+ i) + b|z|2

)
. (20)
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The complex value z can be re-expressed as z = reiθ, where r is a positive real
number, and θ is a real number. Let b = α+ iβ, with α, β real numbers. The normal
form becomes

dr

dt
= λr + αr3, (21)

dθ

dt
= 1 + βr2. (22)

There is a always an equilibrium at the origin (r = 0, θ undetermined). When λ and
α are of opposite signs (this implies α ̸= 0), there is a second equilibrium on r:

r̄ =

√
−λ

α
. (23)

When r = r̄, θ(t) = θ0 +
(
1 + βr̄2

)
t. The trajectories are not at equilibirum in

the plane, but evolve along a circle of radius r̄ at constant speed 1 + βr̄2. For the
bifurcation analysis, we will use λ as the bifurcation parameter, and we will assume
that β > 0. We will distinguish two cases: I) α > 0 and II) α < 0. Because we
are concerned with equilibrium solutions on r only, stability analysis reduces to a
one-dimensional problem. The Jacobian matrix at r = 0 is A0 = λ, and the matrix
at r̄ > 0 is Ar̄ = −2λ.

Case I—α > 0. The equilibrium r̄ exists for λ < 0. The origin is an asymptotically
stable focus. At λ = 0, the origin is a linear centre, and the nonlinear stability
must be determined from the nonlinear equation r′ = αx3. The positive sign of
α implies that the origin is unstable. When λ is positive, the origin is an unstable
focus. The positive equilibrium r̄, which exists for λ < 0, is unstable. In the plane,
the equilibrium corresponds to an unstable limite cycle: it is a closed trajectory that
repels nearby trajectories.

ℜ(z)

ℑ(z)

λ < 0, α > 0

ℜ(z)

ℑ(z)

λ = 0, α > 0

ℜ(z)

ℑ(z)

λ > 0, α > 0

Case I—α < 0. The equilibrium r̄ exists for λ > 0. The origin is an unstable focus.
At λ = 0, the origin is a linear centre, and the nonlinear stability must be determined
from the nonlinear equation r′ = αx3. The negative sign of α implies that the origin
is asymptotically stable. When λ is negative, the origin is an unstable focus. The
positive equilibrium r̄, which exists for λ > 0, is asymptotically stable. In the plane,
the equilibrium corresponds to an asymptotically stable limite cycle: it is a closed
trajectory that attracts nearby trajectories.
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ℜ(z)

ℑ(z)

λ < 0, α < 0

ℜ(z)

ℑ(z)

λ = 0, α < 0

ℜ(z)

ℑ(z)

λ > 0, α < 0

We are now ready to draw the bifurcation diagrams. Because the phase space is pla-
nar, we must choose a one-dimensional representation for the bifurcation diagram.
One choice would be to use r, but the real or the imaginary part of z are also sensible
choices. Here we will use a projection of the phase space on the real part of z. For
limit cycles, it is customary to draw the mininum and the maximum of the trajectory.
Here these are ±r̄ = ±

√
−λ/α.

λ

ℜ(z)

α > 0

λ

ℜ(z)

α < 0

The Hopf bifurcation occurs at λ = 0. When α is positive, the bifurcation is called
a subcritical Hopf bifurcation, and when α is negative, the bifurcation is called a

subcritical
Hopf bifurca-
tion

supercritical Hopf bifurcation.

supercritical
Hopf bifurca-
tion

2.3.5 Global bifurcations

Case study: Tumor-immune interaction (pdf, French).
Case study: Tumor-immune interation, numerical simulations with XPPAUT (pdf,
French).

3 Systems in large dimension

4 Discrete dynamical systems
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5 Delay differential equations

Models of self-regulating systems often include discrete delays in the feedback loop
to account for the finite time required to perform essential steps before the loop
is closed. Such mathematical simplifications are especially welcome in biological
applications, where knowledge about the loop steps is usually sparse. This includes
maturation and growth times needed to reach reproductive age in a population [10,
12], signal propagation along neuronal axons [4], and post-translational protein
modifications [3, 14]. Introduction of a discrete delay in an ordinary differential
equation can destabilize steady states and generate complex dynamics, from limit
cycles to chaos [11]. Although the linear stability properties of scalar equations with
single discrete delays are fairly well characterized, lumping intermediate steps into
a delayed term can produce broad and atypical delay distributions that deviate from
discrete delays, and it is still not clear how that affects the stability of the equation
[5].
The delayed feedback differential equation of the form

ẋ = F
(
x,

∫ ∞

0
x(t− s)dη(s)

)
is a model paradigm in biology and physics [1, 2, 7, 13, 14, 16]. The first argument of
F is the instantaneous part of the loop and the second one, the delayed or retarded
part, which closes the feedback loop. The function η is a cumulative probability
distribution function, it can be continuous, discrete, or a mixture of continuous and
discrete elements. In most cases, the stability of the above equation is related to its
linearized equation about one of its steady states x̄,

ẋ = −ax− b

∫ ∞

0
x(t− s)dη(s) (24)

where the constants a and b ∈ R are the negatives of the derivatives of the instanta-
neous and the delayed parts of F at x = x̄,

a = − ∂

∂x
F (x, y)

∣∣∣
x=y=x̄

and b = − ∂

∂y
F (x, y)

∣∣∣
x=y=x̄

.

Let B be the vector space of continuous and bounded functions on [−∞, 0] → R.
With the norm ||ϕ|| = supθ∈[−∞,0] |ϕ(θ)|, ϕ ∈ B, B is a Banach space.
Consider the linear retarded functional differential equation

ẋ = −ax− b

∫ ∞

0
x(t− s)dη(s) (25)

with real constants a and b. We assume that η is a cumulative probability distribution
function: η : [0,∞) → [0, 1] is monotone nondecreasing, right-continuous, η(s) = 0
for s < 0 and η(+∞) = 1. The corresponding probability density functional f(s) is
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given by the generalized derivative dη(s) = f(s)ds. The following definitions and
Theorem follow from Stépán [17].
Definition 4 [Solution] The function x : R → R is a solution of equation (25) with
the initial condition

xσ = ϕ, σ ∈ R, ϕ ∈ B, (26)
if there exists a scalar δ > 0 such that xt ≡ x(t + θ) ∈ B for θ ∈ [−∞, 0] and x
satisfies Eqs. (25) and (26) for all t ∈ [σ, σ + δ).
The notation xt(σ, ϕ) is also used to refer to the solution of equation (25) associated
with the initial conditions σ and ϕ.
Definition 5 [Stability] The trivial solution x = 0 of equation (25) is stable if for
every σ ∈ R and ε > 0 there exists δ = δ(ε) such that ||xt(σ, ϕ)|| < ϵ for any t ≥ σ
and for any function ϕ ∈ B satisfying ||ϕ|| < δ. The trivial solution x = 0 is called
asymptotically stable if it is stable, and for every σ ∈ R there exists ∆ = ∆(σ) such
that limt→∞ ||xt(σ, ϕ)|| = 0 for any ϕ ∈ B satisfying ||ϕ|| < ∆.
Definition 6 [Characteristic equations] The function D : C → C given by

D(λ) = λ+ a+ b

∫ ∞

0
e−λsdη(s),

is called the characteristic function of the linear equation (25). The equationD(λ) =
0 is called the characteristic equation of (25).
The following theorem [8, 17] gives a necessary and sufficient condition for the
(linear) asymptotic stability of x = 0.
Theorem 3 Suppose that there exists ν > 0 such that the following inequality is satis-
fied: ∫ ∞

0
eνsdη(s) < ∞. (27)

The solution x = 0 of equation (25) is (exponentially) asymptotically stable if and only
if all roots of the characteristic equation D(λ) = 0 have ℜ(λ) < 0.
In particular, when the delay is bounded, i.e. when there is h > 0 such that dη(s) = 0
for all s > h, the condition is satisfied, and asymptotic stability is determined by the
characteristic equation.

5.1 Discrete Delay Differential Equations

When η represents a single discrete delay (η a heaviside function), the asymptotic
stability of the zero solution of equation (25) is fully determined by the following
theorem, originally due to Hayes [9]. Let η(s) = ⊮[τ,+∞), for a constant τ > 0 then
equation (25) simplifies to

ẋ = −ax− bx(t− τ). (28)

The generalised differential of η is a Dirac mass centered at τ : dη(s) = δ(s −
τ)ds.
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Theorem 4 (Hayes) Let the delay probability density be f(s) = δ(s−τ), a Dirac mass
at τ . The zero solution of equation (25) is asymptotically stable if and only if a > −b
and a ≥ |b|, or if b > |a| and

τ <
arccos(−a/b)√

b2 − a2
.

More generally, the following statements always hold for any delay distribution:
(i) When a ≤ −b, the characteristic equation of equation (25) has a positive real

root.
(ii) When a ≥ |b| and a > −b, the characteristic equation of equation (25) has no

root with positive real part.

Proof The delay τ being bounded, we can use the characteristic equation to study
the asymptotic statibility of equations (28). This means that we are looking for
exponential solutions, just as in the case of ordinary differential equations. Assume
there is a solution x(t) = exp(λt), for some complex value λ. Then, the characteristic
equation is

ẋ = λx(t) = −ax(t)− bx(t− τ),

λeλt = −aeλt − beλ(t−τ),

λ = −a− be−λτ .

The characteristic equation is trancendental, and possesses an infinity of roots for
τ > 0, always in pair of complex conjugates. When τ = 0, there is a single root
located at λ = −a − b. This root is negative when a > −b, zero when a = −b and
positive when a < −b. By continuity of the characteristic equation in τ , roots cannot
appear in the right-half complex plane. Roots λ = µ + iω must be located on the
following curve (figure 3),

ω = ±
√

b2e−2µτ − (µ+ a)2.

When τ is continuously increased from zero, the only way stability can change is
when roots cross the imaginary axis, i.e. when ℜ(λ) = 0.
For a = −b, the dominant root λ = 0 for all τ ≥ 0. For a < −b, there exists a positive
root λ > 0 for all τ ≥ 0. For a > −b and τ sufficiently small, all roots have negative
real parts. If there is a critical value τ∗ such that a pair of roots crosses the imaginary
axis, then the delay can destabilise the equilibrium. We obtain , after setting λ = iω,
and separating the real and imaginary parts of the characteristic equation,

a+ b cos(ωτ) = 0,

ω − b sin(ωτ) = 0.

The equations can be solved for ω by summing up the squares for get rid of the
trigonometric functions. Therefore, there is a pair of imaginary roots when

τ = τ∗ =
arccos(−a/b)

ω
,
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Figure 3. Possible locations of the roots of the characteristic equations, for a = 0.5, 1.0 and 1.5, and
b = −1.

where ω =
√
b2 − a2. To finish the proof, it remains to show that the pair of imaginary

roots becomes, and stay positive, when τ > τ∗. To do that, we need to check that
the derivative dℜ(λ)/dτ is always positive at λ = ±iω. The derivative of λ wrt to τ
is obtained implicitly by differentiating the characteristic equation. Let λ′ = dλ/dτ ,
we have

λ′ + be−λτ
(
−τλ′ − λ

)
= 0.

At an imaginary root, iω + a+ be−iωτ = 0, so

λ′
(
1 + τa+ iωτ

)
= iω

(
−a− iω

)
.

It follows that

λ′ =
iω

(
−a− iω

)(
1 + τa+ iωτ

) ,
=

(
−iaω + ω2

)(
1 + τa− iωτ

)
(1 + τa)2 + ω2τ2

,

=
ω2 − i

(
aω + a2τω + ω3

)
(1 + τa)2 + ω2τ2

.

The real part of the derivative is strictly positive, since ω2 = b2 − a2. This completes
the proof.
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Note When τ increases further, there will be several other pairs of root crossing
to the right half-complex plane. None of these roots can cross back to the left half-
plane. Another way to look a the stability of equation 28 is by fixing the value of
τ and finding the region of stability in the (a, b)-plane. This is called a stability
chart (figure 4). The characteristic equation can be solved parametrically for a and

stability chart
b:

b(ω) =
ω

sin(ωτ ,

a(ω) = −ω
cos(ωτ)
sin(ωτ) .

The parameters have a periodic denominator. The zeros of the denominator delimit
branches of the parametric curve (a, b). Only branches with b > 0 are relevant here,
and these branches are well-ordered. The first branch corresponds to the interval
ω ∈ [0, π/τ), and this is the branch that determines the boundary of stability (figure
4, it dashed curve).

6 Tools and software
• XPPAUT oldish but still widely used
• MATCONT Matlab package for ODEs
• DDE-BIFTOOL Matlab package for delay differential equations
• PyDSTool Dynamical systems in Python (ODEs and algebraic differential equa-

tions, hybrid systems). Based on numpy et scipy
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