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Chapter - Delay differential equations

Models of self-regulating systems often include discrete delays in the feedback loop to account for
the finite time required to perform essential steps before the loop is closed. Such mathematical
simplifications are especially welcome in biological applications, where knowledge about the loop
steps is usually sparse. This includes maturation and growth times needed to reach reproductive age
in a population [1,2], signal propagation along neuronal axons [3], and post-translational protein
modifications [4,5]. Introduction of a discrete delay in an ordinary differential equation can destabilize
steady states and generate complex dynamics, from limit cycles to chaos [6]. Although the linear
stability properties of scalar equations with single discrete delays are fairly well characterized, lumping
intermediate steps into a delayed term can produce broad and atypical delay distributions that deviate
from discrete delays, and it is still not clear how that affects the stability of the equation [7].

The delayed feedback differential equation of the form

ẋ = F
(
x,

∫ ∞

0
x(t − s)dη(s)

)
is a model paradigm in biology and physics [5,8–12]. The first argument of F is the instantaneous
part of the loop and the second one, the delayed or retarded part, which closes the feedback loop.
The function η is a cumulative probability distribution function, it can be continuous, discrete, or
a mixture of continuous and discrete elements. In most cases, the stability of the above equation is
related to its linearized equation about one of its steady states x̄,

ẋ =−ax −b
∫ ∞

0
x(t − s)dη(s) (1)

where the constants a and b ∈ R are the negatives of the derivatives of the instantaneous and the
delayed parts of F at x = x̄,

a =− ∂

∂x
F (x, y)

∣∣∣
x=y=x̄

and b =− ∂

∂y
F (x, y)

∣∣∣
x=y=x̄

.

Let B be the vector space of continuous and bounded functions on [−∞,0] → R. With the norm
||φ|| = supθ∈[−∞,0] |φ(θ)|, φ ∈ B , B is a Banach space.

Consider the linear retarded functional differential equation

ẋ =−ax −b
∫ ∞

0
x(t − s)dη(s) (2)
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with real constants a and b. We assume that η is a cumulative probability distribution function:
η : [0,∞) → [0,1] is monotone nondecreasing, right-continuous, η(s) = 0 for s < 0 and η(+∞) = 1. The
corresponding probability density functional f (s) is given by the generalized derivative dη(s) = f (s)d s.
The following definitions and Theorem follow from Stépán [13].

Solution The function x :R→R is a solution of equation (2) with the initial condition

xσ =φ, σ ∈R, φ ∈ B , (3)

if there exists a scalar δ> 0 such that xt ≡ x(t +θ) ∈ B for θ ∈ [−∞,0] and x satisfies Eqs. (2) and
(3) for all t ∈ [σ,σ+δ).

The notation xt (σ,φ) is also used to refer to the solution of equation (2) associated with the initial
conditions σ and φ.

Stability The trivial solution x = 0 of equation (2) is stable if for every σ ∈ R and ε > 0 there exists
δ= δ(ε) such that ||xt (σ,φ)|| < ε for any t ≥σ and for any function φ ∈ B satisfying ||φ|| < δ. The
trivial solution x = 0 is called asymptotically stable if it is stable, and for every σ ∈R there exists
∆=∆(σ) such that limt→∞ ||xt (σ,φ)|| = 0 for any φ ∈ B satisfying ||φ|| <∆.

Characteristic equation The function D :C→C given by

D(λ) =λ+a +b
∫ ∞

0
e−λs dη(s),

is called the characteristic function of the linear equation (2). The equation D(λ) = 0 is called
the characteristic equation of (2).

The following theorem [13,14] gives a necessary and sufficient condition for the (linear) asymptotic
stability of x = 0.

Theorem Suppose that there exists ν> 0 such that the following inequality is satisfied:∫ ∞

0
eνs dη(s) <∞. (4)

The solution x = 0 of equation (2) is (exponentially) asymptotically stable if and only if all roots
of the characteristic equation D(λ) = 0 have ℜ(λ) < 0.

In particular, when the delay is bounded, i.e. when there is h > 0 such that dη(s) = 0 for all s > h, the
condition is satisfied, and asymptotic stability is determined by the characteristic equation.

Discrete Delay Differential Equations

When η represents a single discrete delay (η a heaviside function), the asymptotic stability of the zero
solution of equation (2) is fully determined by the following theorem, originally due to Hayes [15]. Let
η(s) = 1[τ,+∞), for a constant τ> 0 then equation (2) simplifies to

ẋ =−ax −bx(t −τ). (5)

Stability of the scalar linear equation with a discrete delay

The generalised differential of η is a Dirac mass centered at τ: dη(s) = δ(s −τ)d s.

Theorem (Hayes) Let the delay probability density be f (s) = δ(s −τ), a Dirac mass at τ. The zero
solution of equation (2) is asymptotically stable if and only if a >−b and a ≥ |b|, or if b > |a| and

τ< arccos(−a/b)p
b2 −a2

.
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More generally, the following statements always hold for any delay distribution:

(i) When a ≤−b, the characteristic equation of equation (2) has a positive real root.

(ii) When a ≥ |b| and a >−b, the characteristic equation of equation (2) has no root with positive
real part.

Proof. The delay τ being bounded, we can use the characteristic equation to study the asymptotic
statibility of equations (5). This means that we are looking for exponential solutions, just as in the case
of ordinary differential equations. Assume there is a solution x(t ) = exp(λt ), for some complex value λ.
Then, the characteristic equation is

ẋ =λx(t ) =−ax(t )−bx(t −τ),

λeλt =−aeλt −beλ(t−τ),

λ=−a −be−λτ.

The characteristic equation is trancendental, and possesses an infinity of roots for τ> 0, always in pair
of complex conjugates. When τ= 0, there is a single root located at λ=−a −b. This root is negative
when a >−b, zero when a =−b and positive when a <−b. By continuity of the characteristic equation
in τ, roots cannot appear in the right-half complex plane. Roots λ= µ+ iω must be located on the
following curve (figure 1),

ω=±
√

b2e−2µτ− (µ+a)2.

When τ is continuously increased from zero, the only way stability can change is when roots cross the
imaginary axis, i.e. when ℜ(λ) = 0.
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Figure 1: Possible locations of the roots of the characteristic equations, for a = 0.5,1.0, and1.5, and
b =−1.
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For a =−b, the dominant root λ= 0 for all τ≥ 0. For a <−b, there exists a positive root λ> 0 for all
τ≥ 0. For a >−b and τ sufficiently small, all roots have negative real parts. If there is a critical value τ∗
such that a pair of roots crosses the imaginary axis, then the delay can destabilise the equilibirum. We
obtain , after setting λ= iω, and separating the real and imaginary parts of the characteristic equation,

a +b cos(ωτ) = 0,

ω−b sin(ωτ) = 0.

The equations can be solved forω by summing up the squares for get rid of the trigonometric functions.
Therefore, there is a pair of imaginary roots when

τ= τ∗ = arccos(−a/b)

ω
,

where ω=
p

b2 −a2. To finish the proof, it remains to show that the pair of imaginary roots becomes,
and stay positive, when τ> τ∗. To do that, we need to check that the derivative dℜ(λ)/dτ is always pos-
itive at λ=±iω. The derivative of λ wrt to τ is obtained implicitly by differentiating the characteristic
equation. Let λ′ = dλ/dτ, we have

λ′+be−λτ
(
−τλ′−λ

)
= 0.

At an imaginary root, iω+a +be−iωτ = 0, so

λ′
(
1+τa + iωτ

)
= iω

(−a − iω
)
.

It follows that

λ′ = iω
(−a − iω

)(
1+τa + iωτ

) ,

=
(−i aω+ω2

)(
1+τa − iωτ

)
(1+τa)2 +ω2τ2 ,

= ω2 − i
(
aω+a2τω+ω3

)
(1+τa)2 +ω2τ2 .

The real part of the derivative is strictly positive, since ω2 = b2 −a2. This completes the proof.

Note When τ increases further, there will be several other pairs of root crossing to the right half-complex
plane. None of these roots can cross back to the left half-plane. Another way to look a the stability of
equation 5 is by fixing the value of τ and finding the region of stability in the (a,b)-plane. This is called
a stability chart (figure 2). The characteristic equation can be solved parametrically for a and b:

b(ω) = ω

sin(ωτ
,

a(ω) =−ωcos(ωτ)

sin(ωτ)
.

The parameters have a periodic denominator. The zeros of the denominator delimit branches of
the parametric curve (a,b). Only branches with b > 0 are relevant here, and these branches are
well-ordered. The first branch corresponds to the interval ω ∈ [0,π/τ), and this is the branch that
determines the boundary of stability (figure 2, dashed curve).
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Figure 2: Stability chart for the scalar linear equation with a discrete delay.
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Systems with a Discrete Delay

Differential equations often come as a system of equations on the state vector X ∈Rn . If we assume
that there is a single discrete delay, the system can be expressed as

Ẋ (t ) = F
(

X (t ), X (t −τ)
)
.

The linear stability analysis around a steady state X̄ follow the same lines as above. Linearisation is
performed given that now F is a function from R2n →Rn , accounting for the retarded arguments. The
linearised system will therefore take the form

d X

d t
= DX F (X ,Y )

∣∣
X=Y =X̄ X +DY F (X ,Y )

∣∣
X=Y =X̄ X (t −τ) (6)

where the matrices DX F and DY F are the Jacobian matrices with respect to the instantaneous
and delayed arguments, respectively. Call the Jacobian matrices A = DX F (X ,Y )

∣∣
X=Y =X̄ and B =

DY F (X ,Y )
∣∣

X=Y =X̄ . The characteristic equation is obtained by letting X = X0eλt , for some vector
X0 ∈Rn ,

d X

d t
=λeλt X0 = eλt AX0 +eλ(t−τ)B X0, (7)

The exponential terms cancel out, leaving the eigenvalue problem

λX0 =
(

A+e−λτB
)

X0. (8)

The characteristic equation now reads D(λ) = det
(

A+e−λτB −λI
)
= 0. The determinant has the form

of a quasi-polynomial P (λ)+Q(λ)e−λτ), where P and Q are polynomials, with the degree of P equal to
n and the degree of Q strictly less than n. For n = 1, with the notation of the previous section, we have
P (λ) =λ+a and Q(λ) = b.

Stability analysis for systems is not as straightforward as in the scalar case. The delay still has an
important role in the location of the roots of the characteristic equation, but now roots can cross the
imaginary axis either way, making it difficult to count the number of roots with positive real parts.
Particular cases can often be treated though.

Examples

Mackey-Glass Equation

The Mackey-Glass equation is a classic delay equation, originally developed to account for the seem-
ingly choatic dynamics in white blood cell numbers in some leukemia patients. The equation for the
total white blood cell count (in cells/L blood) is

d x

d t
= f0

x(t −τ)

1+xh(t −τ)
−γx. (9)
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Figure 3: Mackey-Glass equation.
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