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Abstract

In this work we propose and investigate a family of models, which admits as particular cases some well known mathematical
models of tumor-immune system interaction, with the additional assumption that the influx of immune system cells may be a
function of the number of cancer cells. Constant, periodic and impulsive therapies (as well as the non-perturbed system) are
investigated both analytically for the general family and, by using the model by Kuznetsov et al. [V.A. Kuznetsov, |.A. Makalkin,
M.A. Taylor, A.S. Perelson, Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis,
Bull. Math. Biol. (1994) 56(2) 295-321), via numerical simulations. Simulations seem to show that the shape of the function
modeling the therapy is a crucial factor only for very high values of the therapy pEriwHereas for realistic values of the
eradication of the cancer cells depends on the mean values of the therapy term. Finally, some medical inferences are proposec
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction to be useful in oncology not only in explaining ba-
sic phenomend6,7], but also in helping clinicians
Millions of people die from cancer every yefs. to better and more scientifically plan the schedules

And worldwide trends indicate that millions more will  of the therapieg7,8]. An interesting therapeutic ap-
die from this disease in the futuf2]. Great progress  proach is immunotherapl4,5], consisting in stimu-
has been achieved in fields of cancer prevention and lating the immune system in order to better fight, and
surgery and many novel drugs are available for med- hopefully eradicate, a cancer. In particular, in this pa-
ical therapieg3-5]. Biophysical models may prove per | will be referring to generic immunostimulations,
for example, via cytokines, but for the sake of sim-
~* Tel.: +39 02 57489819; fax: +39 025 7489813. plicity | will use the term “immunotherapy”. The ba-
E-mail addressesalberto.d’onofrio@ieo.it, Z20263@ieo.it. sic idea of immunotherapy is simple and promising,
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but the results obtained in medical investigations are non-dimensional forni22]:
globally controversia[9—12], even if in recent years

there has been evident progress. From a theoretical® = %X —X¥ ©)
point of view, a large body of research has been de- ) 1
voted to mathematical models of cancer-immune sys- Y =Xy — —y —kx+ 0 + p(1) 4)

tem interactions and to possible applications to cure _ . _
the diseasq13,14,16—24](and references therein). (in short notation ', y') = C(x, y)). The function
Analyzing the best known finite dimensional models P(t) > Ois assumed periodic with perigdand it mod-

[13,14,16,20,23]we note that their main features are €ls the effect of immunotherapy. The model has been
the following: studied in depth both in the case of absence of therapy

and in the case of therapy by using the test function

e existence of a tumor free equilibrium; p(r) = 0.5F(1 + cos(drv)).

e depending on the values of parameters, there is the. tThe n’]:odel shdovvls twobeqU|(Ij|b3a (Oxfh 0; which
possibility that the tumor size may tend 4> or is tumor-free) and also unbounded growth. However,

o macrosconic v e Sslens) an Saions negse souors o
e possible existence of a “small tumor size” equilib- fact: X, which i physically P '

rium, which coexists with the tumor free equilib- act.

rum. C(x,0)=ax, o + p(t) — kx (5)

An “accessory” feature is the existence of limit cy- IMplies that for x > (o + pmay)/k it is C(x, 0).
cles[16]. From this rough summary, one may under- (0. —1) > 0, andy(r) becomes negative in finite times.
stand that the puzzling results obtained up to now by Furthermore, the sepqnd equilibrium point is a conse-
immunotherapy9] may be strictly linked to the com-  duénce of the negativity af — kx. ,
plex dynamical properties of the immune system-tumor 1€ model in[22], though it has this problem of
competition. In general, it happens that the cancer-free 12ck of physical consistency, is, however, of great in-
equilibrium coexists with other stable equilibria orwith ~ {€rest because the killing of lymphocytes is seen as
unbounded growth, so that the success of the cure de-function of thex variable. Alternatively, the influx of

pends on the initial conditions, and — even theoretically [Ymphocytes may be thought of as a function of the
_itis not always granted. entity of the disease, which we will denote@ér). In-

deed, it has been observed that in some cases cancer
progression may cause generalized immunosuppres-
sion (se€d?25], and references therein). Thus,[R22]
it is Q(x) = o(1 — (k/o)x), which may be read as a
first order Taylor approximation of a more general non-
increasing function.

However, a general influx function is only one of
the possible modifications of mod€) and (4) there
may be others, which are also biologically reasonable.
One might take into the account many factors: different

2. A general family of models and its properties

In [22], Sotolongo-Costa et al. proposed the follow-
ing very interesting Volterra-like model (similar to the
one in[20]) for the interaction between a population
of tumor cells (whose number is denoted X¥yand a
population of lymphocyte cellsy] :

X' = aX — bXY (1) functional forms for the interac?ion term, saturatiqn
in the predation term and, mainly, non-exponential
Y =dXY — fY — kX +u+ P(t), 2) growth of the cancer: logistic, gompertzian, gener-

. ~ alized logistic, etc....All these modifications are
where the tumor cells are supposed to be in exponential reasonable and useful. Thus, | think that it might be

growth (which is, however, a good approximation only yseful to define and study the following general family
for the initial phases of the growth) and the presence of models:

of tumor cells implies a decrease of the “input rate” of )
lymphocytes. Systend) and (2)may be rewrittenin ~ *" = x(af(x) — ¢(x)y) (6)
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y = B(x)y — n(x)y + ogq(x) + 6(t) 7

where:

e x andy are the non-dimensionalized numbers of,

respectively, tumor cells and of effectors cells of

immune system;

0 < f(0) < +o0, f(x) <0 and in some relevant

cases we shall suppose that it exists ar 8 <

+o0 such thatf(x) = 0), Iir&xf(x) = 0. Thus,
X—>

f(x) summarizes many widely used models of tu-
mor growth rates, such as the Exponential model:
f(x) =1 [7], the Gompertz: :f(x) = log(A/x)
[7,50] and its generalizationf,50], the Logistic
model: f(x) = 1 — x/A [50], the Hart—-Schochat—
Agur: f(x) =x77,0 < y < 1[26], the von Bertan-
laffy: f(x) = x~1/3 — b [50,53] the Guiot’s et al.
model: f(x) = x34 —b [27], the linear growth
model by Bru et al[28] which may be written as
follows: f(x) = x~1/3 (note that it may be consid-
ered a particular case of the von Bertalaffy model
and of the Hart—Shochat—Agur model), etc.;

$(x) >0, (0)=1, ¢'(x) <0 and x¢(x) > [ <
+00;

g(x) is such thaty(0) = 1 (as a consequenee=
0(0)) and it may be non-increasing or also initially
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the immune system, therefore the tumor may be indi-
cated as “highly aggressive”/“lowly immunogenic”;
Variable sign¥(x): since in such a case the destruc-
tion of cells may be compensated by the stimulatory
effect, we will refer to such a tumors as “lowly ag-
gressive”/“highly immunogenic”.

The above model includes as particular cases the
models [13,14,20,23] For instance, the Stepanova
model [13] is such thatf(x) = 1, ¢(x) = 1, B(x) =
Brx, g(x) = 1 andu(x) = po + u2x?; the de Viadar—
Gonzalez modgR3] is similar, but: f(x) = log(K/x).

Note that Nani and Freedman proposed an inter-
esting model of adoptive cellular immunotherapy in
which generic functions are us¢t®]. However, their
approach differs from ours since in their model the pro-
liferation of cells of the immune systems is not stim-
ulated by cancer cells. In other words in the Nani and
Freedman model the interaction tumor cells —immune
system is only destructive for immune cells. Further-
more, intheir model the “loss rates” are proportional (in
our notationwe mightwritg(x) = «(0) 4+ const(x)).

In the absence of treatment, systegi@sand (9)ad-
mits the existence of a cancer free equilibrium €F
(0, 0/¥(0)).

If f(0)<+oc, we have that if o> og =

increasing and then decreasing, i.e. we may assumea¥(0)f(0)/¢(0) CF is locally asymptotically sta-

that either the growth of tumor decreases the influx
of immune cells or that, on the contrary, it initially
stimulates the influx);

* B(x) = 0,p(0)=0andp'(x) = 0;

e u(x) > 0andu'(x) > 0.

For the sake of simplicity we define the following
function¥(x) = u(x) — B(x) and write:
x' = x(af (x) — ¢(x)y)

Y = =W (x)y + aq(x) + 0(2).

(8)
9)

¥ (x)is assumed to be positive, otherwise it may be pos-
itive in [0, x1) U (x2, +00) with ¥(x1) = ¥(x2) = 0.

We may assume that it has an absolute minimum in
[0, +00). We may use¥(x) to classify the tumors

depending on their degree of aggressiveness against

the immune system:

e Y(x) > 0:insuch acase the ability of destroying im-
mune cells is never won by the stimulatory effect on

ble (LAS), unstable ifo < o¢,. Biologically, o > o¢r
means that the immune system works very well and
that it is able to destroy small tumors. On the contrary
o ~ 0 means that there is immunodepression.

Furthermore, when ¢(x) = constant=¢ and
¥(x) =¥* < too, if o>0"=af(0)¥"/(gming)
it follows that CF is globally asymptotically sta-
ble (GAS). In fact, fromy = —¥(x)y + og(x) >
—U*y+ogmin if follows that asymptotically
y(t) = ogmin/¥*. As a consequence, asymptotically
x' < (af(0) — p(ogmin/¥*))x, i.e. if o>o* it is
x(t) = 0= y(¢) = o/¥(0).

A relevant problem, up to now, is that the im-
munotherapeutic agents are characterized by strong
toxicity, thuso > o* might be too biologically high,
even in cases in which when itis mathematically small.
If f(0) = +o0, as in the Gompertzian case (used,
for example, inf23]) and in other tumor growth mod-
els, then CF is unstable anyway (as previously stressed
for the particular mod€l23]) because in such a cases
the derivative ofcf(x) atx = 0 is +oc. In the light of
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[23] and of our generalization, this implies that the im- that Gompertz's model fitted their data very well, but
mune system would never be able to totally suppress slightly less well than the Piantadosi mogteh], which
even the smallest tumor cell aggregates, which is a very has finitef(0). Furthermore, in their fittings, it was not
strong inference. This instability result deserves some possible to discriminate between the pure Gompertz
comments because it has deep medical implications: model and the Gomp-Ex model. Demicheli et al. used
the impossibility to completely recover from any type Gomp-Ex model on in vitro and in vivo data obtaining

of tumors whatsoever. On the contrary, it is commonly
held that the immune system may be able, in some
cases, tokill arelatively small aggregate of cancer cells.
In the background of all cancer therapies (which are of
finite duration) there is the implicit hypothesis that the
drug will kill the vast majority of the malignant cells
and that the relatively few residual cells may in some
cases be killed by the immune systéR]. Accepting
this hypothesis, the equilibrium CF should have the
possibility to be LAS and, as a consequence, for small
x the functionf(x) should be bounded.

The modeling of cancer by means of the Gom-
pertz law of growth was introduced in early sixties by
Laird [33,34] She conducted pioneering data-fitting
work using a vast amount of real data and justified
the law in terms of increasing mean generation time.
There is much research showing that the Gompertzian
model fits data well from experimental and in vivo tu-
mors[36,35,37—41]From a theoretical point of view,
Gyllenberg and Webl42], Calderon and Kwembe
[43], Calderon and Afenyf4,45] proposed physico-
mathematical justification of the Gompertz model. Fur-
thermore, some interesting physical properties of the
Gompertz model have been elucidated by Konarskiand
Molski [46] and by Konarski and Waliszews7].

However, the doubling time of a population of cells
cannot be lower than the minimal time needed by a
cell to divide, which is obviously non-null. This bio-
logical constraint is in contrast with the unbounded-
ness of f(x) in the Gompertz and other models, as
stressed by Whelddi7]. More recently, inconsistency
at low number of cells have been recognized by Cas-
torina and Zappala’ in their derivation of the Gomper-

tizan model based on methods of statistical mechanics

[48,49] They showed that the validity of the Gom-
pertz model starts above a minimum threshold for the
number of cells, whereas under the threshold there is
exponential growth. In other words, they derived bio-
physically the Gomp-Ex model proposed on biolog-
ical ground in[54,7]. Using data from multicellular
tumor spheroids, Marusic et al. performed a system-
atic comparison of many modeJS0], which showed

results strongly supporting this modg2]. Other com-
parisons may be found [44,53]. Moreover, in general,
van Leeuwen and ZonnevdHgil] claims that it may be
not possible to discriminate between exponential, lo-
gistic and gompertzian models in the early phases of
growth. Recent experimental studies conducted by Bru
and coworkers support an initial phase of exponential
growth [28]. Summarizing, | consider the results by
de Vladar and Gonzalez (and our extensions) to be
very valuable, but they may be read in a dichotomic
way:

e A tumor is permanent: the innate immune surveil-
lance is never able to completely eradicate even the
smallest tumor.

Since thereis relevant evidence that the immune sys-
tem is able in some cases to eliminate small tumors
[57,58] (as we will see in following sections, the
ability of eradicate the disease or not depends on
initial conditions), the properties of the de Vladar—
Gonzalez model (and of our extension) may be seen
as an evidence that Gompertzian and other models
characterized by (0) = +o00 are not appropriate for
very small tumors, in coherence with,48,49,28]

In case of the absence of influx of immune cells
(g(x) = 0) and for laws of growth in which exists,
there is a different particular equilibrium point, which
we shall call “immune free”: I (x, 0), which is
LAS.

Other multiple non-null equilibria may be found by
finding the positive intersection of the two nullclines:

f()

ye(x) = am (10)
i) = . (1)

The functionsyc(x) andy;(x) are useful in the deter-
mination of the LAS of the equilibria , since the char-
acteristic polynomial of the Jacobian, calculated at a
given equilibrium point ., y.), is:
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22 + (P(x.) — xe(lb(xe)y/c(xe)))‘

+ W (xe)xep(xe)(—ye(xe) + yi(xe)) = O. (12)
So the LAS condition is:
W e / /
el < ok AND ) 2 ). (1)

Note that the first part of the AND condition is auto-
matically fulfilled wheny,(x) < 0 (because, cannot
lie in an interval wher&’(x) < 0), whereas the second
part has a straightforward geometrical interpretation.
Finally, itis interesting to note that the above family
of model may admit limit cycles if (x) = 1 (exponen-
tial growth) andy(x) is identically null forx > x, with
x4 < x1. Infact, in such a case there is the equilibrium
point (x1, @) whose characteristic polynomial is:

AM+h?=0, h®:=-x1¥'(x)a>0 (14)

A. d’Onofrio / Physica D 208 (2005) 220-235

y < yWAX}is positively invariant and adsorbing. Thus,
since inH : x' > x¢(x)(yc(xm) — YWAX) > 0, it fol-
lows readily thate(r) — +oc0. O

Proposition 2. If ¥(x) > 0,itexistsx suchthatf(x) =
0, yo(x) < 0 and there is a unique LAS equilibrium
pointS = (x., y.) , then S is GAS

Proof. Let us define yY"AX := Maxyepo,7y1(x)
and y)"" := Min¢[o,5ys(x). Furthermore, iff(0) >
YWAX Jet it be £ = y; L(MAX), if £(0) < YWAX et it
be = 0. Sincew (x)(yT'" — y) <y < WM —

y) it is easy to see that the s& = {(x, y)|x < x <
XAND yMn < y < yWAX} s positively invariant and
adsorbing and contairs Since we have ruled out the
possibility that there may be limit cycles, as a conse-
quenceSis GAS O

In effect, some cases of sustained oscillations (or slow proposition 3. When¥(x) > 0 and yi-(x) is non-

oscillations with very small damping) have been re-
ported in the medical literatuf@9-31] Periodic so-
lutions in absence of influx of immunocompetent cells
are predicted also if16].

On the contrary, ify,(x) < 0 (for example when
¢(x) is constant), by applying the Dulac—Bendixon the-
orem with multiplicative factor A(xy¢(x)) (as in the
specific model$14,20)) one obtains that the presence
of limit cycles is not possible. In fact:

. 1 , ,
Div (Wm@ (v, ). ¥ (. y)))
q(x)

o)
y x¢(x)y?

<0

(15)

2.1. The global behavior

In some important cases, it is possible to study the
global behavior of the family, by means of differential
inequalities and of the Poincare—Bendixon trichotomy
[56]. We may state the following simple propositions:

Proposition 1. When¥(x) > 0 and f(x) =1 and
ye(x) = 0,ifitis y;(x) < yc(x) thenx(r) — +oc.

Proof. Letus defing/MAX

‘= Max,cRr, yr(x) andxy
such thaty;(xm) = yy'AX. Ifitis y;(x) < ye(x) it is

easy to show thatthe sBt= {(x, y)|x > xm ANDO <

constant and there is a unique LAS equilibrium point
S = (x¢, ye), if it holds also that

Max
Yc

then S is GAS

> yIMaX (16)

Proof. When f(x) is unbounded, one may see that
there may be a relative minimum followed by a rela-
tive maximum in (Qx). On the contrary, wherf(x)

is bounded, there is an absolute maximum. Calling
now x* the point in whichyc(x) is (absolutely or rela-
tively) maximum, one has th&* = {(x, y)|x* <x <
XAND yMn < y < yWAX} s positively invariant and
adsorbing, contain§. Since inR* it is y’C(x) <0(
which implies that closed orbits are ruled out), as a
consequence&must be GAS. O

Proposition 4. Whenw(x) > Oandy;(x) > yc(x) for
x € [0, x] then CF is GAS

Proof. Itis a particular case dProposition 2 [
Proposition 5. If ¥(x) > 0, there does not exist &
such thatf(x) = 0, y,(x) < 0 and there is a unique
LAS equilibrium point§ = (x., y.) , then S is GAS

Proof. Letus defingM*X := Max,c[0,+00)y1 (). Let
us consider a poinP, = (xg, 0) with xo > x,, and the



A. d’Onofrio / Physica D 208 (2005) 220-235

orbit starting from it, which intersects the curye(x)
in the pointP, = (x4, yc(x4))- Let us consider the fol-
lowing points P, = (x4, yY'%), P. = (0, yYX) and
P; = (0, 0). The arc of orbitP, P, and the straight seg-
mentsP, P, P, P., P.P; andP; P, bounds aninvariant
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Proposition 8. When: the sign of/'(x) is variable
there is nox such thatf(x) = 0, yc(x) < 0 and there
is a uniqgue LAS equilibrium point S then S is GAS

Proof. The proofis easily obtained by applying meth-

set for our system. As a consequence of the Bendixon—ods ofPropositions 7 and® find a bounded positively

Poincare’ tricothomy we have that S is GAS]

Proposition 6. When (x) has variable signand f(x)
is bounded ang;(x) > yc(x) then CF is GAS

Proof. The setX = {(x, y)|0 < x < xAND y > O} is
positively invariant and adsorbing and in it closed or-
bits are impossible, as we have seen. However, it is
not a bounded set, so we have to show that all the or-
bits starting inX are bounded. Firstly, we notice that
it cannot bey(r) — +o0, since in such a case, being
x' = x(af(x) — y(t), itwould bex(r) - 0 = y(t) —
o/¥(0). Furthermore hypothetical solutions such that
minlim;_ 15 y(#) = 0 and Maxlim_ ;5 y(f) = +o0

are not possible since the sdt= {(x, y)|0 < x <
x1AND y > y.(x)} is positively invariant. As a con-

invariant set surrounding S.OJ

Proposition 9. When¥(x) > 0 and ¢g(x) = 0 then
Y(x(0), y(0)) it is y(rf) — O*. Furthermore in accor-
dance with the growth lavyf(x), either the tumor tends
to an equilibrium value or it grows unbounded

Proof. Letus defin@lmin = min,cr, ¥(x). If g(x) =
0itis y = —¥(x)y < —¥miny = y(t) — 0. Thus,
the equation forx(r) becomes asymptotically au-
tonomous, so that, depending ¢i(x), eitherx() —
400 or x(t) — x (i.e. in this case the equilibrium
IF = (x,0)is GAS). O

Proposition 10. When¥(x) > 0 and f(x) = 1 and

sequence of these properties, thanks to the Bendixon—$(x) = const= ¢, and there are two equilibria§ =

Poincare’ trichotomy, CF is GAS.

Proposition 7. When:¥(x) has variable signthere is
x such thatf(x) = 0, yc(x) < 0 and there is a unique
LAS equilibrium point S then S is GAS

Proof. The setX = {(x, y)|0 < x < xAND y > O} is
positively invariant and adsorbing and in it closed
orbits are impossible, as we have seen. However, it
is not a bounded set. Let us considgf(x): it is

such that it is split in two branches:/®"(x) for
x2 < x < 400 (which has no intersections witly(x))
and y'*%(x) for 0 < x < x1 (on which S lies). Let
us consider a poin®; = (x;, y;) lying on the curve
(x, YO (x)) and havingy; > yc(0) > yc(x2). Let the
orbit starting fromP; intersect the graphx( y'*f(x))

in a point Py = (xs, y7) = (x7, Y*"(xs)) (note that

it is yr > y;). Let us define the following points:
P4 = (0, yy), P = (0,x) and Pc = (x, y;). Itis easy

to see that segment of orb‘fl?f and the straight seg-
ments Py P4, P4 O, OPp, PpPc and Pc P; bound an
invariant set2 for our dynamical system. As a conse-
quence, thanks to the Bendixon—Poincare trichotomy,
SisGAS. O

(xe, ye) (LA and U = (x,, y,) (unstabl@ and there

is a separatrix curvey = X(x) which does not join

S to U then there are two sets A and B such that
if (x(0), y(0)) € A then (x(¢), y(¢r)) — S, whereas if
(x(0), y(0)) € B thenx(t) — +oo.

Proof. Let us definey}"X := Max,cg, y/(x) and

xy = 1MW) . As a consequence, the sét=
{(x, »)I0 < x < xy ANDMIin(0, Z(x)) < y < y}"™X}

is positively invariant and in it there are no closed
orbits, so if (0), y(0)) € A then (z), y(r)) — S.

It is easy to show that given g (xx)/¢ < 0 < o/
also the setB = {(x, y)|lx > xy ANDO < y < o} is
positively invariant. Thus, since iB: x' > x(a — o),

it easily follows thatc(t) — +o0; O

Proposition 11. Let it be¥(x) > 0, y-(x) < O and it
existsx such thatyc(x) = 0 Let there be four equilib-
ria CF (unstabld, S; = (x., y.) (LAS, U = (x4, yu)
(unstabl@ and S, = (x., ye) (LAS, and let there be a
separatrix curvey = X(x) which does not joirs; or

S, to U, then there are two sets A and B such that
if (x(0), ¥y(0)) € A then (x(¢), y(t)) — S;, whereas if
(x(0), ¥(0)) € B then(x(z), y(1)) — S,.
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Proof. Asinthe previous propositiod = {(x, y)|0 <

x < xx ANDMin(0, X(x)) < y < yM*X}is positively
invariant and in it there are no closed or-
bits, so if (0), y(0)) e A then (), y(r)) — S;.

In this case B={(x,y)/J0<x <XxANDO <y <
Min(Z(x), yYA%)}, and it is positively invariant as

well, and with no closed orbits in it. As a consequence:

if (x(0), ¥(0)) € Bthen (). y(1)) — Sr; O

Remark. A consequence of the fourth proposition is
that if y;(0) > 0 (or y;(0) = 0 AND y/(0) > 0) then

o > o¢r is a sufficient condition for the GAS of the CF
equilibrium.

In case of multiple equilibria witlp(x) = const it
may be useful to transforif8) and (9)to a nonlinear
oscillator. In fact by setting = log(x) it is easy to see
that the original family becomes:

2"+ (@)~ (@) +9oqz) — ¥(2) fz) =0 (17)

wherelz(z) = Y(E%), etc... .. Bydefining the damping
coefficient:

20(2) = (¥(z) - '(2)) (18)
and the pseudo-potential:
U@=/@@®—ﬂ%@ﬂs (19)
0
and the total pseudo-energy:
N2
B =L 10 (20)

it follows immediately that whem(z) > 0O:

e Let it bex < +oo and let there be three equilib-
ria z; < z¢ < z, which are, respectively LAS, un-
stable and again LAS. Let it b&(0) < U(z.),
thenz(0) < z. = z(tf) — z;, whereag(0) > z. =
Z(t) —> Zr

e Let it be x = +00 and let there be two equilibria
71 < zc Which are, respectively LAS and unstable.
Letit be Ewi(0) < U(z.), thenz(0) < z, = z(¢) —

Z;, whereag(0) > z. = z(t) —> +00.
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3. On immunotherapies
3.1. Therapy schedulings

A realistic anticancer therapy may be modeled with
sufficient approximation as constant (e.g. via a con-
stant intravenous infusion) or periodic (e.g. the agent
is delivered each day as a bolus):

o(t) = 6, + 2(t) = 0,

1 T
O = ?/o 0(zr) dt

For humans, typical periods ranges between 8h and
7 days[9,5]. A particular case of periodic therapy is
pulsed therapy, i.e. a therapy which induces an instan-
taneous increase of the number of lymphocytes:

0@+ T)=0(),

(21)

+00
ot) =y _8(t—nT) (22)

n=0

In the case of constant infusion therapy (CI#{) =
6,») by defining:

o+ 0,

qlx) = — (23)

0 =0 +0,,

Remark. In the next subsections some asymptotic
analyses of therapies shall be conducted. The mean-
ing of the underlying — oo limits is the following:

the therapies are administered for a time intervat {D
which is finite but sufficiently high to guarantee that the
number of cancer cells is zero or that other targets have
been reached.

3.2. Continuous infusion therapy

All the considerations we have done the absence
of therapy hold also in case of CIT. In particular, for
f(0) < +o00, the condition for the LAS of the cancer-
free equilibrium is:
o+ 6, > ocr (24)
Because of the co-presence of other equilibria, the
above criterion is not global, i.e. the immunotherapy
is not able to guarantee the disease eradication from
whatever initial valuesx(0), y(0)). However, observ-
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ing that in models in whicl¥(x) > O:

ith thera oq(x) + 6, no thera
Yy ) = “ P{x)

o) !

(e.g. in Stepanova’s model with lows) it happens
that, roughly speaking, the stable equilibrium size of
the cancer becomes smaller and the unstable equilibria
greater, so that the basin of attraction of the unbounded
solution is reduced.

Let us consider now some typical situations in case
of yp(x) < 0:

(25)

e Non-aggressive tumor (i.€(x) < 0in [x1, x2]). In
such a case, in absence of therapy there may be
in the most complex case four equilibria: CF (un-
stable), a small tumor equilibriu?, ., (LAS), a
macroscopic equilibriunky,cro (LAS) and anin- M
termediate unstable equilibriufa®, as inFig. 1,

subplot 1.ES,., is determined by the intersec-
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tion betweenyc(x) and the branchy,(x), Eyacro

and EJ by the intersection betweemc(x) and
¥7(x). Increasingé there are new equilibria. For

0 > 0ct = yc(0) — y;(0) CF becomes at least LAS
andEmicro disappear. On the right, as a consequence
of the elementary properties of continuous decreas-
ing functions, increasingthe equilibria move and it
iSxg,(0) > x£,(0), XEyacro 0) < XEvacro(0), and
there exists, € (0, yj(xe,) — Y (XEmacro)) SUCh
that for6 > 6, Emacro andEy disappear. Summa-
rizing, whend > 6 = Max(b, 6,) then CF is GAS
(Fig. 1, subplot 3), because &froposition 4of Sec-
tion 2.1 If 6, < 6t then ford, < 8 < Oct Emicro iS
GAS (Fig. 1, subplot 2), whereas whelg < 6, for

Ocf < 0 < 6, CF is LAS and coexists witlky and
Emacro(Fig. 2);

Aggressive tumors with variable sigi (x). In such

a case, in the absence of therapy there may in the
most complex case be one macroscopic equilibrium

—_—

Fig. 1. lllustration of the effect of a CIT on a typical configuration in a lowly aggressive tumor. The case is shown iwhiék. y;(x) is
plotted as a solid line, whereag (x) is dashed. The equilibria are plotted as black points and they are ldbeléen unstable, otherwisg
First subfigure: in the absence of therapy there are four equilibria among which CF. Second subfigure: with a thefapy witho.s CF is
unstable and coexists with a microscopic tumor equilibrium which is GAS. Fourth subfigure: for a high dosedherp{F becomes GAS.
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Fig. 2. lllustration of the effect of a CIT in a low aggressive tumor
for 6¢s < 6, andbgs < 6 < 6,. Symbols as irFig. 1

equilibrium: E§,,.., (GAS) and, of course, CF (un-
stable). Increasing two further equilibria may ap-

pear. The analysis is similar to the previous one (cf.

Figs. 3 and #and we may find @ such that for

6 > 6 CF is GAS. Note that when the tumor is ag-
gressive itis very likely that is “extremely high”:6

> 0,

Fig. 4. lllustration of the effect of a CIT in an aggressive tumor,
similar toFig. 3 butwith LAS CF coexisting with two other equilibria
(Oct “low™).

e Aggressive tumors with?’(x) < 0 [17]. In such a
case, inthe absence of therapy there may in the worst
case be one macroscopic equilibrium equilibrium:
EVacro (GAS) and, of course, CF (unstable). In-
creasing, ifwheny;(0) = y.(0) itis y;(0) < y(0)
thenwe mayfjnd two valueks andd > 6 such that
for 6 < 6 < 6 CF is LAS and there is the birth of

Fig. 3. lllustration of the effect of a CIT in an aggressive tumor for increasing values of the CIT.
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a third unstable equilibriunky. Finally for 6 > 6
CF is GAS. Note that if whery;(0) = yc(0) it is
¥7(0) > y-(0) thenbgs = 6.

When f(0) = +oc the total elimination cannot be
achieved by immunotherapy alone. Furthermore, even
the suboptimal target of reducing the cancer to a micro-
scopic size in many relevant cases cannot be achieved
for therapies of finite duration, however they may be
long. In fact, let it be?(x) > O (aggressive tumor) and
let there be a unigue GAS macroscopic equilibrium
Emacro- By applying a CIT withd sufficiently high
there is a unique GAS microscopic equilibrium. How-
ever, when the therapy ceagdalls to zero and the can-
cer restarts growing macroscopically, sirfig@acro iS
again GAS. We note in brief that if the original equilib-
rium is microscopic (e.g. micrometastasis) the effect of
the therapy is simply to create another and temporary
microscopic equilibrium.

Let us suppose that there are three co-existing equi-
libria: EQ,..o (LAS), E7, (Unstable and through which
a separatrid® passes) anfiyacro (LAS). Applying
a CIT with6 > 6 there is an unique GAS microscopic ®
equilibrium. Thus, at the end of the therapy«at ¢ )
depending on the position @y = (x(zr), ¥(ty)) rela-
tively to X°, we have that either(z), y(t)) — Emicro
or (x(z), y(t)) - EmACRO-

We note that acts a global bifurcation parameter,
and we point out that these behavior may be observed
in case of bounded(0) when therapy is applied for an
insufficient time.

Finally, this simple analytical analysis may explain
theoretically some numerical results[@b] on the re-
lationships between the efficacy of the cure and the
proliferation rate of cancer, and on the correlation be-
tween the burden of initial size and the probability of
effectiveness of a therapy.

3.3. Periodic scheduling

z(t) =

e 0,(t) = A(1+ bcosr))
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o+ 6y, = Cy
¥(0) * gl V' W2(0) + k2(21/ T)?
X COS(kz;[t — ¢, —Arg <l1/(0) + ik2;1> )
(27)

Note that if T « 1/¥(0) there is a filtering effect and
z(t) = (0 + 0m)/ ¥(0).

Two basic models of therapy may be:

(28)

which is rather unrealistic, but whose functional
form is commonly used to assess the effect of peri-
odic forcing on nonlinear systems. The asymptotic
solution of(26) corresponding t¢28) is given by:

o+ A Ab

W0) | i20) r a2

x cost — Arg(¥(0) + iw))

Zu(t) =

the more realistic function:

0.(t) = m exp(cMod(, 7)),
G

which represent a boli-based delivery. The “shape”
of 6,(¢) depends ok and the corresponding asymp-
totic periodic solution of26) is given by:

o G

v(0) w(0)—c

( E—cMod(,T)
X —
1— E~T

Zr(t) =

EAI/(O)Mod(t, T)
1— E-¥(OT

In case of impulsive therapy, by solving the impulsive

differential equation

In the case of periodic drug schedulings, there

— +
is a periodically varying cancer-free solution ‘CE Y =-¥Qy+o ynT")
(O, z(1)), wherez(z) is the asymptotic periodic solution =ynT )+y, n=0,1,... (30)
of:
one obtains that:
Yy = —¥(0)y+ 0 + 6y + 2(t) (26) » o . %
Z =
that, assuming2(r) = 3,7%] Cx cos(2/ T)t — &), ¥(0)  1-exp¥(0)T)
can be rewritten as:: x exp(=¥(0)Mod(, T)). (31)
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Furthermore, it is easy to show that the condi-
tion o+ 6, > o¢r guarantees the LAS of CF
In fact, since the variational equations around
(0, z(2)) are: U’ = (af(0)— ¢0)z(1))U, W' =
(0¢’(0) — ¥'(0)z())U — w(0)W, we obtain that
af(0)—¢0) < z(t) ><0=U@F) > 0= W({) —

0, and since< z(t) > (o + 6,,)/¥(0) we recover the
LAS condition o + 6,, > o¢. Similarly, one may
demonstrate the GAS condition:+ 6,, > o*.

3.4. Numerical simulations

We performed a set of simulations of immunother-
apy on the basis of the model proposed by Kuznetsov
et al.[14], in which:

af(x) = 1.636(1— 0.002), ¢(x) =1,
1.131x
B(x) = 20197 3" og(x) = 0.1181

p(x) = 0.0031X + 0.3743

and

"€ = 9.929Myays (X, Y) = 10%(x, y)cells

We chose this model since its parameter values
were fitted from real data of chimeric midd4].
Note that the dynamic of tumors in mouse is faster
than that of human tumors, and that for periods
of about 1 day or less (i.eT < 0.101) it results
that (2/1(0)) > T. Moreover,u/(x) = 0.00311« 1
and the tumor is not aggressive. We also performed
simulations in a case of a more aggressive tumor,
for which we setu(x) = 10(0.00311x) + 0.3743. For
the non-aggressive tumeg, ~ 0.612 ando™ ~ 1.44
> 0.

It is worth noticing that in other kinds of anticancer
therapies the shape of the therapy may be critical in de-
termining whether or not the cancer will be eradicated
[8].

In our simulations we assumedt 0,, > o¢r Which
means that the mean value of the therapy, if given as
CIT, would enassure the LAS of the disease free equi-
librium. Since for eactf’ the mean value is constant,
this means that in the limit — +oo the therapy,(¢)
tends to become impulsive.
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500

100

200 300 400

Fig. 5. Non-aggressive tumor: phase portrait of mddé] in the
absence of therapy. There are two LAS equilibria, whose basins of
attraction are separated by the separatrix line (plotted with a thick
line). The nuliclineyc(x) is plotted with short dashes, the nulicline
yi(x) and its vertical asymptotes are plotted with long dashes.

We found that:

In the absence of therapy: non-aggressive tumor
has two stable equilibria: one slightly less than the
carrying capacity and the other corresponding to a
small tumor (see phase portrait fig. 5). For the
highly aggressive tumor there is one GAS equilib-
rium slightly less than the carrying capacity;

e With constanttherapy: the non-aggressive tumor has
a cancer-free equilibrium, which results to be GAS
(Fig. 6). Note that the orbits stemming from initial

400

100 200 300
Fig. 6. Non-aggressive tumor: phase portrait of mddé] in the
presence of constant therapy with- ,, = 1.1o¢,. There is atumor-
free equilibrium CF= (0, 1.799), which is globally stable. The null-
cline yc(x) is plotted with short dashes, the nullcling(x) and its
vertical asymptotes are plotted with long dashes. Note that the orbits
stemming from initial points characterized by loW0) are charac-
terized by aninitial fast growth of the tumor size, followed by a
regression to 0.
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0 20 40 60 80 100

Fig. 7. Aggressive tumor: phase portrait of mojddl] in presence of
constant therapy. There is a tumor-free equilibrium=€F0, 1.799)

and another LAS equilibrium, whose basins of attraction are divided
by a separatrix line (plotted with a thick line). The nulicling(x) is
plotted with short dashes, the nullclipg(x) and its vertical asymp-
totes are plotted with long dashes.

points characterized by low values of the number of
immune system cells are characterized byratiel
rapid growth of the tumor size, followed by a re-
gression to 0. Biologically, the therapy might seem
to help the tumor growth, instead of fighting it. For
the highly aggressive tumor, the cancer free equi-
librium is LAS, but there is also a high size LAS
equilibrium Fig. 7);

¢ In the presence of periodic therapy wiif(z), for
both types of tumors the phase portrait is roughly
similar to that of the constant therapy: the cancer-
free periodic solution remains GAS for the non-

0 100

200 300
Fig. 8. Non-aggressive tumor: phase portrait of mdlé] in pres-
ence of periodic therapy; () with T = 0.202 (=2 days) and /t =
0.17. There is a tumor free equilibrium (8(z)) ~ (0, 1.799) which
remains GAS. The nuliclingc(x) is plotted with short dashing,
the nullcliney;(x) and its vertical asymptotes are plotted with long
dashes.
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Fig. 9. Aggressive tumor: phase portrait of the moget] in

the presence of periodic therapy with= 0.202 (=2 days) and

1/c = 0.5T. The basins of attraction of the tumor-free equilibrium
CF* = (0, z(¢)) ~ (0, 1.799) and of the macroscopic size equilib-
rium remain near unchanged respect to the CIT scheduling (the basin
of CF is slightly greater than in the CIT). The nuliclipg(x) is plot-

ted with short dashing, the nulicling(x) and its vertical asymptotes
are plotted with long dashes.

aggressive tumoiHg. 8). For the aggressive tumor
there is the coexistence of the cancer free solution
with a solution fluctuating around high values of
the cancer size (near the equilibrium of the constant
therapy). The two basins of attraction for the aggres-
sive tumor remain unvaried with respect to those of
the constant therapyig. 9).

e Foré,(r) the dependence of the qualitative properties
of the system on the parametgis not critical.

e [For aggressive tumor arii}(z), it may occur that,
given an initial point, the eradication is also a func-
tion of parameter® and w, but this happens only
for unrealistically high values of the therapy pe-
riod (Fig. 10, e.g. T> 100 days. These results
may be roughly explained considering that Tors>
Max(1/¥(0), 1/a), one may approximately con-
sideré, () as constant;

e Both with CIT and with periodic therapy(s) may
reach values considerably higher than the physiolog-
ical valueo/ 1 (0), which might model some serious
side effects of immunotherapies due to the excess of
immunocompetent cellgl,5].

For the sake of completeness, we also performed
some simulations in which & A < o — o and for
which there were high oscillation® & 1). We ob-
tained the result that for low frequencies, there may
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0 041 02 03 04 05 005 01 015 02 025 0 005 01 015 02 025

Fig. 10. Aggressive tumor in the presence of immunothefa@y. growth behavior in function of the parametets ). Black points correspond

to eradication, white points to macroscopic growth. The initial condition for all is (40,2.5) (chosen near the separatrix for the constant therapy).
Left: 0 + A = 1.01o¢, centralic + A = 1.10¢ and right:o + A = 1.250¢,. Note that the frequencies which do not allow eradication are very

low, corresponding to absolutely unrealistic periods for the therapy.

be points in thed, A) plane for which eradication is  the other parameters being as before. We choose the

possible (se€ig. 11). valuex = 0.626 in order to minimize the difference
Finally, we performed simulations for a hybrid with f(x) in [14]. The results of the simulations are
model similar to that by Kuznetsov et §14], but in very close to those relative to the logistic casigs. 12
which we assumed: and 13 In order to obtain via CIT the reduction to the
microscopic staté > 8.40 about is required.
500 The analytical and numerical results obtained in this
o = 0.626 f(x) = log <x> ’ section may be usefully compared with two similar

works of the recent literature which focus on Adop-
tive Cellular Immunotherapy. An excellent analytical
A work is[19], who, however, cannot be fully compared

with our results because it refers to tumors which have
no action in stimulating immune cells. Furthermore, its
0.45 formulae for the global stability of the cancer free equi-
librium are not expressed as a function of the parame-
ters of the therapy. In a very interesting paji&j some
0.4
0.35
0.3
0.25 w
0 05 1 15 2 25 3
Fig. 11. Aggressive tumor in the presence of immunothesafy:

growth behavior in function of the parametess @) for b = 1, with 50 100 150 200 250 300

A < o¢r — 0. Black points correspond to eradication, white points to

macroscopic growth. The initial condition for all is (40,2.5) (chosen  Fig. 12. Simulation of the modified Kutnetsov model with CIT and
near the separatrix for the constant therapy). 0, = 0.50.
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This delayed model and stochastic models will be the
subject of further investigations.

Finally, we would like to illustrate some qualitative
medical inferences from the investigations that we have
here proposed. The main problem of immunotherapy is
that, as it is clear from our analysis and simulations, in
general, eradication may be possible but is dependent
on the initial conditionsx(0), y(0)). However, the ICs
- — are in medical practice unknown or known with very
large confidence intervals (cfB9] for the cancer cells
at the start of a radiotherapy and). This makes itimpos-
Fig. 13. Simulation of the modified Kutnetsov model with periodic sible to plan a,n amlcan(_:er, thera}py based solely O_n this
therapy,T = 0.202 (2 days), ic = 0.5 andé,, = 6c. therapy. This is a peculiarity of immunotherapy, since

there are other kinds of anticancer cures for which a
globally stable eradication is possitjg3. However, in
results similar to ours are obtained through numerical our simulations we have seen that in some particular
bifurcations on a three dimensional model in which the cases the mod§l4] predicts that globally stable erad-
directimmunogenicity of tumors is expressed as an ad- ication is possible also in case of immunotherapy, but
ditive termcx. As previously stressed, in the absence of that it depends on the “degree of aggressiveness” of
therapy and of influx of immunocompetent cells both the cancer, i.e., on the framework of the mofet],
our model and the model if16] show the possibility on the parameter;. However,u; is difficult to be
of having periodic solution, which ifiL6] are shown estimated (as a range) and, in particular, on single pa-
to be present also in some cases in which there is ther-tients. If in the future it might be possible, the option
apy. We notice in brief that a terax may be formally to use immunotherapy as main strategy, for relatively
embedded in our generic functietx). small “non-aggressive” tumors, could be seriously con-
sidered. Furthermore, we showed that the behavior of
the system does not depend on the amplitude of fluc-
4. Concluding remarks tuations of6(r), so that the option of continuous in-
travenous infusion is not, dynamically, better than the

It is interesting to use well established conceptual boli based therapy. This result may be of interest, since
frameworks of ecological models to model competi- continuous intravenous infusion may cause major prac-
tion phenomena in human biology, but it is important tical problems to the patients. Finally, in case of disease
to pay attention to the whole ecological modeling as- aggressive towards the immune system, since our sim-
pect, such as the basic requirement of the positivity of ulations indicated that all the positive quadrant is GAS
the solutions. Even if mod§®2] violates the positivity towards a macroscopic disease in absence of therapy
rule, it is valuable because it may be read as a model and lowo, whereas in the presence of therapy the erad-
which takes into account a disease-induced depressionication is possible in an adequate basin (Siee7), we
in the influx of lymphocytes. Then, instead of propos- may infer that a conventional therapy should be fol-
ing another specific model, we preferred to add this lowed by immunotherapy to increase the probability
new feature to a family of equations, and to analyze its of total remission.
properties. We stressed also that models which do not
allow the possibility to have LAS tumor-free solutions
should be cautiously considered. The general family Acknowledgements
(8) and (9)may be, of course, further generalized fol-

20 40 60 80 100
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