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Abstract

In this work we propose and investigate a family of models, which admits as particular cases some well known mathematical
models of tumor-immune system interaction, with the additional assumption that the influx of immune system cells may be a
function of the number of cancer cells. Constant, periodic and impulsive therapies (as well as the non-perturbed system) are
investigated both analytically for the general family and, by using the model by Kuznetsov et al. [V.A. Kuznetsov, I.A. Makalkin,
M.A. Taylor, A.S. Perelson, Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis,
Bull. Math. Biol. (1994) 56(2) 295–321), via numerical simulations. Simulations seem to show that the shape of the function

proposed.
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modeling the therapy is a crucial factor only for very high values of the therapy periodT, whereas for realistic values ofT, the
eradication of the cancer cells depends on the mean values of the therapy term. Finally, some medical inferences are
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Millions of people die from cancer every year[1].
And worldwide trends indicate that millions more will
die from this disease in the future[2]. Great progress
has been achieved in fields of cancer prevention and
surgery and many novel drugs are available for med-
ical therapies[3–5]. Biophysical models may prove
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to be useful in oncology not only in explaining b
sic phenomena[6,7], but also in helping clinicians
to better and more scientifically plan the schedu
of the therapies[7,8]. An interesting therapeutic ap
proach is immunotherapy[4,5], consisting in stimu-
lating the immune system in order to better fight, a
hopefully eradicate, a cancer. In particular, in this p
per I will be referring to generic immunostimulation
for example, via cytokines, but for the sake of si
plicity I will use the term “immunotherapy”. The ba
sic idea of immunotherapy is simple and promisin
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but the results obtained in medical investigations are
globally controversial[9–12], even if in recent years
there has been evident progress. From a theoretical
point of view, a large body of research has been de-
voted to mathematical models of cancer-immune sys-
tem interactions and to possible applications to cure
the disease[13,14,16–24](and references therein).
Analyzing the best known finite dimensional models
[13,14,16,20,23], we note that their main features are
the following:

• existence of a tumor free equilibrium;
• depending on the values of parameters, there is the

possibility that the tumor size may tend to+∞ or
to a macroscopic value;

• possible existence of a “small tumor size” equilib-
rium, which coexists with the tumor free equilib-
rium.

An “accessory” feature is the existence of limit cy-
cles[16]. From this rough summary, one may under-
stand that the puzzling results obtained up to now by
immunotherapy[9] may be strictly linked to the com-
plex dynamical properties of the immune system-tumor
competition. In general, it happens that the cancer-free
equilibrium coexists with other stable equilibria or with
unbounded growth, so that the success of the cure de-
pends on the initial conditions, and – even theoretically
– it is not always granted.
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non-dimensional form[22]:

x′ = αx− xy (3)

y′ = xy − 1

α
y − kx+ σ + p(t) (4)

(in short notation (x′, y′) = C(x, y)). The function
p(t) ≥ 0 is assumed periodic with periodT and it mod-
els the effect of immunotherapy. The model has been
studied in depth both in the case of absence of therapy
and in the case of therapy by using the test function
p(t) = 0.5F (1 + cos(4πνt)).

The model shows two equilibria (one of which
is tumor-free) and also unbounded growth. However,
the systems(3) and (4)allows negative solutions for
non-smallx, which is not physically acceptable. In
fact:

C(x,0) = ax, σ + p(t) − kx (5)

implies that for x > (σ + pmax)/k it is C(x,0).
(0,−1)> 0, andy(t) becomes negative in finite times.
Furthermore, the second equilibrium point is a conse-
quence of the negativity ofσ − kx.

The model in[22], though it has this problem of
lack of physical consistency, is, however, of great in-
terest because the killing of lymphocytes is seen as
function of thex variable. Alternatively, the influx of
lymphocytes may be thought of as a function of the
entity of the disease, which we will denote asQ(x). In-
deed, it has been observed that in some cases cancer
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. A general family of models and its properties

In [22], Sotolongo-Costa et al. proposed the follo
ng very interesting Volterra-like model (similar to t
ne in[20]) for the interaction between a populat
f tumor cells (whose number is denoted byX) and a
opulation of lymphocyte cells (Y) :

′ = aX− bXY (1)

′ = dXY − fY − kX+ u+ P(t), (2)

here the tumor cells are supposed to be in expone
rowth (which is, however, a good approximation o

or the initial phases of the growth) and the prese
f tumor cells implies a decrease of the “input rate

ymphocytes. Systems(1) and (2)may be rewritten in
rogression may cause generalized immunosup
ion (see[25], and references therein). Thus, in[22]
t is Q(x) = σ(1 − (k/σ)x), which may be read as
rst order Taylor approximation of a more general n
ncreasing function.

However, a general influx function is only one
he possible modifications of models(3) and (4): there
ay be others, which are also biologically reasona
ne might take into the account many factors: diffe

unctional forms for the interaction term, saturat
n the predation term and, mainly, non-exponen
rowth of the cancer: logistic, gompertzian, gen
lized logistic, etc.. . . All these modifications a
easonable and useful. Thus, I think that it migh
seful to define and study the following general fam
f models:

′ = x(αf (x) − φ(x)y) (6)
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y′ = β(x)y − µ(x)y + σq(x) + θ(t) (7)

where:

• x and y are the non-dimensionalized numbers of,
respectively, tumor cells and of effectors cells of
immune system;

• 0< f (0) ≤ +∞, f ′(x) ≤ 0 and in some relevant
cases we shall suppose that it exists an 0< x̄ ≤
+∞ such thatf (x̄) = 0), lim

x→0+ xf (x) = 0. Thus,

f (x) summarizes many widely used models of tu-
mor growth rates, such as the Exponential model:
f (x) = 1 [7], the Gompertz: :f (x) = log(A/x)
[7,50] and its generalizations[7,50], the Logistic
model:f (x) = 1 − x/A [50], the Hart–Schochat–
Agur:f (x) = x−γ ,0< γ < 1 [26], the von Bertan-
laffy: f (x) = x−1/3 − b [50,53], the Guiot’s et al.
model: f (x) = x3/4 − b [27], the linear growth
model by Bru et al.[28] which may be written as
follows: f (x) = x−1/3 (note that it may be consid-
ered a particular case of the von Bertalaffy model
and of the Hart–Shochat–Agur model), etc.. . . ;

• φ(x) > 0, φ(0) = 1, φ′(x) ≤ 0 and xφ(x) → l ≤
+∞;

• q(x) is such thatq(0) = 1 (as a consequenceσ =
Q(0)) and it may be non-increasing or also initially
increasing and then decreasing, i.e. we may assume
that either the growth of tumor decreases the influx
of immune cells or that, on the contrary, it initially
stimulates the influx);

•
•
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the immune system, therefore the tumor may be indi-
cated as “highly aggressive”/“lowly immunogenic”;

• Variable signΨ (x): since in such a case the destruc-
tion of cells may be compensated by the stimulatory
effect, we will refer to such a tumors as “lowly ag-
gressive”/“highly immunogenic”.

The above model includes as particular cases the
models [13,14,20,23]. For instance, the Stepanova
model [13] is such thatf (x) = 1, φ(x) = 1, β(x) =
β1x, q(x) = 1 andµ(x) = µ0 + µ2x

2; the de Vladar–
Gonzalez model[23] is similar, but:f (x) = log(K/x).

Note that Nani and Freedman proposed an inter-
esting model of adoptive cellular immunotherapy in
which generic functions are used[19]. However, their
approach differs from ours since in their model the pro-
liferation of cells of the immune systems is not stim-
ulated by cancer cells. In other words in the Nani and
Freedman model the interaction tumor cells – immune
system is only destructive for immune cells. Further-
more, in their model the “loss rates” are proportional (in
our notation we might writeµ(x) = µ(0) + constφ(x)).

In the absence of treatment, systems(8) and (9)ad-
mits the existence of a cancer free equilibrium CF=
(0, σ/Ψ (0)).

If f (0)< +∞, we have that if σ > σcr =
αΨ (0)f (0)/φ(0) CF is locally asymptotically sta-
ble (LAS), unstable ifσ < σcr. Biologically, σ > σcr
means that the immune system works very well and
that it is able to destroy small tumors. On the contrary
σ

Ψ
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β(x) ≥ 0,β(0) = 0 andβ′(x) ≥ 0;
µ(x) > 0 andµ′(x) > 0.

or the sake of simplicity we define the followi
unctionΨ (x) = µ(x) − β(x) and write:

′ = x(αf (x) − φ(x)y) (8)

′ = −Ψ (x)y + σq(x) + θ(t). (9)

(x) is assumed to be positive, otherwise it may be
tive in [0, x1) ∪ (x2,+∞) with Ψ (x1) = Ψ (x2) = 0.

e may assume that it has an absolute minimu
0,+∞). We may useΨ (x) to classify the tumor
epending on their degree of aggressiveness ag

he immune system:

Ψ (x) > 0: in such a case the ability of destroying i
mune cells is never won by the stimulatory effec
≈ 0 means that there is immunodepression.
Furthermore, when φ(x) = constant= ϕ and

(x) ≤ Ψ∗ < +∞, if σ > σ∗ = αf (0)Ψ∗/(qminϕ)
t follows that CF is globally asymptotically st
le (GAS). In fact, from y′ = −Ψ (x)y + σq(x) ≥
Ψ∗y + σqmin if follows that asymptotically
(t) ≥ σqmin/Ψ

∗. As a consequence, asymptotica
′ ≤ (αf (0) − ϕ(σqmin/Ψ

∗))x, i.e. if σ > σ∗ it is
(t) → 0 ⇒ y(t) → σ/Ψ (0).

A relevant problem, up to now, is that the i
unotherapeutic agents are characterized by s

oxicity, thusσ > σ∗ might be too biologically high
ven in cases in which when it is mathematically sm

If f (0) = +∞, as in the Gompertzian case (us
or example, in[23]) and in other tumor growth mo
ls, then CF is unstable anyway (as previously stre

or the particular model[23]) because in such a cas
he derivative ofxf (x) at x = 0 is +∞. In the light of
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[23] and of our generalization, this implies that the im-
mune system would never be able to totally suppress
even the smallest tumor cell aggregates, which is a very
strong inference. This instability result deserves some
comments because it has deep medical implications:
the impossibility to completely recover from any type
of tumors whatsoever. On the contrary, it is commonly
held that the immune system may be able, in some
cases, to kill a relatively small aggregate of cancer cells.
In the background of all cancer therapies (which are of
finite duration) there is the implicit hypothesis that the
drug will kill the vast majority of the malignant cells
and that the relatively few residual cells may in some
cases be killed by the immune system[32]. Accepting
this hypothesis, the equilibrium CF should have the
possibility to be LAS and, as a consequence, for small
x the functionf (x) should be bounded.

The modeling of cancer by means of the Gom-
pertz law of growth was introduced in early sixties by
Laird [33,34]. She conducted pioneering data-fitting
work using a vast amount of real data and justified
the law in terms of increasing mean generation time.
There is much research showing that the Gompertzian
model fits data well from experimental and in vivo tu-
mors[36,35,37–41]. From a theoretical point of view,
Gyllenberg and Webb[42], Calderon and Kwembe
[43], Calderon and Afenya[44,45]proposed physico-
mathematical justification of the Gompertz model. Fur-
thermore, some interesting physical properties of the
Gompertz model have been elucidated by Konarski and
M
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that Gompertz’s model fitted their data very well, but
slightly less well than the Piantadosi model[55], which
has finitef (0). Furthermore, in their fittings, it was not
possible to discriminate between the pure Gompertz
model and the Gomp-Ex model. Demicheli et al. used
Gomp-Ex model on in vitro and in vivo data obtaining
results strongly supporting this model[52]. Other com-
parisons may be found in[44,53]. Moreover, in general,
van Leeuwen and Zonneveld[51] claims that it may be
not possible to discriminate between exponential, lo-
gistic and gompertzian models in the early phases of
growth. Recent experimental studies conducted by Bru
and coworkers support an initial phase of exponential
growth [28]. Summarizing, I consider the results by
de Vladar and Gonzalez (and our extensions) to be
very valuable, but they may be read in a dichotomic
way:

• A tumor is permanent: the innate immune surveil-
lance is never able to completely eradicate even the
smallest tumor.

• Since there is relevant evidence that the immune sys-
tem is able in some cases to eliminate small tumors
[57,58] (as we will see in following sections, the
ability of eradicate the disease or not depends on
initial conditions), the properties of the de Vladar–
Gonzalez model (and of our extension) may be seen
as an evidence that Gompertzian and other models
characterized byf (0) = +∞ are not appropriate for
very small tumors, in coherence with[7,48,49,28].
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olski [46] and by Konarski and Waliszewski[47].
However, the doubling time of a population of ce

annot be lower than the minimal time needed b
ell to divide, which is obviously non-null. This bi
ogical constraint is in contrast with the unbound
ess off (x) in the Gompertz and other models,
tressed by Wheldon[7]. More recently, inconsisten
t low number of cells have been recognized by C

orina and Zappala’ in their derivation of the Gomp
izan model based on methods of statistical mecha
48,49]. They showed that the validity of the Go
ertz model starts above a minimum threshold for
umber of cells, whereas under the threshold the
xponential growth. In other words, they derived b
hysically the Gomp-Ex model proposed on biol

cal ground in[54,7]. Using data from multicellula
umor spheroids, Marusic et al. performed a syst
tic comparison of many models[50], which showed
In case of the absence of influx of immune c
q(x) = 0) and for laws of growth in which ¯x exists
here is a different particular equilibrium point, wh
e shall call “immune free”: IF= (x̄,0), which is
AS.

Other multiple non-null equilibria may be found
nding the positive intersection of the two nullcline

C(x) = α
f (x)

φ(x)
(10)

I (x) = σq(x)

Ψ (x)
. (11)

he functionsyC(x) andyI (x) are useful in the dete
ination of the LAS of the equilibria , since the ch
cteristic polynomial of the Jacobian, calculated
iven equilibrium point (xe, ye), is:
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λ2 + (Ψ (xe) − xeφ(xe)y
′
C(xe))λ

+Ψ (xe)xeφ(xe)(−y′
C(xe) + y′

I (xe)) = 0. (12)

So the LAS condition is:

y′
C(xe) <

Ψ (xe)

xeφ(xe)
AND y′

I (xe) > y
′
C(xe). (13)

Note that the first part of the AND condition is auto-
matically fulfilled wheny′

C(x) ≤ 0 (becausexe cannot
lie in an interval whereΨ (x) < 0), whereas the second
part has a straightforward geometrical interpretation.

Finally, it is interesting to note that the above family
of model may admit limit cycles iff (x) = 1 (exponen-
tial growth) andq(x) is identically null forx > xq with
xq < x1. In fact, in such a case there is the equilibrium
point (x1, α) whose characteristic polynomial is:

λ2 + h2 = 0, h2 := −x1Ψ
′(x1)α > 0 (14)

In effect, some cases of sustained oscillations (or slow
oscillations with very small damping) have been re-
ported in the medical literature[29–31]. Periodic so-
lutions in absence of influx of immunocompetent cells
are predicted also in[16].

On the contrary, ify′
C(x) ≤ 0 (for example when

φ(x) is constant), by applying the Dulac–Bendixon the-
orem with multiplicative factor 1/(xyφ(x)) (as in the
specific models[14,20]) one obtains that the presence
of limit cycles is not possible. In fact:
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I } is positively invariant and adsorbing. Thus,

since inH : x′ ≥ xφ(x)(yC(xM) − yMAX
I ) > 0, it fol-

lows readily thatx(t) → +∞. �

Proposition2. If Ψ (x) > 0, it existsx̄ such thatf (x̄) =
0, y′

C(x) < 0 and there is a unique LAS equilibrium
pointS = (xe, ye) , then S is GAS.

Proof. Let us define yMAX
I := Maxx∈[0,x̄]yI (x)

and ymin
I := Minx∈[0,x̄]yI (x). Furthermore, iff (0)>

yMAX
I let it be x̃ = y−1

I (yMAX
I ), if f (0) ≤ yMAX

I let it
bex̃ = 0. SinceΨ (x)(ymin

I − y) ≤ y′ ≤ Ψ (x)(yMAX
I −

y) it is easy to see that the setR = {(x, y)|x̃ < x ≤
x̄AND ymin

I ≤ y ≤ yMAX
I } is positively invariant and

adsorbing and containsS. Since we have ruled out the
possibility that there may be limit cycles, as a conse-
quenceS isGAS. �

Proposition 3. WhenΨ (x) > 0 and y′
C(x) is non-

constant and there is a unique LAS equilibrium point
S = (xe, ye), if it holds also that

yMax
C > yMax

I (16)

then S is GAS.

Proof. Whenf (x) is unbounded, one may see that
there may be a relative minimum followed by a rela-
tive maximum in (0, x̄). On the contrary, whenf (x)
is bounded, there is an absolute maximum. Calling
n -
t
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(x (x, y), y (x, y))

= αy′
C(x)

y
− σ

q(x)

xφ(x)y2 < 0 (15)

.1. The global behavior

In some important cases, it is possible to study
lobal behavior of the family, by means of differen

nequalities and of the Poincare–Bendixon trichoto
56]. We may state the following simple propositio

roposition 1. WhenΨ (x) > 0 and f (x) = 1 and
′
C(x) ≥ 0, if it is yI (x) < yC(x) thenx(t) → +∞.

roof. Let us defineyMAX
I := Maxx∈R+yI (x) andxM

uch thatyI (xM) = yMAX
I . If it is yI (x) < yC(x) it is

asy to show that the setH = {(x, y)|x > xM AND 0 ≤
owx∗ the point in whichyC(x) is (absolutely or rela
ively) maximum, one has thatR∗ = {(x, y)|x∗ ≤ x ≤
¯AND ymin

I ≤ y ≤ yMAX
I } is positively invariant an

dsorbing, containsS. Since inR∗ it is y
′
C(x) ≤ 0 (

hich implies that closed orbits are ruled out), a
onsequence,Smust be GAS. �

roposition 4. WhenΨ (x) > 0andyI (x) > yC(x) for
∈ [0, x̄] then CF is GAS.

roof. It is a particular case ofProposition 2. �

roposition 5. If Ψ (x) > 0, there does not exist āx
uch thatf (x̄) = 0 , y′

C(x) < 0 and there is a uniqu
AS equilibrium pointS = (xe, ye) , then S is GAS.

roof. Let us defineyMAX
I := Maxx∈[0,+∞)yI (x). Let

s consider a pointPo = (xo,0) with xo > xe, and the
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orbit starting from it, which intersects the curveyC(x)
in the pointPa = (xa, yC(xa)). Let us consider the fol-
lowing pointsPb = (xa, yMAX

I ), Pc = (0, yMAX
I ) and

Pd = (0,0). The arc of orbit̂PoPa and the straight seg-
mentsPaPb, PbPc, PcPd andPdPo bounds an invariant
set for our system. As a consequence of the Bendixon–
Poincare’ tricothomy we have that S is GAS.�

Proposition 6.WhenΨ (x) has variable sign,andf (x)
is bounded andyI (x) > yC(x) then CF is GAS.

Proof. The setX = {(x, y)|0< x ≤ x̄AND y ≥ 0} is
positively invariant and adsorbing and in it closed or-
bits are impossible, as we have seen. However, it is
not a bounded set, so we have to show that all the or-
bits starting inX are bounded. Firstly, we notice that
it cannot bey(t) → +∞, since in such a case, being
x′ = x(αf (x) − y(t)), it would bex(t) → 0 ⇒ y(t) →
σ/Ψ (0). Furthermore hypothetical solutions such that
minlimt→+∞y(t) = 0 and Maxlimt→+∞y(t) = +∞
are not possible since the setA = {(x, y)|0< x ≤
x1AND y ≥ yc(x)} is positively invariant. As a con-
sequence of these properties, thanks to the Bendixon–
Poincare’ trichotomy, CF is GAS.�

Proposition 7. When:Ψ (x) has variable sign, there is
x̄ such thatf (x̄) = 0, yC(x) < 0 and there is a unique
LAS equilibrium point S then S is GAS.
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Proposition 8. When: the sign ofΨ (x) is variable,
there is nox̄ such thatf (x̄) = 0, yC(x) < 0 and there
is a unique LAS equilibrium point S then S is GAS.

Proof. The proof is easily obtained by applying meth-
ods ofPropositions 7 and 5to find a bounded positively
invariant set surrounding S.�

Proposition 9. WhenΨ (x) > 0 and q(x) = 0 then
∀(x(0), y(0)) it is y(t) → 0+. Furthermore, in accor-
dance with the growth lawf (x), either the tumor tends
to an equilibrium value or it grows unbounded.

Proof. Let us defineΨmin = minx∈R+ Ψ (x). If q(x) =
0 it is y′ = −Ψ (x)y ≤ −Ψminy ⇒ y(t) → 0+. Thus,
the equation forx(t) becomes asymptotically au-
tonomous, so that, depending onf (x), eitherx(t) →
+∞ or x(t) → x̄ (i.e. in this case the equilibrium
IF = (x̄,0) is GAS). �

Proposition 10. WhenΨ (x) > 0 and f (x) = 1 and
φ(x) = const= ϕ, and there are two equilibriaS =
(xe, ye) (LAS) andU = (xu, yu) (unstable) and there
is a separatrix curvey = Σ(x) which does not join
S to U, then there are two sets A and B such that
if (x(0), y(0)) ∈ A then (x(t), y(t)) → S, whereas if
(x(0), y(0)) ∈ B thenx(t) → +∞.
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roof. The setX = {(x, y)|0< x ≤ x̄AND y ≥ 0} is
ositively invariant and adsorbing and in it clos
rbits are impossible, as we have seen. Howev

s not a bounded set. Let us consideryI (x): it is
uch that it is split in two branches:yright

I (x) for
2 ≤ x ≤ +∞ (which has no intersections withyC(x))
nd yleft

I (x) for 0 ≤ x < x1 (on which S lies). Let
s consider a pointPi = (xi, yi) lying on the curve
x, y

right
I (x)) and havingyi > yC(0)> yC(x2). Let the

rbit starting fromPi intersect the graph (x, yleft
I (x))

n a point Pf = (xf , yf ) = (xf , yleft
I (xf )) (note tha

t is yf > yi). Let us define the following point
A = (0, yf ), PB = (0, x̄) andPC = (x̄, yi). It is easy

o see that segment of orbit̂PiPf and the straight se
entsPfPA, PAO,OPB, PBPC andPCPi bound an

nvariant setΩ for our dynamical system. As a con
uence, thanks to the Bendixon–Poincare trichoto
is GAS. �
roof. Let us defineyI := Maxx∈R+yI (x) and

Σ = Σ−1(yMAX
I ) . As a consequence, the setA =

(x, y)|0< x < xΣ AND Min(0,Σ(x)) ≤ y ≤ yMAX
I }

s positively invariant and in it there are no clos
rbits, so if (x(0), y(0)) ∈ A then (x(t), y(t)) → S.

t is easy to show that given ayI (xΣ)/ϕ < 4 < α/ϕ
lso the setB = {(x, y)|x > xΣ AND 0 ≤ y ≤ 4} is
ositively invariant. Thus, since inB: x′ ≥ x(α− 4),

t easily follows thatx(t) → +∞; �

roposition 11. Let it beΨ (x) > 0, y′
C(x) ≤ 0 and it

xistsx̄ such thatyC(x̄) = 0 Let there be four equilib
ia CF (unstable), Sl = (xe, ye) (LAS), U = (xu, yu)
unstable) andSr = (xe, ye) (LAS), and let there be
eparatrix curvey = Σ(x) which does not joinSl or
r to U, then there are two sets A and B such
f (x(0), y(0)) ∈ A then (x(t), y(t)) → Sl, whereas i
x(0), y(0)) ∈ B then(x(t), y(t)) → Sr.
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Proof. As in the previous propositionA = {(x, y)|0<
x < xΣ AND Min(0,Σ(x)) ≤ y ≤ yMAX

I } is positively
invariant and in it there are no closed or-
bits, so if (x(0), y(0)) ∈ A then (x(t), y(t)) → Sl.
In this case B = {(x, y)|0< x < x̄AND 0 ≤ y ≤
Min(Σ(x), yMAX

I )}, and it is positively invariant as
well, and with no closed orbits in it. As a consequence:
if (x(0), y(0)) ∈ B then (x(t), y(t)) → Sr; �

Remark. A consequence of the fourth proposition is
that if y′

I (0)> 0 (or y′
I (0) = 0 AND y′′

I (0)> 0) then
σ > σcr is a sufficient condition for the GAS of the CF
equilibrium.

In case of multiple equilibria withφ(x) = const it
may be useful to transform(8) and (9)to a nonlinear
oscillator. In fact by settingz = log(x) it is easy to see
that the original family becomes:

z′′ + (ψ̄(z)−f̄ ′(z))z′ + ϕσq̄(z) − ψ̄(z)f̄ (z) = 0 (17)

whereψ̄(z) = ψ(Ez), etc.. . . . Bydefining the damping
coefficient:

2ν(z) = (ψ̄(z) − f̄ ′(z)) (18)

and the pseudo-potential:

U

∫ z
¯ ¯

a

E

i

• b-
n-

• ia
le.

3. On immunotherapies

3.1. Therapy schedulings

A realistic anticancer therapy may be modeled with
sufficient approximation as constant (e.g. via a con-
stant intravenous infusion) or periodic (e.g. the agent
is delivered each day as a bolus):

θ(t) = θm +Ω(t) ≥ 0, θ(t + T ) = θ(t),

θm = 1

T

∫ T

0
θ(t) dt (21)

For humans, typical periods ranges between 8 h and
7 days[9,5]. A particular case of periodic therapy is
pulsed therapy, i.e. a therapy which induces an instan-
taneous increase of the number of lymphocytes:

θ(t) = γ

+∞∑
n=0

δ(t − nT ) (22)

In the case of constant infusion therapy (CIT) (θ(t) =
θm) by defining:

σ̂ := σ + θm, q̂(x) := σ + θm

σ̂
(23)

Remark. In the next subsections some asymptotic
analyses of therapies shall be conducted. The mean-
ing of the underlyingt → +∞ limits is the following:
t
w the
n have
b

3

nce
o for
f r-
f

σ

B the
a apy
i from
w -
(z) =
0

(ϕσq̄(s) − ψ(s)f (s)) ds (19)

nd the total pseudo-energy:

tot = (z′)2

2
+ U(z) (20)

t follows immediately that whenν(z) > 0:

Let it be x̄ < +∞ and let there be three equili
ria zl < zc < zr which are, respectively LAS, u
stable and again LAS. Let it beEtot(0)< U(zc),
thenz(0)< zc ⇒ z(t) → zl, whereasz(0)> zc ⇒
z(t) → zr;
Let it be x̄ = +∞ and let there be two equilibr
zl < zc which are, respectively LAS and unstab
Let it beEtot(0)< U(zc), thenz(0)< zc ⇒ z(t) →
Zl, whereasz(0)> zc ⇒ z(t) → +∞.
he therapies are administered for a time interval [0, tf ]
hich is finite but sufficiently high to guarantee that
umber of cancer cells is zero or that other targets
een reached.

.2. Continuous infusion therapy

All the considerations we have done the abse
f therapy hold also in case of CIT. In particular,
(0)< +∞, the condition for the LAS of the cance

ree equilibrium is:

+ θm > σcr (24)

ecause of the co-presence of other equilibria,
bove criterion is not global, i.e. the immunother

s not able to guarantee the disease eradication
hatever initial values (x(0), y(0)). However, observ
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ing that in models in whichΨ (x) > 0:

y
with therapy
I (x) = σq(x) + θm

Ψ (x)
> y

no therapy
I (x) (25)

(e.g. in Stepanova’s model with lowµ1) it happens
that, roughly speaking, the stable equilibrium size of
the cancer becomes smaller and the unstable equilibria
greater, so that the basin of attraction of the unbounded
solution is reduced.

Let us consider now some typical situations in case
of y′

C(x) < 0:

• Non-aggressive tumor (i.e.Ψ (x) ≤ 0 in [x1, x2]). In
such a case, in absence of therapy there may be
in the most complex case four equilibria: CF (un-
stable), a small tumor equilibriumEo

micro (LAS), a
macroscopic equilibriumEo

MACRO (LAS) and an in-
termediate unstable equilibriumEo

U, as in Fig. 1,
subplot 1.Eo

micro is determined by the intersec-

tion betweenyC(x) and the branchylI (x), E
o
MACRO

and Eo
U by the intersection betweenyC(x) and

yrI (x). Increasingθ there are new equilibria. For
θ > θcf = yC(0) − yI (0) CF becomes at least LAS
andEmicro disappear. On the right, as a consequence
of the elementary properties of continuous decreas-
ing functions, increasingθ the equilibria move and it
is xEU (θ) > xEU (0), xEMACRO(θ) < xEMACRO(0), and
there existsθr ∈ (0, yrI (xEU ) − yrC(xEMACRO)) such
that forθ > θr EMACRO andEU disappear. Summa-
rizing, whenθ > θ̃ = Max(θcf, θr) then CF is GAS
(Fig. 1, subplot 3), because ofProposition 4of Sec-
tion 2.1. If θr < θcf then forθr < θ < θcf Emicro is
GAS (Fig. 1, subplot 2), whereas whenθcf < θr for
θcf < θ < θr CF is LAS and coexists withEU and
EMACRO(Fig. 2);

• Aggressive tumors with variable signΨ ′(x). In such
a case, in the absence of therapy there may in the
most complex case be one macroscopic equilibrium

F ion in a
p e plott
F ria am
u ich is G .
ig. 1. Illustration of the effect of a CIT on a typical configurat
lotted as a solid line, whereasyC(x) is dashed. The equilibria ar
irst subfigure: in the absence of therapy there are four equilib
nstable and coexists with a microscopic tumor equilibrium wh
lowly aggressive tumor. The case is shown in whichθr < θcf. yI (x) is
ed as black points and they are labeledU when unstable, otherwiseS.
ong which CF. Second subfigure: with a therapy withθr < θ < θcf CF is
AS. Fourth subfigure: for a high dose therapyθ > θcf CF becomes GAS
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Fig. 2. Illustration of the effect of a CIT in a low aggressive tumor
for θcf < θr andθcf < θ < θr . Symbols as inFig. 1.

equilibrium:Eo
Macro (GAS) and, of course, CF (un-

stable). Increasingθ two further equilibria may ap-
pear. The analysis is similar to the previous one (cf.
Figs. 3 and 4) and we may find ãθ such that for
θ > θ̃ CF is GAS. Note that when the tumor is ag-
gressive it is very likely that̃θ is “extremely high”:θ̃
� σ;

Fig. 4. Illustration of the effect of a CIT in an aggressive tumor,
similar toFig. 3, but with LAS CF coexisting with two other equilibria
(θcf “low”).

• Aggressive tumors withΨ ′(x) < 0 [17]. In such a
case, in the absence of therapy there may in the worst
case be one macroscopic equilibrium equilibrium:
Eo

Macro (GAS) and, of course, CF (unstable). In-
creasingθ, if whenyI (0) = yc(0) it isy′

I (0)< y′
C(0)

then we may find two valuesθcf andθ̃ > θcf such that
for θcf < θ < θ̃ CF is LAS and there is the birth of

an agg
Fig. 3. Illustration of the effect of a CIT in
 ressive tumor for increasing values of the CIT.
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a third unstable equilibriumEU . Finally for θ > θ̃
CF is GAS. Note that if whenyI (0) = yC(0) it is
y′
I (0)> y′

C(0) thenθcf = θ̃.

Whenf (0) = +∞ the total elimination cannot be
achieved by immunotherapy alone. Furthermore, even
the suboptimal target of reducing the cancer to a micro-
scopic size in many relevant cases cannot be achieved
for therapies of finite duration, however they may be
long. In fact, let it beΨ (x) > 0 (aggressive tumor) and
let there be a unique GAS macroscopic equilibrium
EMACRO. By applying a CIT withθ sufficiently high
there is a unique GAS microscopic equilibrium. How-
ever, when the therapy ceasesθ falls to zero and the can-
cer restarts growing macroscopically, sinceEMACRO is
again GAS. We note in brief that if the original equilib-
rium is microscopic (e.g. micrometastasis) the effect of
the therapy is simply to create another and temporary
microscopic equilibrium.

Let us suppose that there are three co-existing equi-
libria: Eo

micro (LAS),Eo
U (Unstable and through which

a separatrixΣo passes) andEo
MACRO (LAS). Applying

a CIT with θ > θ̃ there is an unique GAS microscopic
equilibrium. Thus, at the end of the therapy (att = tf )
depending on the position ofPf = (x(tf ), y(tf )) rela-
tively toΣo, we have that either (x(t), y(t)) → Emicro
or (x(t), y(t)) → EMACRO.

We note thatθ acts a global bifurcation parameter,
and we point out that these behavior may be observed
in case of boundedf (0) when therapy is applied for an
i

ain
t -
l the
p be-
t of
e

3

ere
i
( n
o

y

t
c

z(t) = σ + θm

Ψ (0)
+

+∞∑
n=1

Ck√
Ψ2(0) + k2(2π/T )2

× cos

(
k

2π

T
t − ζn − Arg

(
Ψ (0) + ik

2π

T

))
.

(27)

Note that ifT � 1/Ψ (0) there is a filtering effect and
z(t) ≈ (σ + θm)/Ψ (0).

Two basic models of therapy may be:

• θu(t) = A(1 + b cos(ωt)) (28)

which is rather unrealistic, but whose functional
form is commonly used to assess the effect of peri-
odic forcing on nonlinear systems. The asymptotic
solution of(26)corresponding to(28) is given by:

zu(t) = σ + A

Ψ (0)
+ Ab√

Ψ2(0) + ω2

× cos(ωt − Arg(Ψ (0) + iω))

• the more realistic function:

θr(t) = G

1 − exp(−cT )
exp(−cMod(t, T )),

θm = G

cT
, (29)

which represent a boli-based delivery. The “shape”
of θr(t) depends onc and the corresponding asymp-

I ive
d

y

o

z

nsufficient time.
Finally, this simple analytical analysis may expl

heoretically some numerical results of[15] on the re
ationships between the efficacy of the cure and
roliferation rate of cancer, and on the correlation

ween the burden of initial size and the probability
ffectiveness of a therapy.

.3. Periodic scheduling

In the case of periodic drug schedulings, th
s a periodically varying cancer-free solution CF∗ =
0, z(t)), wherez(t) is the asymptotic periodic solutio
f:

′ = −Ψ (0)y + σ + θm +Ω(t) (26)

hat, assumingΩ(t) =∑+∞
n=1Ck cos(k(2π/T )t − ζn),

an be rewritten as::
totic periodic solution of(26) is given by:

zr(t) = σ

Ψ (0)
+ G

Ψ (0) − c

×
(
E−cMod(t,T )

1 − E−cT − E−Ψ (0)Mod(t,T )

1 − E−Ψ (0)T

)

n case of impulsive therapy, by solving the impuls
ifferential equation

′ = −Ψ (0)y + σ, y(nT+)

= y(nT−) + γ, n = 0,1, . . . (30)

ne obtains that:

(t) = σ

Ψ (0)
+ γ

1 − exp(−Ψ (0)T )

× exp(−Ψ (0)Mod(t, T )). (31)
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Furthermore, it is easy to show that the condi-
tion σ + θm > σcr guarantees the LAS of CF.
In fact, since the variational equations around
(0, z(t)) are: U ′ = (αf (0) − φ(0)z(t))U,W ′ =
(σq′(0) − Ψ ′(0)z(t))U − Ψ (0)W , we obtain that
αf (0) − φ(0)< z(t) >< 0 ⇒ U(t) → 0 ⇒ W(t) →
0, and since< z(t) ≥ (σ + θm)/Ψ (0) we recover the
LAS condition σ + θm > σcr. Similarly, one may
demonstrate the GAS condition:σ + θm > σ

∗.

3.4. Numerical simulations

We performed a set of simulations of immunother-
apy on the basis of the model proposed by Kuznetsov
et al.[14], in which:

αf (x) = 1.636(1− 0.002x), φ(x) = 1,

β(x) = 1.131x

20.19+ x
, σq(x) = 0.1181,

µ(x) = 0.00311x+ 0.3743,

and

ttrue = 9.9tadimdays, (X, Y ) = 106(x, y)cells

We chose this model since its parameter values
were fitted from real data of chimeric mice[14].
Note that the dynamic of tumors in mouse is faster
t ods
o
t
a med
s mor,
f r
t
�

er
t de-
t ted
[

m n as
C qui-
l nt,
t
t

Fig. 5. Non-aggressive tumor: phase portrait of model[14] in the
absence of therapy. There are two LAS equilibria, whose basins of
attraction are separated by the separatrix line (plotted with a thick
line). The nullclineyC(x) is plotted with short dashes, the nullcline
yI (x) and its vertical asymptotes are plotted with long dashes.

We found that:

• In the absence of therapy: non-aggressive tumor
has two stable equilibria: one slightly less than the
carrying capacity and the other corresponding to a
small tumor (see phase portrait inFig. 5). For the
highly aggressive tumor there is one GAS equilib-
rium slightly less than the carrying capacity;

• With constant therapy: the non-aggressive tumor has
a cancer-free equilibrium, which results to be GAS
(Fig. 6). Note that the orbits stemming from initial

Fig. 6. Non-aggressive tumor: phase portrait of model[14] in the
presence of constant therapy withσ + θm = 1.1σcr. There is a tumor-
free equilibrium CF= (0,1.799), which is globally stable. The null-
cline yC(x) is plotted with short dashes, the nullclineyI (x) and its
vertical asymptotes are plotted with long dashes. Note that the orbits
stemming from initial points characterized by lowy(0) are charac-
terized by aninitial fast growth of the tumor size, followed by a
r

han that of human tumors, and that for peri
f about 1 day or less (i.e.T < 0.101) it results

hat (1/µ(0)) � T . Moreover,µ′(x) = 0.00311� 1
nd the tumor is not aggressive. We also perfor
imulations in a case of a more aggressive tu
or which we setµ(x) = 10(0.00311x) + 0.3743. Fo
he non-aggressive tumorσcr ≈ 0.612 andσ∗ ≈ 1.44
σ.
It is worth noticing that in other kinds of anticanc

herapies the shape of the therapy may be critical in
ermining whether or not the cancer will be eradica
8].

In our simulations we assumedσ + θm > σcr which
eans that the mean value of the therapy, if give
IT, would enassure the LAS of the disease free e

ibrium. Since for eachT the mean value is consta
his means that in the limitc → +∞ the therapyθr(t)
ends to become impulsive.
 egression to 0.
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Fig. 7. Aggressive tumor: phase portrait of model[14] in presence of
constant therapy. There is a tumor-free equilibrium CF= (0,1.799)
and another LAS equilibrium, whose basins of attraction are divided
by a separatrix line (plotted with a thick line). The nullclineyC(x) is
plotted with short dashes, the nullclineyI (x) and its vertical asymp-
totes are plotted with long dashes.

points characterized by low values of the number of
immune system cells are characterized by aninitial
rapid growth of the tumor size, followed by a re-
gression to 0. Biologically, the therapy might seem
to help the tumor growth, instead of fighting it. For
the highly aggressive tumor, the cancer free equi-
librium is LAS, but there is also a high size LAS
equilibrium (Fig. 7);

• In the presence of periodic therapy withθr(t), for
both types of tumors the phase portrait is roughly
similar to that of the constant therapy: the cancer-
free periodic solution remains GAS for the non-

Fig. 8. Non-aggressive tumor: phase portrait of model[14] in pres-
ence of periodic therapyθr(t) with T = 0.202 (=2 days) and 1/c =
0.1T . There is a tumor free equilibrium (0, z(t)) ≈ (0,1.799) which
remains GAS. The nullclineyC(x) is plotted with short dashing,
the nullclineyI (x) and its vertical asymptotes are plotted with long
d

Fig. 9. Aggressive tumor: phase portrait of the model[14] in
the presence of periodic therapy withT = 0.202 (=2 days) and
1/c = 0.5T . The basins of attraction of the tumor-free equilibrium
CF∗ = (0, z(t)) ≈ (0,1.799) and of the macroscopic size equilib-
rium remain near unchanged respect to the CIT scheduling (the basin
of CF is slightly greater than in the CIT). The nullclineyC(x) is plot-
ted with short dashing, the nullclineyI (x) and its vertical asymptotes
are plotted with long dashes.

aggressive tumor (Fig. 8). For the aggressive tumor
there is the coexistence of the cancer free solution
with a solution fluctuating around high values of
the cancer size (near the equilibrium of the constant
therapy). The two basins of attraction for the aggres-
sive tumor remain unvaried with respect to those of
the constant therapy (Fig. 9).

• Forθr(t) the dependence of the qualitative properties
of the system on the parameterc is not critical.

• For aggressive tumor andθu(t), it may occur that,
given an initial point, the eradication is also a func-
tion of parametersb andω, but this happens only
for unrealistically high values of the therapy pe-
riod (Fig. 10), e.g. T > 100 days. These results
may be roughly explained considering that forT �
Max(1/Ψ (0),1/α), one may approximately con-
siderθu(t) as constant;

• Both with CIT and with periodic therapyy(t) may
reach values considerably higher than the physiolog-
ical valueσ/µ(0), which might model some serious
side effects of immunotherapies due to the excess of
immunocompetent cells[4,5].

For the sake of completeness, we also performed
some simulations in which 0< A < σcr − σ and for
which there were high oscillations (b = 1). We ob-
tained the result that for low frequencies, there may
ashes.
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Fig. 10. Aggressive tumor in the presence of immunotherapyθu(t): growth behavior in function of the parameters (ω, b). Black points correspond
to eradication, white points to macroscopic growth. The initial condition for all is (40,2.5) (chosen near the separatrix for the constant therapy).
Left: σ + A = 1.01σcr, central:σ + A = 1.1σcr and right:σ + A = 1.25σcr. Note that the frequencies which do not allow eradication are very
low, corresponding to absolutely unrealistic periods for the therapy.

be points in the (ω,A) plane for which eradication is
possible (seeFig. 11).

Finally, we performed simulations for a hybrid
model similar to that by Kuznetsov et al.[14], but in
which we assumed:

α = 0.626, f (x) = log

(
500

x

)
,

Fig. 11. Aggressive tumor in the presence of immunotherapyθu(t):
growth behavior in function of the parameters (ω,A) for b = 1, with
A < σcr − σ. Black points correspond to eradication, white points to
macroscopic growth. The initial condition for all is (40,2.5) (chosen
near the separatrix for the constant therapy).

the other parameters being as before. We choose the
valueα = 0.626 in order to minimize the difference
with f (x) in [14]. The results of the simulations are
very close to those relative to the logistic case:Figs. 12
and 13. In order to obtain via CIT the reduction to the
microscopic stateθ > 8.4σ about is required.

The analytical and numerical results obtained in this
section may be usefully compared with two similar
works of the recent literature which focus on Adop-
tive Cellular Immunotherapy. An excellent analytical
work is [19], who, however, cannot be fully compared
with our results because it refers to tumors which have
no action in stimulating immune cells. Furthermore, its
formulae for the global stability of the cancer free equi-
librium are not expressed as a function of the parame-
ters of the therapy. In a very interesting paper[16] some

Fig. 12. Simulation of the modified Kutnetsov model with CIT and
θm = 0.5σ.
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Fig. 13. Simulation of the modified Kutnetsov model with periodic
therapy,T = 0.202 (2 days), 1/c = 0.5T andθm = 6σ.

results similar to ours are obtained through numerical
bifurcations on a three dimensional model in which the
direct immunogenicity of tumors is expressed as an ad-
ditive termcx. As previously stressed, in the absence of
therapy and of influx of immunocompetent cells both
our model and the model in[16] show the possibility
of having periodic solution, which in[16] are shown
to be present also in some cases in which there is ther-
apy. We notice in brief that a termcx may be formally
embedded in our generic functionσ(x).

4. Concluding remarks

It is interesting to use well established conceptual
frameworks of ecological models to model competi-
tion phenomena in human biology, but it is important
to pay attention to the whole ecological modeling as-
pect, such as the basic requirement of the positivity of
the solutions. Even if model[22] violates the positivity
rule, it is valuable because it may be read as a model
which takes into account a disease-induced depression
in the influx of lymphocytes. Then, instead of propos-
ing another specific model, we preferred to add this
new feature to a family of equations, and to analyze its
properties. We stressed also that models which do not
allow the possibility to have LAS tumor-free solutions
should be cautiously considered. The general family
(8) and (9)may be, of course, further generalized fol-
lowing Volterra’s ecological theory, i.e. by considering
t on of
a
i

This delayed model and stochastic models will be the
subject of further investigations.

Finally, we would like to illustrate some qualitative
medical inferences from the investigations that we have
here proposed. The main problem of immunotherapy is
that, as it is clear from our analysis and simulations, in
general, eradication may be possible but is dependent
on the initial conditions (x(0), y(0)). However, the ICs
are in medical practice unknown or known with very
large confidence intervals (cfr.[59] for the cancer cells
at the start of a radiotherapy and). This makes it impos-
sible to plan an anticancer therapy based solely on this
therapy. This is a peculiarity of immunotherapy, since
there are other kinds of anticancer cures for which a
globally stable eradication is possible[8]. However, in
our simulations we have seen that in some particular
cases the model[14] predicts that globally stable erad-
ication is possible also in case of immunotherapy, but
that it depends on the “degree of aggressiveness” of
the cancer, i.e., on the framework of the model[14],
on the parameterµ1. However,µ1 is difficult to be
estimated (as a range) and, in particular, on single pa-
tients. If in the future it might be possible, the option
to use immunotherapy as main strategy, for relatively
small “non-aggressive” tumors, could be seriously con-
sidered. Furthermore, we showed that the behavior of
the system does not depend on the amplitude of fluc-
tuations ofθ(t), so that the option of continuous in-
travenous infusion is not, dynamically, better than the
boli based therapy. This result may be of interest, since
c rac-
t ase
a sim-
u AS
t erapy
a rad-
i
m fol-
l ility
o

A

ho
h anks
t s of
t d, for
hat there may be a delay between the consumpti
prey and the birth of a predator (see also[15,20,21]),

.e. by allowing a delayτ with probability density4(τ).
ontinuous intravenous infusion may cause major p
ical problems to the patients. Finally, in case of dise
ggressive towards the immune system, since our
lations indicated that all the positive quadrant is G

owards a macroscopic disease in absence of th
nd lowσ, whereas in the presence of therapy the e

cation is possible in an adequate basin (seeFig. 7), we
ay infer that a conventional therapy should be

owed by immunotherapy to increase the probab
f total remission.

cknowledgements

I am very grateful to two anonymous referees w
elped me to improve greatly this paper. Special th

o Professor Alberto Gandolfi who read the draft
his papers and gave me precious suggestions, an



234 A. d’Onofrio / Physica D 208 (2005) 220–235

their precious bibliographical help, to Giorgio “Lep-
pie” Donnini, to William Russell-Edu Esq. and to Mat-
teo “Furjo” Sisa.

References

[1] P. Boyle, A. d’Onofrio, P. Maisonneuve, G. Severi, C. Robert-
son, M. Tubiana, U. Veronesi, Measuring progress against can-
cer in Europe: has the 15% decline targeted for 2000 come
about? Ann. Oncol. 14 (2003) 1312–1325.

[2] M.J. Quinn, A. d’Onofrio, B. Moeller, R. Black, C. Martinez-
Garcia, H. Moeller, M. Rahu, C. Robertson, L.J. Schouten, C.
La Vecchia, P. Boyle, Cancer mortality trends in the EU and
acceding countries up to 2015, Ann. Oncol. 14 (2003) 1148–
1152.

[3] P. Boyle, P. Autier, H. Bartelink, J. Baselga, P. Boffetta, J. Burn,
H.J.G. Burns, L. Christensen, L. Denis, M. Dicato, V. Diehl, R.
Doll, S. Franceschi, C.R. Gillis, N. Gray, L. Griciute, A. Hack-
shaw, M. Kasler, M. Kogevinas, S. Kvinnsland, C. La Vecchia,
F. Levi, J.G. McVie, P. Maisonneuve, J.M. Martin-Moreno, J.
Newton Bishop, F. Oleari, P. Perrin, M. Quinn, M. Richards, U.
Ringborg, C. Scully, E. Siracka, H. Storm, M. Tubiana, T. Tursz,
U. Veronesi, N. Wald, W. Weber, D.G. Zaridze, W. Zatonski,
H. zur Hausen, European Code Against Cancer and scientific
justification: third version (20kk03), Ann. Oncol. 14 (2003)
973–1005.

[4] M. Pekham, H.M. Pinedo, U. Veronesi, Oxford Textbook of
Oncology, Oxford Medical Publications, Oxford, 1995.

[5] V.T. de Vito Jr., J. Hellman, S.A. Rosenberg, Cancer: Principles
and Practice of Oncology, J. P. Lippincott, Philadelphia, 1997.

[6] A. Bertuzzi, A. d’Onofrio, A. Fasano, A. Gandolfi, Regression
and regrowth of tumour cords following single-dose anticancer
treatment, Bull. Math. Biol. 65 (2003) 903–931.

rch,

io-
ahn-

Im-
uppl.

[ Im-
03)

[ her-
ant

[ B.
. Rev.

[ e de-
17–

[ n,
esti-

mation and global bifurcation analysis, Bull. Math. Biol. 56
(1994) 295–321.

[15] F. Nani, M.N. Oguztoreli, Modelling and simulation of Rosen-
berg type adoptive cellular immunotherapy, IMA J. Math. Appl.
Med. Biol. 11 (1994) 107–147.

[16] D. Kirschner, J.C. Panetta, Modeling immunotherapy of the
tumor - immune interaction, J. Math. Biol. 37 (1998) 235–252.

[17] H. Ortega, Un Modelo Logistico para Crecimiento Tumoral en
Presencia de Celulas Asesinas, Revista Mexicana de Ingenieria
Biomedica 20 (1999) 61–67.

[18] N. Bellomo, L. Preziosi, Modelling and mathematical problems
related to tumor evolution and its interaction with the immune
system, Math. Comput. Modell. 32 (2000) 413–452.

[19] F. Nani, H.I. Freedman, A mathematical model of cancer
treatment by immunotherapy, Math. Biosci. 163 (2000) 159–
199.

[20] M. Galach, Dynamics of the tumor-immune system competi-
tion: the effect of time delay, Int. J. Applied Math. Comput. Sci.
13-3 (2003) 395–406.

[21] S. Szymanska, Analysis of the immunotherapy models in the
context of cancer dynamics, Int. J. Appl. Math. Comput. Sci.
13-3 (2003) 407–418.

[22] O. Sotolongo-Costa, L. Morales-Molina, D. Rodriguez-Perez,
J.C. Antonranz, M. Chacon-Reyes, Behavior of tumors under
nonstationary therapy, Physica D 178 (2003) 242–253.

[23] H.P. de Vladar, J.A. Gonzalez, Dynamic response of cancer
under the influence of immunological activity and therapy, J.
Theor. Biol. 227 (2004) 335–348.

[24] N. Bellomo, A. Bellouquid, M. Delitala, Mathematical topics
on the modelling complex multicellular systems and tumor im-
mune cells competition, Math. Models Methods Appl. Sci. 14
(2004) 1683–1733.

[25] J. Schmielau, O.J. Finn, Activated granulocytes and
granulocyte-derived hydrogen peroxide are the underly-
ing mechanism of suppression of T-cell function in advanced

[ ast
data,

[ eis-
eor.

[ ru,
03)

[ el-
35

[ J.J.
bocy-
286

[ (15
997)

[ On-
[7] T.E. Wheldon, Mathematical Models in Cancer Resea
Hilger Publishing, Boston-Philadelphia, 1988.

[8] A. d’Onofrio, A. Gandolfi, Tumour eradication by antiang
genic therapy: analysis and extensions of the model by H
feldt et al. (1999), Math. Biosci. 191 (2004) 159–184.

[9] S.A. Agarwala (Guest Editor), New Applications of Cancer
munotherapy, Seminars in Oncology, Special Issue 29-3, S
7, 2003.

10] I. Bleumer, E. Oosterwijk, P. de Mulder, P.F. Mulders,
munotherapy for renal cell carcinoma, Eur. Urol. 44 (20
65–75.

11] C. Marras, C. Mendola, F.G. Legnani, F. di Meco, Immunot
apy and biological modifiers for the treatment of malign
brain tumors, Curr. Opin. Oncol. 15 (2003) 204–208.

12] J.M. Kaminski, J.B. Summers, M.B. Ward, M.R. Huber,
Minev, Immunotherapy and prostate cancer, Cancer Treat
29 (2004) 199–209.

13] N.V. Stepanova, Course of the immune reaction during th
velopment of a malignant tumor, Biophysics 24 (1980) 9
923.

14] V.A. Kuznetsov, I.A. Makalkin, M.A. Taylor, A.S. Perelso
Nonlinear dynamics of immunogenic tumors: parameter
cancer patients, Cancer Res. 61 (2001) 4756–4760.
26] D. Hart, E. Shochat, Z. Agur, The growth law of primary bre

cancer as inferred from mammography screening trials
Br. J. Cancer 78 (1998) 382–387.

27] C. Guiot, P.G. Degiorgis, P.P. Delsanto, P. Gabriele, T.S. D
boecke, Does tumor growth follow a “universal law”?, J. Th
Biol. 225 (2003) 147–151.

28] A. Bru, S. Albertos, J.L. Subiza, J.L. Garcia-Asenjo, I. B
The universal dynamics of tumor growth, Biophys. J. 85 (20
2948–2961.

29] B.J. Kennedy, Cyclic leukocyte oscillations in chronic my
ogenous leukemia during hydroxyurea therapy, Blood
(1970) 751–760.

30] H. Vodopick, E.M. Rupp, C.L. Edwards, F.A. Goswitz,
Beauchamp, Spontaneous cyclic leukocytosis and throm
tosis in chronic granulocytic leukemia, New Engl. J. Med.
(1972) 284–290.

31] H. Tsao, A.B. Cosimi, A.J. Sober, Ultra-late recurrence
years or longer) of cutaneous melanoma, Cancer 79 (1
2361–2370.

32] G. Bonadonna, G. Robustelli della Cuna (Eds.), Medicina
cologica, Masson, Milano, 1994, pp. 259–272.



A. d’Onofrio / Physica D 208 (2005) 220–235 235

[33] A. Kane Laird, Dynamics of tumor growth, Br. J. Cancer 18
(1964) 490–502.

[34] A. Kane Laird, Dynamics of tumor growth: comparison of
growth rates and extrapolation of growth curve to one cell, Br.
J. Cancer 19 (1965) 278–290.

[35] I.D. Bassukas, Gompertzian re-evaluation of the growth pat-
terns of transplantable mammary tumours in sialoadenec-
tomized mice, Cell Prolif. 27 (1994) 201–211.

[36] N. Olea, M. Villalobos, M.I. Nunez, J. Elvira, J.M. Ruiz de
Almodovar, Evaluation of the growth rate of MCF-7 breast can-
cer multicellular spheroids using three mathematical models,
Cell Prolif. 27 (1994) 213–227.

[37] A.M. Parfitt, Gompertzian growth curves in parathyroid tu-
mours: further evidence for the set-point hypothesis, Cell Prolif.
30 (1994) 341–649.

[38] K. Rygaard, M. Spang-Thomsen, Quantitation and Gom-
pertzian analysis of tumor growth, Breast Cancer Res. Treat.
46 (1997) 303–312.

[39] A.M. Ballangrud, W.H. Yang, A. Dnistrian, N.L. Lampen, G.
Sgourous, Growth anc characterization of LNCaP prostate can-
cer, Clin. Cancer Res. 5 (1999) 3171s–3167s.

[40] D.A. Cameron, The relative importance of proliferation and cell
death in breast cancer growth and response to tamoxifen, Eur.
J. Cancer 37 (2001) 1545–1553.

[41] M.A.A. Castro, F. Klamt, V.A. Grieneisen, I. Grivicich, J.C.F.
Moreira, Gompertzian growth pattern correlated with pheno-
typic organization of colon carcinoma, malignant glioma and
non-small cell lung carcinoma cell lines, Cell Prolif. 36 (2003)
65–73.

[42] M. Gyllenberg, G. Webb, Quiescence as an explanation of Gom-
pertzian tumor growth, Growth, Dev. Aging 53 (1989) 25–33.

[43] C. Calderon, T. Kwembe, Modeling Tumor Growth, Math.
Biosci. 103 (1991) 97–114.

[44] E.K. Afenya, C.P. Calderon, Diverse ideas on the growth kinet-
ics of disseminated cancer cells, Bull. Math. Biol. 62 (2000)

[ ells
rete

[46] M. Molski and J. Konarski, Coherent states of Gompertzian
growth, Phys. Rev. E, 68 Art. No. 021916 Part, 1 Augest 2003.

[47] P. Waliszewski, J. Konarski, The Gompertzian curve reveals
fractal properties of tumor growth, Chaos Solitons Fractals 16
(2003) 665–674.

[48] P. Castorina and D. Zappala’, Tumor Gompertzian growth by
cellular energetic balance, arXiv:q-bio.CB/0407018 v2, 21 De-
cember 2004.

[49] P. Castorina and D. Zappala’, Energetic Model of Tumor
Growth, arXiv:q-bio.TO/0412040 v1, 22 December 2004.

[50] M. Marusic, Z. Bajzer, J.P. Freyer, S. Vuk-Pavlovic, Analysis
of growth of multicellular tumour spheroids by mathematical
models, Cell Prolif. 27 (1994) 73–94.

[51] I.M. van Leeuwen, C. Zonneveld, From exposure to effect: a
comparison of modeling approaches to chemical carcinogene-
sis, Mutat. Res. 489 (2001) 17–45.

[52] R. Demicheli, R. Foroni, A. Ingrosso, G. Pratesi, C. Soranzo, M.
Tortoreto, An Exponential-Gompertzian description of LoVo
cell tumor growth from in vivo and in vitro data, Cancer Res.
49 (1989) 6543–6546.

[53] V.G. Vaydia, F.J. Alexandro Jr., Evaluation of some mathemati-
cal models for tumor growth, Int. J. Biomed. Comput. 13 (1982)
19–36.

[54] G.G. Steel, Groth Kinetics of Tumours, Clarendon Press, Ox-
ford, 1977.

[55] S. Piantadosi, A Model of Growth with first-order birth and
death rates, Comput. Biomed. Res. 18 (1985) 220–232.

[56] H. Thieme, Mathematics in Population Biology, Princeton Uni-
versity Press, Princeton, 2003.

[57] G.P. Dunn, A.T. Bruce, H. Ikeda, L.J. Old, R.D. Schreiber, Can-
cer immunoediting: from immunosurveillance to tumor escape,
Nature Immunol. 3 (2002) 991–997.

[58] G.P. Dunn, L.J. Old, R.D. Schreiber, The three ES of can-
cer immunoediting, Ann. Rev. Immunol. 22 (2004) 322–
360.

ect
top-
arlo
527–542.
45] E.K. Afenya, C.P. Calderon, Growth kinetics of cancer c

prior to detection and treatment: an alternative view, Disc
Cont. Dynam. Syst. B 5 (2004) 25–28.
[59] F.M.O. Al-Dwery, D. Guirado, A.M. Lallena, V. Pedraza, Eff
of tumour control of time interval between surgery and pos
erative radiotherapy: an empirical approach using Monte C
simulation, Phys. Med. Biol. 49 (2004) 2827–2839.


	A general framework for modeling tumor-immune system competition and immunotherapy: Mathematical analysis and biomedical inferences
	Introduction
	A general family of models and its properties
	The global behavior

	On immunotherapies
	Therapy schedulings
	Continuous infusion therapy
	Periodic scheduling
	Numerical simulations

	Concluding remarks
	Acknowledgements
	References


