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Abstract The transcription factors PU.1 and GATA-1 are known to be important
in the development of blood progenitor cells. Specifically they are thought to regu-
late the differentiation of progenitor cells into the granulocyte/macrophage lineage
and the erythrocyte/megakaryocite lineage. While several mathematical models have
been proposed to investigate the interaction between the transcription factors in recent
years, there is still debate about the nature of the progenitor state in the dynamical
system, and whether the existing models adequately capture new knowledge about the
interactions gleaned from experimental data. Further, the models utilise different for-
malisms to represent the genetic regulation, and it appears that the resulting dynamical
system depends upon which formalism is adopted. In this paper we analyse the four
existing models, and propose an alternative model which is shown to demonstrate
a rich variety of dynamical systems behaviours found across the existing models,
including both bistability and tristability required for modelling the undifferentiated
progenitors.
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1 Introduction

A stem cell is a cell that has the ability to continuously divide and differentiate
(develop) into various other kinds of cells/tissues. A related concept is that of a
progenitor cell that can differentiate into any of several different cell types. Dur-
ing development, the decision to leave the progenitor state, and the selection of a
differentiation pathway, are regulated by transcription factors. The two transcription
factors PU.1 and GATA-1 regulate the differentiation of a particular branch of blood
cells. In the erythrocyte/megakaryocite lineage high levels of GATA-1 and low levels
of PU.1 are detected (Shivdasani and Orkin 1996; Akashi et al. 2000). Conversely,
in the granulocyte/macrophage lineage higher levels of PU.1 are found (Shivdasani
and Orkin 1996). The initial progenitor state has low level activation of both PU.1
and GATA-1 genes. This initial state is referred to as an indeterminate state in this
study. Thus the understanding of how PU.1 and GATA-1 interact is important in the
study of this differentiation process, and accurate modelling of the process promises
opportunities to control stem cell development for significant therapeutic benefits.

It is believed that both PU.1 and GATA-1 ‘autoregulate’ themselves, i.e. they stim-
ulate their own production. They are also mutually antagonistic, i.e. they repress the
production of each other (Nishimura et al. 2000; Okuno et al. 2005; Liew et al. 2006).
As a progenitor cell differentiates it transitions from an initial indeterminate state into
one of two differentiated states. The important aspects that any mathematical model
of PU.1 and GATA-1 must include are therefore: an indeterminate state; differentiated
lineages represented as two stable attractors of the dynamical system; and modelling
of the autoregulation and mutual antagonism between the transcription factors. The
gradual changes in gene expression levels arise from the production of transcription
factors, a process involving transcription, transportation and translation. Since these
processes typically occur on a much faster time scale compared to the rate of change
of gene expression levels, the various stages of transcription factor production are
usually not modelled individually, and are considered as a single process.

Within these broad considerations, a number of different dynamical system models
have been developed using different formalisms. The Shea–Ackers formalism (Shea
and Ackers 1985) is a thermodynamic approach to represent the gene expression
based on the structure of transcription machinery. In the case of a single transcrip-
tional factor, the Hill function has been widely used as a candidate to represent the
binding of transcriptional factors in the form of multimers, though this function has
also been commonly used to describe the steep sigmoidal signal response from the
input/substrate. In particular, the Michaelis–Menten function is a special case of the
Hill function when the Hill coefficient is one. The first attempt at mathematically
modelling the interaction was made by Roeder and Glauche (2006) who used the
Shea–Ackers formalism, described in the next section, to represent positive and nega-
tive regulation. This model successfully realized bistability and an indeterminate state.
In mathematical modelling, the indeterminate state means a state which is located in
the middle of the two bistable states. After the introduction of an appropriate impulse,
the indeterminate state may switch to one of the bistable states. The next model was
proposed by Huang et al. (2007) using the Hill function formalism with high cooper-
ativity Hill coefficients. Huang et al.’s model was able to be qualitatively compared to
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experimental evidence and showed remarkable agreement, giving support to the idea
that lineage choice occurs as a two stage process, first priming and then differentiating.
These two models required high cooperativity to display bistable behaviour. However,
the release of experimental results by Liew et al. (2006) revealed new knowledge about
how mutual regulation of PU.1 and GATA-1 occurs, involving a simple heterodimeric
repressive binding between the transcription factors.

In response to this experimental discovery, Chickarmane et al. (2009) published a
revised set of equations based on the Shea–Ackers formalism and the assumption that
the autoregulation at both PU.1 and GATA-1 occurs through the binding of monomers.
Since the resulting dynamical system was not able to attain a bistable state, which is
a requirement for modelling differentiation, the authors concluded that an additional
mechanism must be involved in the repressive interaction to create a bistable switch.
They introduced a third unspecified gene X, and showed that the triple system of dif-
ferential equations created bistability. Chickarmane et al.’s model also offered insight
into the possibility for how an indeterminate state can occur and also gave predictions
that feedback from downstream transcription factors can play an important role in
irreversibility. However, the introduction of an unknown gene X, simply to produce
bistability, is somewhat unsatisfying. An alternative model proposed by Bokes et al.
(2009) extended the work of Huang et al. (2007) based on the Hill function formal-
ism, but ensured low cooperativity. This model made some assumptions that saw the
mutual antagonism modelled as a competition for free GATA1 and PU.1.

In this paper, these four existing models are reviewed and analysed first. An alter-
native approach then is proposed based on the Hill function formalism. The proposed
model negates the need for any unknown genes to be added as per the Chickarmane
et al. (2009) model and has not the assumptions made by Bokes et al. (2009) to achieve
both bistability and tristability for various parameter combinations. By separating the
strength of cooperativity for autoregulation and repression, we provide a model that
enables the effect of various parameters to be more readily explored, and will provide
a longer-surviving model as new experimental data comes to hand. The remainder of
this paper is organized as follows: Sect. 2 reviews the four existing models by discuss-
ing the assumptions made in the model and the resulting network dynamics. Our new
model is proposed in Sect. 3. The bifurcation analysis is carried out in Sect. 4. The
simulated system dynamics is presented in Sect. 5.

2 Comparative analysis of existing models

2.1 The first model using the Shea–Ackers formalism

Roeder and Glauche (2006) proposed the first mathematical model to study the inter-
active regulation of genes PU.1 and GATA-1. It was assumed that both PU.1 and
GATA-1 are autoregulatory through the binding of homo-dimers and these homo-
dimers activate the expression of genes PU.1 and GATA-1. The concentrations of
homodimers are maintained at equilibrium levels via the instantaneous dimer forma-
tion and dissolution. In addition, the mutual antagonism between PU.1 and GATA-1
occurs through the formation of heterodimers which not only reduce the availability of
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PU.1 and GATA-1 to form homodimers but also decrease the expression of PU.1 and
GATA-1. In this model, monomeric bindings were not considered and time delays in
transcription, transportation and translation are ignored. Other transcriptional factors
in the transcription machinery were excluded from the model for simplicity.

By taking the symmetric system only, and normalising the model variables, Roeder
and Glauche proposed a simplified equation model, given by

d[G]
dt

= s[G]2 + uku[P]2

1 + [G]2 + ku[P]2 + kr [G][P] − [G]
d[P]

dt
= s[P]2 + uku[G]2

1 + [P]2 + ku[G]2 + kr [G][P] − [P],
(1)

where [G] and [P] are normalized concentrations of the expression levels of gene
GATA-1 and PU.1, respectively.

Depending on the strengths of the specific regulation (s) and unspecific regulation
(u), Roeder and Glauche (2006) demonstrated that system (1) has one, two or three sta-
ble steady states. Since experiments determined that the heterodimer of GATA-1 and
PU.1 inhibits the production of PU.1 directly, but GATA-1 only indirectly (Zhang et al.
2000), Roeder and Glauche introduced an asymmetry into their system by allowing
kr P > 0. The introduced asymmetry did not change the number of stable steady states
but varied the locations of the stable points. In addition, the study of the switch-like
behaviour of the system showed that, once the system reaches a steady state at which
the expression level of one gene is higher than that of the other, a large change in
concentration is required to destabilise the system and move it to the other state. This
suggests that it is possible to force the differentiated cells to follow a different line-
age if the concentrations of transcription factors are changed sufficiently. In addition,
this research also provided interesting insights into the nature of the indeterminate
state, a balanced low level co-expression state of transcriptional factors. However, the
decrease in the concentration of GATA-1 following the impulse is inconsistent with
the experimental results of several research works including Zhang et al. (2000). This
may be due to the lack of a continuously modulated set of cooperative lineage-inherent
transcriptional factors, which change with the state of differentiation, in the proposed
mathematical model (Roeder and Glauche 2006) In summary, this first mathemati-
cal model of the PU.1–GATA-1 network offers interesting insights into the nature of
bistability, the switch-like behaviour and the possibility of a two-stage priming system.

2.2 Model using summed Hill formalism

Huang et al. (2007) reformulated the interaction between genes PU.1 and GATA-1
using summed Hill functions with the same Hill coefficients. Their description was
intended to provide a mathematical model on a coarser level than Roeder and Glauche
(2006), ignoring the specific molecular details and exploring the general model. It was
assumed that the production of both PU.1 and GATA-1 is autoregulatory and genes
PU.1 and GATA-1 inhibit the production of each other. The proposed mathematical
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Fig. 1 Typical vector diagrams of system (2). a System without autoregulation (a1 = a2 = a = 0). b
System with autoregulation (a = 1). Black solid circles (A, B in a and A–C in b) are steady states and
attractors, and the empty circle (C in a) is a saddle point. Other parameters of the system are n = 4, k1 =
k2 = 1, θ = 0.5, b1 = b2 = 1

model is given by

d[G]
dt

= a1
[G]n

θn
a1 + [G]n

+ b1
θn

b1

θn
b1 + [P]n

− k1[G]
d[P]

dt
= a2

[P]n

θn
a2 + [P]n

+ b2
θn

b2

θn
b2 + [G]n

− k2[P]. (2)

The system was modelled both with and without the autoregulatory aspect (a1 = a2
= 0); and the autoregulation was found to confer stability to the progenitor state. The
parameter space was explored through a combination of matrices of cell paths and
bifurcation diagrams. It was found that the bistability of the system depends on the
relative value of b or k to that of a (Huang et al. 2007).

Similar to the model (1) proposed by Roeder and Glauche (2006), the non-diagonal
stable points (i.e. [G] �= [P]) of system (2) were associated with the differentiated
cells, with point A in Fig. 1 representing the erythrocyte lineage and point B the
myeloid lineage. The middle stable point C in Fig. 1b when the system has autoregu-
lation was identified with the progenitor state and two methods of differentiation were
investigated. One explanation for differentiation was that an external factor, such as
a myeloid-stimulating agent that may inhibit GATA1 activation by lowering a1 or
increasing k1 to induce myeloid differentiation (Huang et al. 2007), causes the system
to be disrupted in a non-symmetric way. In this scenario, the cell is almost certain to
go to state B. The second explanation involved an external signal destabilising state
C in Fig. 1b allowing the cell to differentiate. In this scenario the cell could go either
way but allows external influences to easily guide the cell to a required lineage.

In addition, two types of bifurcation were found to occur as the parameters were
changed symmetrically, namely the super-critical bifurcation (Type I) and sub-critical
pitchfork bifurcation (Type II). It was found that a type I bifurcation in Fig. 2a which
led to a loop in the myeloid path always generated a counter-clockwise loop, while a
type II bifurcation in Fig. 2b generated a clockwise loop. This qualitative difference
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Fig. 2 Types of symmetric bifurcations in the system (2). a Super-critical bifurcation (Type I). The system
has one single stable steady state when b ∈ [0, 0.49]. When b ≥ 0.5, it has two stable and one unstable
steady states. Model parameters are n = 4, k = 1, θ = 0.5 and a = 0.01. b Sub-critical bifurcation (Type
II). The system has three stable and two unstable steady states when k ∈ [0.8, 1.3]. When k ≥ 1.3, it has
two stable and one unstable steady states. Model parameters are n = 4, b = 1, θ = 0.5 and a = 1. (Solid
dot line stable steady states, dot line unstable steady states)

allowed the comparison with experimental data without curve fitting, which is difficult
in such an open system. The experimental results always showed counterclockwise
trajectories in the myeloid loops supporting the type II bifurcation. The concentrations
of both PU.1 and GATA-1 were experimentally found to vary together rather than one
increasing and the other decreasing as would be expected if differentiation was induced
by a non-symmetric change. This lends support to a two stage differentiation whereby
the central fixed point is first destabilised, then small external influences can easily
alter the fate of a cell. This is the only model whose simulation results were compared
with experimental results with good quantitative agreement.

2.3 Model with a master regulator gene

Experimental results showed that the mutual antagonism between PU.1 and GATA-1
seemed to be due to the PU.1–GATA-1 heterodimer (Liew et al. 2006). In addition,
there was no experimental evidence to support the autoregulation of PU.1 or GATA-1
by dimers or higher order multimers. Based on these experimental results, it was
hypothesized that the assumption in the previous models (1, 2) with high coopera-
tivity might not be correct (Chickarmane et al. 2009). Therefore it was assumed that
the production of both PU.1 and GATA-1 is autoregulatory through monomers only
and PU.1 and GATA-1 inhibit the production of each other through a PU.1–GATA-1
dimer. However, a mathematical model based on these assumptions failed to realize
bistability since the system has only one single stable steady state. To realize bista-
bility, it was assumed the existence of a gene X which is activated by GATA-1 and its
product (protein X) inhibits the expression of gene PU.1 (Chickarmane et al. 2009).
This assumption led to the following system of differential equations

d[G]
dt

= α1 A + α2[G]
1 + β1 A + β2[G] + β3[G][P] − γ1[G]
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Fig. 3 A typical vector diagram
of the PU.1–GATA-1 network
model (3) without transcriptional
factor X. Parameters are: α1 =
β1 = β3 = δ1 = ε1 = ε3 = 1,

α2 = β2 = δ2 = ε2 = 0.25,
γ1 = γ2 = 0.01, A = B = 0.01.

d[P]
dt

= δ1 B + δ2[P]
1 + ε1 B + ε2[P] + ε3[G][P] + ε4[G][X ] − γ2[P]

d[X ]
dt

= ζ1[G]
1 + η1[G] + η2C

− γ3[X ], (3)

where C is used to account for the environmental factors that may suppress the expres-
sion of gene X. The addition of this extra gene gives more effective cooperativity in
the interactions and allows the system to become bistable. When at concentrations of
about 0.1 < A < 1.1, there are two stable states, namely one state with high GATA-1
and X as well as low PU.1 expression levels, and the other state with low GATA-1 and
X as well as high PU.1 levels (Chickarmane et al. 2009). To test the critical effect of
gene X in model (3), we plotted the vector diagram of system (3) when the expression
of gene X is always zero. An example shown in Fig. 3 demonstrated that there is
clearly only one diagonal stable point, namely [G] = [P].

Simulations using different sets of parameters showed that the bistability is robust
and exists for a wide range of values. It was also stated that the inhibition scheme
chosen, could equally occur in the opposite direction without changing the overall
behaviour, i.e. where PU.1 activates X which suppresses GATA-1. The addition of
the transcriptional factor X also has an interesting effect on indeterminate state. By
increasing the value of C , all transcription factors will be maintained at intermediate
levels, and as the value of C is decreased the system becomes bistable again. Thus it
was proposed that the inclusion of the transcriptional factor X stabilised the progenitor
state (Chickarmane et al. 2009). The model suggested was that initially GATA-1 and
PU.1 are kept at low activation levels by A and B, then by the removal of C the system
becomes bistable and the cell differentiates.

Next, the system was expanded to include the downstream transcription factors,
C/EBPα and FOG-1. These transcription factors are also mutually antagonistic and
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FOG-1 is activated by GATA-1, while C/EBPα is activated by PU.1 (Laiosa et al.
2006). By assuming that C/EBPα activates PU.1, Chickarmane et al. were able to
show that the feedback loop resulting from the downstream factors acted to make the
switching behaviour non-reversible. FOG-1 was also considered as the transcriptional
factor X but it was found that while the system acquired switch-like behaviour, there
was no evidence of the indeterminate state.

Chickarmane et al. found that their model of the PU.1–GATA-1 interaction with low
cooperativity did not display bistability. Although there are other models that contain
low cooperativity and bistability, for example the model in Bokes et al. (2009), they
chose instead to introduce another transcriptional factor X into the system. The intro-
duction of this transcriptional factor was found to allow bistable behaviour as well as
confer stability to the progenitor state. The hierarchical structure of their model could
also be considered in other pluripotential systems (Swiers et al. 2006; Loose et al.
2006). This offers an interesting and innovative method of introducing irreversibility.

2.4 Model using the Michaelis–Menten formalism

An alternative approach was proposed recently to model the PU.1–GATA-1 network
with low cooperativity (Bokes et al. 2009). It was assumed that the PU.1 and GATA-1
transcriptional factors inhibit the production of each other, and this regulation was mod-
elled by the production of an inactive heterodimer, that neither activates nor inhibits
the production of each directly. In addition, the production of both PU.1 and GATA-
1 proteins is autoregulatory through monomers only. Thus the Michaelis–Menten
functions were used to describe the autoregulation. After non-dimensionalising and
eliminating the equation of the PU.1–GATA-1 heterodimer, the mathematical model
was simplified to

du

dτ
= s1u

L1 + u
− a1u + f (u, v)

dv

dτ
= s2v

L2 + v
− a2v + f (u, v) (4)

where f (u, v) = uv

1 + u + v

(
−1 + a1 + a2 − s1u

L1 + u
− s2v

L2 + v

)
,

where u and v are dimensionless concentrations of PU.1 and GATA-1, respectively.
The term f (u, v) in (4) represents the antagonistic coupling of the two transcriptional
factors. If it is neglected in (4), then the model reduced to a coupled system describ-
ing gene expression of two independently autoregulating factors which cannot exhibit
bistability (Bokes et al. 2009). Significantly, recent models for the PU.1 and GATA-1
interaction (e.g. Roeder and Glauche 2006) do not incorporate a term analogous to
f (u, v) in the governing equations (2).

Bokes et al. (2009) depicted four possible situations, depending on the model param-
eters. The system was seen to exhibit bistability as well as a possible indeterminate
state. By examining the steady state conditions of system (4), it was found that the
system is bistable provided that it lies in the hatched wedge in Fig. 4 between two
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Fig. 4 Requirement for
bistability in Bokes et al. system.
In this example a2/L2 = 1/3
and a1/L1 = 1/2
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lines vh = a1uh/L1 and vh = L2uh/a2, where uh = s1
a1

− L1 and vh = s2
a2

− L2
(Bokes et al. 2009). The stationary points on the axis were also found to be located at
(uh, 0) and (0, vh). To create a robust system, L1/a1 and L2/a2 must be large. To have
a robust and bistable switch, the degradation of the heterodimer should be faster than
that of the PU.1 and GATA-1 proteins, and/or the two transcription factors should
bind together strongly. The bifurcation analysis suggested that a cell in the stable
co-expression state, could be considered as an indeterminate state. This state could be
left by either through the dimer being transported out of the nucleus or by an increase
in an enzyme that breaks down the dimer, leading to differentiation. Differentiation
could also be caused by a chemical that decreases the affinity of PU.1 and GATA-1
for each other.

Bokes et al. produced an alternative model that has low cooperativity and exhibits
robust bistability and an indeterminate state. They were able to show the range of
possible behaviours and propose how a cell transitions from progenitor state to dif-
ferentiation. The assumption that the mutual antagonism can be correctly modelled as
competition with an inactive heterodimer for free transcription factors is interesting,
but under the assumption implies that at most one of the stable states can be non-
diagonal, namely u �= v, while small amounts of PU.1 and GATA-1 have been found
in the opposite lineage (Shivdasani and Orkin 1996; Akashi et al. 2000). Whether this
is due to the noisy cell environment or to a non-zero stable value of the inactive factor
is unclear.

3 A new mathematical model

Although genes PU.1 and GATA-1 play a key role in determining the development
pathways of blood progenitor cells, we still have a poor understanding of the regu-
latory mechanisms controlling the expression of these two genes. With regarding to
GATA-1 molecules, experiments have demonstrated that GATA-1 may exist in the
dimeric form (Mackay et al. 1998). However, either monomeric or dimeric GATA-1
molecules may provide a mechanism to regulate the expression of its numerous target
genes (Shimizu et al. 2007). Less information is available for the mechanisms regulat-
ing the expression of gene PU.1. On the other hand, the introduction of an unknown
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Fig. 5 Network diagram for the PU.1–GATA-1 regulatory network

gene X in Chickarmane et al.’s model is unsatisfying although this model successfully
realized bistability using low cooperativity (Chickarmane et al. 2009). One of the
predicted mechanisms, namely PU.1 activating gene X which suppresses GATA-1, is
not consistent with the most recent experimental discovery showing that PU.1 posi-
tively regulates GATA-1 expression in most cells (Takemoto et al. 2010). Therefore an
important question regarding the mechanisms regulating the PU.1–GATA-1 network
is, after removing the gene X from the system, what is the minimal cooperativity to
realize bistability and an indeterminate state. To answer this question, we developed
a mathematical model based on the summed Hill functions that have been used in the
model in Huang et al. (2007). In the light of new experimental evidence by Liew et al.
(2006), the antagonistic factor was changed to the PU.1–GATA-1 heterodimer. But we
will test different cooperativities of the antagonistic factor and the antagonistic Hill
coefficient that might be 1 or greater than 1.

Since the model proposed by Huang et al. (2007) is the only one whose simulation
results were supported by experimental data, we follow this approach using summed
Hill functions to represent autoregulation and antagonism. Our proposed model is
based on the following assumptions:

– The production of both PU.1 and GATA-1 is autoregulatory;
– Transcriptional factors PU.1 and GATA-1 inhibit the production of each other

through a PU.1–GATA-1 heterodimer;
– There are independent binding site for the autoregulation and for the inhibition by

the heterodimer;
– It is assumed that the inhibition acts on a background expression term;
– The concentrations of homodimers are assumed at equilibrium levels via the instan-

taneous dimer formation and dissolution;
– Time delays in transcription, transportation and translation are ignored;
– The Hill coefficient for autoregulation was separated from the antagonism coeffi-

cient;
– To simplify the analysis, the system was modelled to be structurally symmetrical,

i.e. the Hill coefficients were the same for GATA-1 and PU.1; and
– Monomeric bindings were not considered.

The network diagram is shown in Fig. 5. Hill functions were used to model the system
resulting in the following equations:
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d[G]
dt

= a1
[G]n

θn
a1 + [G]n

+ b1
θm

b1

θm
b1 + [G]m[P]m

− k1[G]
d[P]

dt
= a2

[P]n

θn
a2 + [P]n

+ b2
θm

b2

θm
b2 + [G]m[P]m

− k2[P],
(5)

where [G] and [P] are expression levels of genes GATA-1 and PU.1, respectively.
The first term in each equation represents gene expression by auto-stimulation and the
second term is the cross-inhibition regulated by the other transcriptional factor in
the network. The third term is a first-order degradation of the transcriptional factor.
Instead of using the multiplicative inputs from auto-stimulation and cross-inhibition
(Chickarmane et al. 2009), the proposed model uses the additive inputs from auto-
stimulation and cross-inhibition. A detailed discussion about the assumption of the
additive inputs can be found in Huang et al. (2007).

We further constrained our study to the symmetric system in which the system
parameters satisfy a1 = a2, b1 = b2, θa1 = θa2, θb1 = θb2 and k1 = k2. We also
removed the degradation rate k = k1 = k2 by using x= k[G], y = k[P], a = ka1,

b = kb1, θ1 = kθa1, θ2 = k2θb1, the system (1) can be written in the following simple
form as

dx

dt
= a

xn

θn
1 + xn

+ b
θm

2

θm
2 + xmym

− x

dy

dt
= a

yn

θn
1 + yn

+ b
θm

2

θm
2 + xmym

− y.

(6)

and then the steady state (x, y) satisfy

a
xn

θn
1 + xn

+ b
θm

2

θm
2 + xmym

= x

a
yn

θn
1 + yn

+ b
θm

2

θm
2 + xmym

= y.

(7)

4 Bifurcation analysis

Using bifurcation diagrams, we investigated the existence of bistability of system (5)
with different binding cooperativity of n and m. It was found that, when n ≥ 2, this
system could support bifurcation and an indeterminate state, even when the coopera-
tivity in the mutual antagonism is one, namely m = 1. Our first question is what is the
influence of the Hill coefficient n on the existence of bistability and an indeterminate
state of system. To answer this question, we generated 1,000 sets of model parameters
(a1, b1, θa1, θb1, k1) and the value of each parameter is a sample of the uniformly
distributed random variable U (0, 2). Together with m = 1 and n = 2, 3 or 4, we
examined each parameter set by determining whether system (5) has the bistability
property and an indeterminate state. When n = 2, numerical results suggested that
only 16 parameter sets could generate system dynamics showing bistable steady states
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and an indeterminate state. When n = 3, the number of parameter sets was increased
to 42; and this number was increased further to 89 if n = 4. We have also tested the
bistability property of the system (5) when n = m = 1. However, we failed to find
one set of parameters on which the system exists bistability property, though this test
cannot exclude the possibility that this system may have the bistability property with
a particular model parameter set when n = m = 1. Repeated numerical tests based on
other 1000 sets of model parameters suggested the similar conclusions regarding the
percentages of model parameter sets showing the bistability property. Thus our tests
suggested that the system (5) is more likely to have bistability property when a larger
value of the Hill coefficient n is used.

To compare with the bifurcation results in Fig. 2 (Huang et al. 2007, Fig. 6a shows
the bifurcation characteristics of system (5) with changing values of a when the coop-
erative binding coefficient is n = 4. It displays type II bifurcation as per Huang et al.,
which also occurs when k or θ is increased. When a > 0.63, the system shows a
tristable attractor landscape. If the value of a decreases below the first threshold value
a = 0.63 but is still above the second threshold value a = 0.47, the system locates in a
bistable region with two stable and one unstable steady states. However, the decrease
of the maximal expression rate could not cross the second threshold value a = 0.46.
If the expression rate is too low, then the system will enter the monostable mode and
any temporary increase of the gene expression will not switch the system into another
stable state. However, when we increased the values of parameter b = b1 = b2, Fig. 6b
shows that the system changes from a tristable system to a monostable one. Similar
observation can be found in Fig. 6c. When we increased the value of k = k1 = k2
from 1 to 1.6, the system changes from a tristable system to a bistable one.

Figure 7 shows the phase diagram before a and after b destabilisation of the pro-
genitor state. It is proposed that, similarly to the results in Huang et al. (2007), a
cell in an initial state of intermediate co-expression will differentiate if an external
signal decreases the value of a or increases k. The change of parameters may rep-
resent the biological mechanisms that regulate the decreased expression of GATA-1
(Shimamoto et al. 1997) or the accelerated degradation of GATA-1 in the presence
of inhibitors (Hernandez-Hernandez et al. 2006). Thus this model allows bistability
even with antagonistic cooperativity coefficient m = 1. In addition, the lowest order
of multimer is lower than that in the proposed model in Huang et al. (2007). Bista-
bility can be found even when n = 2, corresponding to dimer autoregulation. The
system was found to exhibit bistability over a range of parameter values though unfor-
tunately, this range could not be concisely described due to the complex nature of the
system.

We further analysed the parameter space of the system (6) in which the system
exists the bistability property and an indeterminate state. Similar to the stability area
in Fig. 4 (Bokes et al. 2009), we considered different values of u = a − θ1 and
v = b − θ2. Since it is difficult to find any analytic solution of the nonlinear equations
(7), we used the Newton-Raphson method to find the numerical solution of (7) and
searched the fixed points of the system (6) with different values of the model param-
eters. Figure 8 gives the tristability area of the system (6) by further assuming that
n = 4, a = b, 0 < θ1 ≤ a and 0 < θ2 ≤ b. When a = b = 1, the values of θ1
and θ2 in the tristability area of the system satisfy θ1 > θ2. However, when the values
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Fig. 6 Bifurcation diagram of the proposed system (5). Stable steady states are indicated by solid dot lines,
while unstable steady states by dotted lines. a The Type II bifurcation with decreasing values of a = a1 = a2,
as that in the system in Huang et al. (2007). Model parameters are: b1 = b2 = 1 and k1 = k2 = 1. b Bifur-
cation with increasing values of b = b1 = b2. Parameters: a1 = a2 = 1 and k1 = k2 = 1. c Bifurcation
with increasing values of k = k1 = k2. Parameters: a1 = a2 = 1 and b1 = b2 = 1. Other parameters are
n = 4, m = 1, θa1 = θa2 = 0.5, and θb1 = θb2 = 0.07

of a and b are larger, more tristable steady states of the system (6) locate in the area
θ2 > θ1.

We also examined the parameter space of the diagonal steady states of the system
(6). By letting x = y, the mathematical model is given by

dx

dt
= a

xn

θn
1 + xn

+ b
θm

2

θm
2 + x2m

− x. (8)

Since it is difficult to find the analytical solution for the steady states of the above
nonlinear differential equation, we again used the numerical methods to search the
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Fig. 7 Vector diagrams of the proposed system (5). a Parameters as per Fig. 6, a = 1. b Parameters as per
Fig. 6, a = 0.6 . Other parameters are n = 4, m = 1, b1 = b2 = 1, θa1 = θa2 = 0.5, θb1 = θb2 = 0.07,
and k1 = k2 = 1
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Fig. 9 The bistable property of the diagonal system (8). a–c The 647 model parameter sets
(a, b( = a), θ1, θ2) which can generate bistability property. These parameter sets were sorted according
to the value of a. The straight line in each figure is the averaged value of the parameter. d The bistable
region of the diagonal system (8) with a = b = 1. e a = b = 3. f a = b = 5

steady state of the system (8) with different parameters. For the convenience of rep-
resenting results, we first constrained our study to the special case of a = b. By
generating 200,000 sets of model parameters from the uniformly distributed random
variable U (0, 2), we found that 647 parameter sets of these 200,000 sets can generate
two stable steady states and one unstable steady state. However, this diagonal sys-
tem does not have tristability property anymore. The minimal value of a in these 647
parameter sets in Fig. 9a is 0.3033; and we later confirmed that the system locates
in a monostable region when a < 0.3. When the value of a increases, the value of
θ1 in Fig. 9b increases proportionally. Similar observations have been found for the
maximal values of θ2 in Fig. 9c, though the value of θ2 may also remain small. If we
removed the assumption a = b, simulation results suggested that a wide range of the
model parameters (a, b, θ1, θ2) locate in the bistable region. We further searched the
bistable regions of system (8) with a = 1, 3, or 5, which are presented in Fig. 9d–f.

5 Genetic switching

Gene overexpression is a widely used experimental method to study the system
dynamics under a particular perturbation and explore the critical function of a
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specific component of the system. This method has been used to study the regula-
tory mechanisms in the PU.1–GATA-1 network (Zhang et al. 2000). After carrying
out bifurcation analysis and finding the conditions of bistability and an indeterminate
state, the next question is whether our model can realize the genetic switching under
different over-expression conditions. To answer this question, we simulated the pro-
posed model (5) with different amplitudes of impulse. This impulse is represented by
a modified expression rate a1 of GATA-1, given by

a1 =
{

a10 t < 10 or t > t + t1
a10 + a∗

1 , t ∈ [10, 10 + t1] (9)

where a10 = 0.6 is the normal expression rate during the entire simulation time period.
The amplitude of impulse a∗

1 is non-zero only at the impulse time period [10, 10+ t1].
We also tested the influence of the duration of impulse by setting the duration as
t1 = 0.5 h or t1 = 5 h. Simulations in Fig. 10 suggested that the genetic switching is
regulated by both the amplitude and duration of impulse. In the subcritical scenarios
(Fig. 10a, d), the concentration of PU.1 returned to the original expression level after a
temporary increase stimulated by the impulse. However, in the supercritical scenarios
(Fig. 10b, c, e, f), the expression level of PU.1 reached the second steady state and
stayed at that state after the impulse withdrew. At the same time, the expression level
of GATA-1 began to decrease and then reached the steady state with a lower expression
level. Compared with the simulations in Fig. 10b, c, simulations in Fig. 10e, f indicated
that the amplitude of impulse for realizing the genetic switching can be smaller if the
duration of impulse is larger.

6 Conclusions

In this work we proposed a mathematical model to study the interactive regulation
of genes PU.1 and GATA-1. Based on the assumption that activation and inhibition
of the gene expression in the PU.1–GATA-1 network are independent (Huang et al.
2007), we added the antagonism regulation of the PU.1–GATA-1 heterodimer that
inhibits the expression of both genes PU.1 and GATA-1. In particular, we investigated
the conditions regarding the order of cooperative binding for realizing bistability and
an indeterminate state. Bifurcation analysis indicated that the order of cooperativity
in the antagonism (m = 1) is adequate to realize bistability. However, a relatively
high order of autoregulation, namely n ≥ 2, is required to realize system dynamics
with bistability and an indeterminate state. Here the indeterminate state is that located
in the middle of the three stable steady state of the system. After the introduction of
impulse with appropriate amplitude and duration, the indeterminate state will switch
to one of the bistable states. Using a lower order of autoregulation and antagonism
than that in Huang et al.’s model (Huang et al. 2007), our proposed model realized
the similar results showing bistability and a possible indeterminate state, as well as
similar type II pitchfork bifurcation. In addition, the system was found to be robust, in
that it exhibited bistable behaviour over a range of parameter values. Our analysis pro-
vided a minimal condition to realize bistability and an indeterminate state in a network
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Fig. 10 Scenarios for subcritical and supercritical factor overexpression. In the subcritical scenarios a
and d the concentrations return to the original levels, while in the supercritical scenarios b, c, e and f the
over expression of GATA-1 leads to a change in cell state and different final concentrations. Over-expres-
sion was applied as a long term (a–c) or short term (d–f) influence at time t = 10 h. Parameters were
a10 = 0.6, b = 1, θa = 0.5, θb = 0.07, n = 4, m = 1 and k = 1. Short term influences were applied from
t = 10 h to t = 10.5 h with amplitude of a a∗

1 = 0.002, b 0.004, c 0.01. Long term influences were applied
from t = 10 to t = 15 with amplitude d a∗

1 = 0.0002, e 0.001, and f 0.005

including the regulation between genes PU.1 and GATA-1 only. The proposed model
provided a novel platform to analyze bistability and indeterminate state under various
cooperativities of autoregulation and repression.

The differentiated states of the PU.1-GATA-1 network are characterised by having
a much greater concentration of one of the transcription factors, while in the indetermi-
nate state concentrations are roughly equal. The differentiated states are represented
by stable attractors because under normal circumstances cell fates are irreversible.
However, we also note that forced lineage switching using GATA-1 was demonstrated
by Kulessa et al. (1995) and Heyworth et al. (2002). The current consensus on the
way differentiation occurs is that the indeterminate state is initially stable, allowing
progenitor cells to self renew and remain uncommitted, but an external signal of some
kind destabilises this state and causes the progenitor cell to differentiate (Enver et al.
2009). This model allows for both stochastic (random noise) and external influences
to easily change the cell fate at the moment of destabilisation. Thus, successful mod-
els must have a method whereby a stable indeterminate state can be destabilised. In
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this work we used different amplitudes and durations of the GATA-1 activity impulse
to realize genetic switching. Simulation results suggested that the successful switch-
ing depended on the total amount of impulse which is the product of the amplitude
and duration. In addition, any small perturbation to the initial condition of the unsta-
ble state (P = G = 0.5388 when a = 0.6) leads the system to one of the sta-
ble states (P = 0.7209 and P = 0.3184 or vise versa). However, the stable state
(P = G = 0.6686 when a = 0.7) may withstand quite a large perturbation to the
initial condition and stay at this intermediate steady state. Therefore our simulation
results supported the conclusions in Huang et al. (2007) which suggested that a stable
indeterminate state is more likely.

The Shea–Ackers model established the relationship between the cooperative
binding of transcriptional factors, namely the monomer, dimer or a higher order mul-
timer, and the coefficients of the Hill function in the mathematical model for genetic
regulation (Shea and Ackers 1985). This principal has been widely used in the mod-
elling approaches of gene networks including the λ-phage pathway, lactose operon,
and p53 network (Hasty et al. 2000; Santillán and Mackey 2004; Tian and Burrage
2004; Ma et al. 2005). However, due to the complex structure of the transcriptional
machinery and unknown regulatory mechanisms, the Hill function model with a large
Hill coefficient has also been successfully used to realize bistable behaviours in gene
networks (Gardner et al. 2000; Ozbudak et al. 2004; Kobayashi et al. 2004; Tian and
Burrage 2006). This comment can also be applied to the mathematical modelling of the
PU.1–GATA-1 network; and this is the key motivation for us to develop a mathematical
model to explore the minimal conditions for realizing bistability and an indeterminate
state. Our research results suggested that the proposed model is more likely to have
bistability property when a larger value of the Hill coefficient n is used. More research
work may be needed to explore the functions of the complex transcriptional machin-
ery and/or other transcriptional factors in regulating the expression of genes GATA-1
and PU.1. It is clear that the advances in experimental discoveries will provide more
experimental data and additional regulatory mechanisms for the development of more
realistic mathematical models.

Our analysis demonstrated that the proposed symmetrical model has the regions
of tristability and bistability (see Figs. 6, 8, 9). We also found that by decreasing the
value of a = a1 = a2 below a certain threshold or by increasing the value of either
k = k1 = k2 or b = b1 = b2 above a certain threshold the system changes from a
tristable system to a bistable one. The destabilisation of the indeterminate state causes
differentiation, so from our model we would expect that a decrease in self-regulation
or increase in the breakdown of the transcription factors would cause differentiation. It
is difficult to speculate on the exact biological mechanisms responsible for the change
in system behaviour before we know how differentiation is triggered in a progeni-
tor cell. However, our analysis suggested that these could occur through the binding
of another transcription factor which inhibits PU.1 and GATA-1 (decreasing a); or
though the transport out of the nucleus of the transcription factors (increasing k); or
the introduction of an enzyme which creates the heterodimer (increasing b and k).

A growing body of evidence demonstrated that gene expression is a stochastic
process. Key species of molecules such as DNA and mRNA may have small copy
numbers; and the changes of copy numbers of these key species may cause significant
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variations of the system dynamics. In particular, both extrinsic and intrinsic noise have
been investigated for the lineage-specific gene networks (Chang et al. 2008; Palani
and Sarkar 2009). Stochastic differential equation models derived from the Langevin
approach may be used to realize the function of external noise in generating different
genetic switching in different simulations. In addition, stochastic models based on
detailed chemical reactions may be also very interesting for studying the influence
of internal noise on the selection of different developmental pathways. Therefore sto-
chastic modelling will be a topic of the next stage of modelling approaches. In addition,
further work is recommended into the bifurcation properties of the proposed systems,
such as the systems in (Bokes et al. 2009; Chickarmane et al. 2009), to determine if
under an almost symmetrical parameter change they behave similarly to the system
proposed by Huang et al. (2007). This will allow a more detailed qualitative analysis
of the behaviour of each system. The irreversible behaviour of a system with down-
stream feedback will also be investigated in the system proposed in this work. This
will provide a comparison study to Chickarmane et al.’s work and give an indication
whether downstream feedback is a recurring feature that causes irreversibility.
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