
Mathematical Biosciences 362 (2023) 109033
Contents lists available at ScienceDirect

Mathematical Biosciences

journal homepage: www.elsevier.com/locate/mbs

Original Research Article

The lost art of mathematical modelling
Linnéa Gyllingberg a,∗, Abeba Birhane b, David J.T. Sumpter c

a Department of Mathematics, Box 480, Uppsala, SE-751 06, Sweden
b Mozilla Foundation, 2 Harrison Street, Suite 175, San Francisco, CA 94105, USA
c Department of Information Technology, Uppsala University, Box 337, Uppsala, SE-751 05, Sweden

A R T I C L E I N F O

This article is dedicated to the memory of Ed-
mund Crampin

Keywords:
Mathematical biology
Hybrid models
Critical complexity
Machine learning
Equation-free approaches

A B S T R A C T

We provide a critique of mathematical biology in light of rapid developments in modern machine learning.
We argue that out of the three modelling activities – (1) formulating models; (2) analysing models; and (3)
fitting or comparing models to data – inherent to mathematical biology, researchers currently focus too much
on activity (2) at the cost of (1). This trend, we propose, can be reversed by realising that any given biological
phenomenon can be modelled in an infinite number of different ways, through the adoption of a pluralistic
approach, where we view a system from multiple, different points of view. We explain this pluralistic approach
using fish locomotion as a case study and illustrate some of the pitfalls – universalism, creating models of
models, etc. – that hinder mathematical biology. We then ask how we might rediscover a lost art: that of
creative mathematical modelling.
1. Introduction

The challenges in mathematical biology can be roughly broken
down into three activities: (1) formulating models; (2) analysing mod-
els; and (3) fitting or comparing models to data. These activities are
part of a larger modelling cycle – where modellers work together with
biologists to try to better understand the study system – but within that
cycle, most of the time, the modeller will be found conducting one of
these three activities. Research in mathematical biology has evolved a
great deal over the last decades, in particular in response to the rise of
machine learning (ML). Indeed, the ML approach – with its emphasis
very clearly on activity (3), that of predicting future data – can be
seen as a challenge to the essence of the research area. We need to
find ways of reconciling a mathematical biology approach, largely built
on describing biological mechanisms, with rapid progress in predicting
patterns in data [1].

We argue that in response to the rise of ML, mathematical biology
needs to refocus on activity (1), the formulation of new models. We
start, in the next section, by defining an inherent feature of biological
systems, that they are complex. Our definition of complexity differs
from (is more radical than) those most often provided by modellers,
in that it emphasises the open-ended nature of biological systems.
In Section 3, we critique one approach to complex systems, that of
unification. This leads us, in Section 4, to propose another approach

∗ Corresponding author.
E-mail address: linnea.gyllingberg@math.uu.se (L. Gyllingberg).

to modelling biological systems; one which emphasises a plurality of
models.

We then argue, in Section 5, that (whether researchers are aware of
it or not) the unification and pluralistic approaches emphasise different
values. Unification emphasises activity (2), that of analysing models,
while plurality emphasises activity (1). We argue that currently, the
universalist approach dominates and creation of new models, which
is inherent to pluralism, is not sufficiently emphasised. This brings us
to, in Sections 6 and 7, a discussion of how mathematical biology has
responded with the rise of machine learning. We argue that ML, which
emphasises prediction (activity 3), is ill-prepared to deal with complex-
ity without incorporating some form of mechanistic model building.
But we also, more controversially for those working in mathematical
biology, emphasise how some of the responses to the rise of ML have
fallen into the trap of making models of models (or fitting models
to data generated by models) rather than innovating by creating new
models of biology itself.

We conclude that mathematical biology needs less unification and
less analysis of existing models, and more creativity and more creation
of new models. We should be creative without fear of them being wrong
or producing ideas that are mathematically intractable, with an aim of
providing a multitude of tools for better understanding of biological
systems.
https://doi.org/10.1016/j.mbs.2023.109033
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Fig. 1. The agents (circles) in a complex biological system interact (straight arrows) with each other, their environment (wavy lines), which is partially open and ever-changing,
and these interactions are continually adjusted (curved arrows) by the agents themselves.
Source: Adapted from Di Paolo et al. (2018) [2].
2. What is complexity?

Biological systems are complex systems. This statement is so often
made, that it can obscure just how radical the consequences of complex-
ity are for the life sciences. To explain why we say radical, consider one
of the most common uses of the term complex systems. In physics and
applied mathematics, complex systems science has become a name for
a set of modelling tools: networks, power laws, phase transitions and
the like which purport to capture general properties of systems. This is
explicitly not what we mean by complexity. Although complex systems
models will come up in this article, we do not consider them useful in
defining complexity itself.

Instead, the radical definition of complex systems comes from, what
s known as, critical complexity. Work by Paul Cilliers and Alicia
uarrero warned against aggrandising models (even supposedly com-
lex systems models) [3,4]. They emphasise the need to embrace the
mbiguous, messy, fluid, non-determinable, contextual, and historical
ature of complex systems. They describe complex phenomena as
nfinalizible and inexhaustible, which means that we can never capture
ny given biological system entirety with models [5]. Fig. 1, adapted
rom Di Paolo et al. (2018), captures the interdependence, fluidly and
nteractivity of agents and environments in a complex system [2].
omplex systems are open-ended, which means there is no uncontested
ay of telling whether what we have included in a model is crucial or
hat we have omitted as irrelevant is indeed so. Models can, according

o the critical complexity approach, be contradictory: we can accept
wo incompatible predictions as both describing the same system.

This approach views a model as a snapshot of a system and no
ingle snapshot tells the whole story. For modelling the human body,
or example, ‘‘a portrait of a person, a store mannequin, and a pig
an all be models’’ [6]. None is a perfect representation, but each
an be the best model for a human, depending on whether one wants
o remember an old friend, to buy clothes, or to study anatomy.
he critical complexity view suggests that theoreticians should avoid
pecialising in any one modelling approach and try to find the right set
f models to understand a particular system in a given context.

There can, of course, be more than one definition of complex
ystems. Indeed, Cilliers and Juarrero’s approach to complexity encour-
ges a plurality of definitions (after all, there is no single view of a
ystem). We would, though, emphasise that it is the radical definition
f complexity – in which systems always resist a complete description,
re open and unfinalizable – which is least well understood by math-
matical biologists today. It is therefore important to investigate how
omplexity should be approached in the study of biological systems.

. The allure of unification

Precisely because most biological systems are more complex than
hysical systems, they are also more difficult to model. In another

rticle in this collection, Vittadello and Stumpf outline two broad
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approaches that might be adopted [7]. The first of these approaches
builds on the motto put forward by Philip Anderson, that ’More is
Different’ [8]: suggesting that each level of biological organisation
requires different types of approaches. The second of these, which we
will critique in this section, suggests that the way forward is greater
unification and increased mathematical rigour.

In presenting the second approach, that of unification, Vittadello
and Stumpf argue that the success of mathematical modelling of phys-
ical systems suggest that further progress in mathematical biology can
be best made with even more advanced mathematics [7]. With the
complexity of biological systems comes a need for rigorous definitions
of biological concepts, and they propose a definition-theorem-proof
style as a way forward. Accompanying this idea, comes a focus on
unification. In the same way as there are unifying theories in physics
– relating to energy conservation, entropy, etc. – there ought to be
unifying models for biological systems. Under this view, an increase
in rigour is supposed to tame the complexity of biology. Vitadelli and
Stumpf suggest that unification and rigour could lead to avoidance of
excessive incrementalism in model development, as well as avoidance
of a focus on development of simple models of simple systems.

The idea of unification in biology has been echoed by many oth-
ers [9–12]. For example, van Hemmen claims that some of the universal
laws of biology might have already been discovered in neurobiol-
ogy [12]. Since mathematical models can describe the behaviour of
biological systems at certain scales, the equations of the models could
be seen as ‘universal laws’. The question is how to find the appropriate
scale for these universal laws. We should, van Hemmen argues, be pa-
tient: it has taken humanity hundreds of years to discover the physical
laws of the Universe formulated through mathematics; with enough
time we will discover the universal laws of biology too [12].

Finding the appropriate scales and determining unifying laws is
certainly part of modelling biological systems. For example, a funda-
mental difference between most biological and physical systems is the
conservation of momentum. For self-propelled particle models – which
are used for modelling biology on scales ranging from cells to flocks
– momentum is not conserved [13], and thus classical kinetic theory
used in physics to derive macroscopic equations is not applicable. To
get around this problem, Degond introduced the Generalised Collision
Invariant [14], from which it is possible to derive macroscopic equa-
tions for many self-propelled particle systems used in modelling flocks
and other systems in biology [15–18]. This method allows us to show
convergence between self-propelled particle systems on microscopic
and macroscopic scale, i.e. between the movement of e.g. flocks of birds
described by local interactions between a few individuals, and PDEs
describing the angular and velocity distributions of the flock as a group.

In the example above, an approach like the Generalised Collision
Invariant, when applied to the collective motion of real biological
systems, usually fails to provide the answers biologists are looking for.

Indeed, the very point of self-propelled particle models is to capture the
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rich, varying dynamics of different schools, swarms and flocks. Deriva-
tions of continuum equations for infinitely large populations provide
little insight into these questions. While all of these systems may well
share a common invariant, this is not the key issue at hand. Biologists
want to find the details of shapes of schooling [19], understand how a
wave of fish escape from a predator [20], find the mechanism behind
the V-shape of migrating birds [21], measure the sociability of fish
schooling based on their movement [22], study leadership in flocks
of pigeons [23,24], or understand the mechanisms behind shepherding
sheep [25]; to give just a few examples. We have illustrated this point
with a specific example, but see the point as applying more widely.
While unification in mathematical biology is tempting, it often neglects
the complex nature of biological systems.

Our discussion of the Generalised Collision Invariant is meant to
give one concrete example of how a mathematically appealing univer-
sal idea fails to give insight into range of complexity seen in biology1.
Such approaches may well lead to new, interesting and beautiful math-
ematics [26], but there is no reason (a-priori) that they will give
deeper biological insight. In biology, experimental results are noisy,
non-stationary and often differ across species and scales. Studies of self-
propelled particles span species from spiders through fish to humans,
as well as sperm and cell interactions. When formalising such models,
we have to ask the question, exactly which biological entity or species
is it that is being formalised? Is the relevant scale the molecules, the
cells, the organs, the animal or the collective? These questions are not
amenable to a universal approach or reducible to a small number of
equations.

A focus on rigour in biology is an example of over-mathematisation,
a phenomena frequently discussed in economics [27–31]. The cri-
tique has been summarised by the Nobel prize laureate Paul Krugman,
who described that ‘‘the economics profession went astray because
economists, as a group, mistook beauty, clad in impressive-looking
mathematics, for truth’’ [30]. A similar phenomenon has occurred in
theoretical physics, where the focus on developing beautiful mathemat-
ical theories has taken precedent over genuine insight into physics [32].
There is a danger, that in trying to find unification, mathematical biol-
ogy gets stuck at analysing/unifying simple models, none of which are
appropriate for any specific system. Moreover, in search for unification
and general methods in biology, we might neglect to study actual
systems because they are too complicated or detailed.

The allure of unification often centres the idea of deriving properties
of the collective from interactions between individuals. Countering
the possibility of unifying biology through such an approach, Sandra
Mitchell argues that microscopic phenomena (cells, molecules, atoms)
are not always suited for capturing the rich variety of relations found
in biological sciences [33]. Scientific representations are abstractions
or idealisations, and thus only represent partial features of individ-
uals or a system [34]. As such, the abstractions/idealisations do not
constitute identical representations across the two levels. Thus, even if
the descriptions at each level is accurate, they may, by being partial,
not represent the same features of nature. As a result, there is no
straightforward derivability or intertranslability relationship between
levels [33].

Unification is a reductionist approach [35]. Multilevel, multi-
component, complex systems that populate the domain of biology can-
not be reduced to a simple, unified picture of scientific theorising [33].
And even though contributions to mathematical biology can be made
by unification approaches, they do not account for all the explanations
that biologists seek [35]. This view echoes that of Dupré, who explains
unification as another way of arguing for the (flawed) reductionist
hypothesis that all of science can be reduced to a description based

1 In this article we take our examples from fish locomotion. We choose an
rea we understand well in order to illustrate our points in a concrete way.
e encourage the reader to imagine similar examples in their own specialised

esearch area.
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Fig. 2. Under the Pluralistic Approach to Biology, fish locomotion can be understood
and modelled in many different ways. When modelling the collective motion of fish
schools, self-propelled particle models can be used to capture and explain their motion
(a). However, most fish use burst and glide movement, where they alternate between
accelerated motion and powerless gliding (b). This type of motion can be understood
from a hydrodynamical perspective (c), or a behavioural ecology perspective (d),
as there are both energetic (c) and perceptual benefits (d) of this type of motion.
When swimming in pairs, the fish influence each others burst and glide motion (e).
Intermittent locomotion can also be understood and modelled through neurobiological
perspective, where the activity in the brain affects the motion (f).

on simple building blocks [36]. Reductionism fails to account for what
Noble calls the ‘relativity principle’, that there is no ‘‘privileged scale
at which biological functions are determined’’ [37].

In summary, there are both philosophical (universalism is another
form of flawed reductionism) and practical (supposedly general equa-
tions do not capture the type of questions biologists ask) arguments
against a unification approach to biology. The question now is what is
the alternative?

4. The pluralistic approach

Given that biological knowledge is fragmented and that biological
systems are complex, we have argued that it is not useful to build
a general theoretical framework or to strive for unification. We now
outline, in this section, an alternative: the pluralistic approach to
modelling biological systems. Pluralism embraces complexity by never
seeking to close a biological system in a single or a small number of
formalisms, but endlessly endeavours to find new ways of looking at
the world. Pluralism reflects the open, unfinalizable nature of complex
systems described in Section 2.

We illustrate the pluralistic approach by focusing on one specific
area of biology, modelling fish locomotion, before broadening out
(in the next sections) to explore the lessons we can learn from this
approach when looking at other systems. Fig. 2 illustrates various ways
that fish locomotion can be modelled. When modelling the behaviour
of fish shoals and schools, self-propelled particle models are widely
used [38–44] (Fig. 2a). The most prominent model, called the Vicsek
model [42], assumes that each fish (or particle) moves with constant
speed, while its direction is updated at each time step to be closer to
the average direction of individuals within its neighbourhood. A noise
term is added to model uncertainty or error in the fish’s direction. These
type of models have proven useful when explaining many aspects of
schooling behaviour, for example, how body size influences shoaling
patterns [45], how large schools switch between different organisa-
tional states [46] and the spread of escape waves in response to a
predator [20].

Although self-propelled particles have been central to the study of
collective motion, both in fish and other species, there are a several,
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fundamental ways in which they do not capture the locomotion of
fish. For example, rather than updating their angle to turn towards
other fish, as assumed in many models [39–41,43], between-fish at-
traction and repulsion is mainly mediated by speed changes [19]. Even
in the absence of interactions, constant speed is not typical swim-
ming behaviour for most fish species. Zebrafish [47], koi carps [48],
guppies [49], cod [50], rummy-nose tetra fish [51] and many other
species swim by alternating between accelerated motion and powerless
gliding [52] (Fig. 2b).

The discrepancy between how fish are modelled collectively and
individually can be seen as an example of logical incompatibility be-
tween models [33,53]. After all, fish cannot simultaneously swim both
at a constant speed as in the Viscek model and according to a varying
speed, as in a burst and glide model! Yet the models in Figs. 2a and 2b
might view the same fish in both of these (contradictory) ways.

From a unification point of view, logical incompatibility might be
seen as an indication that the models are, at least in some aspects,
wrong or that we should try to find ways to unify them to make them
both approximately correct (possibly on different time scales). Build-
ing on our definition of complexity and open systems, however, we
would downplay the importance of investigating relationships between
models. From the point of view of complexity, since each model is a
different snapshot of a system, taken from a different point of view,
using a different camera and lens, we should not be surprised to find
an element of incompatibility between models. If we accept the idea of
complex phenomena as unfinalizible and inexhaustible (as we outlined
in Section 2), we cannot expect our models to be logically compatible
on every level. Moreover, lack of compatibility should not concern us:
it is simply a consequence of taking a different view, of using a different
lens, which bends the light of observation in a different way.

Even within the context of intermittent burst and glide motion,
we can find several useful and correct, yet logically incompatible
approaches to fish locomotion. For example, a range of biomechanical
models [50,52,54–59] have been proposed for fish locomotion (Fig. 2c).
These have been used to show that there are energetic advantages
of burst and glide behaviour, when compared to constant swimming
speed. The energetic cost of swimming is minimised during the glide
phase, where the body is rigid and the fish decelerate due to water
resistance [52]. Other models have focused on a behavioural ecology
perspective, since intermittent motion is associated with many eco-
logically relevant behaviours, e.g. foraging, mating, exploration and
predator evasion [60,61]. There are also perceptual benefits that can
arise from the pauses in locomotion, such as the sensory system’s
capacity to detect relevant stimuli increases [62,63] (Fig. 2d).

Yet another level to the understanding of intermittent locomotion of
fish, is to look at why fish use burst and glide when swimming in pairs.
Theoretical studies from hydromechanical perspectives show that there
are energetic advantages to intermittent motion in this setting [64,65].
However, the hydromechanical models neglect the social aspects of
intermittent locomotion when swimming in pairs (Fig. 2e). In fact, burst
and glide swimming have been shown pivotal to detect and quantify
social interactions between individual fish [49]. Moreover, high burst
speed in response to neighbours evolves when subjected to artificial
selection [66]. Also, when studying intermittent locomotion of pairs
of fish, leadership can become apparent [67]. For example, in pairs of
freely exploring eastern mosquitofish, it is possible to categorise the
fish into leaders and followers [68].

The locomotion of fish can also be studied in neurobiological set-
tings (Fig. 2f), leading to questions about how different nerve cells
affect the initiation of motion seen in fish [69–72]. This can also be
linked to genetical aspects of fish locomotion. For example, studies on
zebrafish show that genetically encoded calcium-indicators provide a
direct link between signalling at a cellular level and functional output
in the form of swimming behaviour [72,73].

Above we have listed many different approaches to modelling fish

locomotion. Depending on what question we want to answer, the model
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used is different. It is this creation of many different viewpoints which
is pluralism. This multiplicity (or plurality) of ways of seeing a system
is even stronger than suggested by Philip Anderson’s ‘More is Different’
approach [8]. Anderson emphasised that ‘‘psychology is not applied
biology, nor is biology applied chemistry’’: each level of organisation
requires completely new approaches. We would go further, arguing that
even within a single biological phenomena, at only one organisational
level, we need a whole range of different explanations and models.
We simultaneously engage many different frameworks and views of
a system, each designed to answer a different sub-question. We take
different snapshots of the system and then use each of them to construct
a bigger picture of the system. The more snapshots we include, the more
comprehensive the bigger picture.

Our approach follows, what Sandra Mitchell calls, integrative plu-
ralism [33–35]. Like us, she argues that complexity in nature, partic-
ularly in biology, has direct implications for our scientific theories,
models, and explanations. To quote, ‘‘nature is complex and so, too,
should be our representations of it’’ [33]. Mitchell’s own examples build
on how social insect biologists explained the emergence of division of
labour, by focusing on the effects of causes at one level (genetics, single
organisms, and colonies), while idealising away the other potentially
relevant factors [53]. She argues that scientists do not need unified
theories to provide causal explanations. Nor is there a requirement
for logical compatibility between explanations. Mitchell’s characteri-
sation of biological research as a whole, we believe, translates even
to the mathematical biologist’s approach to creating formal models.
To paraphrase her: ‘‘biology is complex and so, too, should be our
mathematical models of it’’.

Comprehensive, integrated understanding of biology does not come
from one universal model, but rather the synergy of many differ-
ent, potentially contradictory models. Having many models helps us
understand more.

5. How modelling approaches shape mathematical biology

Our rejecting unification and embracing a pluralistic approach,
which emphasises the open nature of biological systems, might be
viewed as a purely philosophical exercise. It could also be seen as
a question of personal taste. After all, it might be argued, practicing
mathematical biologists seldom discuss whether they see the world in
terms of unification or integrative pluralism, they just get on with their
job.

In this section we reject this last notion and argue that the formalism
and unification approach has a strong influence on what is valued in
mathematical biology research. To understand this point, let us return
to the three activities outlined in the introduction: (1) formulating
models; (2) analysing models; and (3) fitting or comparing models to
data. Under a unification approach, which emphasises the importance
of mathematical formalism, activity (1) is about finding a small number
of universal models which explain as many biological phenomena as
possible; and activity (2) requires great care in developing a precise
formalism to be clear about the universal properties of the model.
Under an integrative pluralism approach activity (1) is about producing
lots of different models which view a system through different lenses;
and activity (2) is important to get right initially, but details are less
important, since we are happy to discard the model once it has told us
something useful.

Unification and integrative pluralism thus emphasise very different
values and practices. Whether or not these values are acknowledged
by researchers, we can look at the type of activities carried out by
mathematical biology researchers and see which approach is more
predominant. This is what we do now.

We have already described a pluralistic approach to fish locomotion
(Fig. 2) and emphasised the success of self-propelled particle models
in describing schooling patterns. However, while there are valuable

empirical studies of bird flocks and fish schools, where variations of
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these models are used to understand the details, these are outnumbered
by articles reporting on simulations and investigations of theoretical
properties of flocking models [74–76]. A similar pattern is seen in
evolutionary game theory, which provides insight into how spatial and
genetic structure is important to the evolution of co-operation [77–79].
This approach has produced countless theoretical questions about how
co-operation evolved in different (artificial) settings [80–83], which
are detached from observations in the natural world. This is not to
say that evolutionary game theory is not useful in biology, it is just to
point out that testable predictions have been accompanied by a massive
sub-literature simply analysing model properties.

Similarly, complex systems tools – such as networks [84,85], power
laws [86], phase transitions [87] etc. – often purport to capture general
properties of systems and suggest that studying these models will
give very general insight, in terms of scaling laws or unifying rules.
In making claims of universality, modellers sometimes suggest that
biology will succumb, like physics, to an understanding based on one
or a small number of models. Under the definition of complexity we
use here, the more radical definition, such universality is impossible:
complex systems are not complex if they can be reduced to a small
number of universal rules.

Focusing on network science, Fox-Keller argues that claims that
scale-free networks and power law distributions are universal laws of
life are problematic on two counts [88]. Firstly, power laws are not
as ubiquitous as was originally supposed [89]. Secondly, and more
importantly to Fox-Keller, the existence of these distributions tells us
nothing about the mechanisms that give rise to them [88]. Many
reported power laws lack either (or both of) statistical and mechanistic
support [90] There are, at least, a dozen distinct ways to derive power
laws from theoretical models [91], making them far from universal.
And asking questions about how power laws should be measured has
led to better practices for model fitting (and identifying cases in which
they do not fit) [92]. Again, it is the details that matter in biology.
Power laws do not fit everywhere.

We note that it is activity (1), rather than activity (2), which
typically provide the biggest steps forward in Science. Specifically, it
is the initial model (prisoners dilemma, chaos theory [93], Turing’s
work on morphogenesis [94], the Fitzhugh–Nagumo model [95], Yule’s
power law model [86], Viscek’s SPP model [42]...) which provides
the most inspiration and insight into the biological world, rather than
analyses of small variations of these initial models. Yet, universalism,
with its emphasis on formalism, prizing activity (2) over activity (1),
remains a dominant force in shaping what constitutes mathematical
biology.

We believe that the emphasis on model analyses, rather than creat-
ing new models, is caused by a tendency towards universalism. The
result is mathematical analysis of small variations of existing mod-
els (activity 2) at the expense of creating very novel and different
models (activity 1). Admittedly, the observations we make above are
qualitative. We have not carried out a comprehensive literature re-
view comparing universalism and pluralism approaches, but instead
we appeal to the active mathematical biologist to consider their own
research field and think about the theory/application balance. We
would imagine for most (leaving activity 3 aside for now) the balance
is towards 2, rather than 1.

This imbalance, we believe, is wrong. Small variations of already
existing models seldom provide additional insight into biological sys-
tems. We would follow Reed, who wrote in his 2004 Essay Why is
mathematical biology so hard [96]: ‘‘Don’t do mathematical biology
to satisfy a desire to find universal structural relationships; you’ll be
disappointed. Don’t waste time developing ‘‘methods of mathematical
biology’’, the problems are too diverse for central methods. What’s left
is the biology. You should only do mathematical biology if you are
deeply interested in the science itself’’.
5

6. Machine learning cannot replace modelling

The distinction between universalism and pluralism has become
particularly important with the move away from activities (1) and (2)
– model building and analysis – towards methods broadly described as
machine learning (ML), which emphasise activity (3). Initially, machine
learning methods were proposed primarily for data collection – for
example, computer vision was proposed to track movements of fish
and cells – but it later became clear that these methods could also be
used to pick out patterns in the data. In an early example, Berman and
colleagues showed how different types of fruit fly behaviour (grooming
with different legs, running, moving of wings etc.) could be categorised
without the need for human definitions of these activities [97]. This
work has evolved into a field of computational ethology, which Pereira
recently claimed will ‘‘in the near future, make it possible to quantify
in near completeness what an animal is doing as it navigates its
environment’’ [98].

Such claims place activity (3), that of fitting or comparing models
to data, as central to the scientific endeavour. The proponents of
this approach [99–101] sometimes even go as far as to suggest that
activity (1), that of creating models, is now redundant. For example,
Rackauckas and colleagues claim that traditional mathematical models
are only required because of too small training datasets and that
models which are not learnt directly from data have an inductive
bias, because they use assumptions about the underlying system being
modelled [101].

We reject such claims as yet another form of universalism. As Nurse
has recently argued, data should be a means to knowledge, not an
end in themselves [102]. Nurse emphasises that the hypothesis free
approach of collecting data is just the first step when doing biological
research. In order to make advancements in biological sciences, new hy-
potheses and theories need to be formulated. Reed follows a similar line
of argument: ‘‘data itself is not understanding. Understanding requires a
conceptual framework (that is, a theory) that identifies the fundamental
variables and their causative influences on each other’’ [96].

In the context of machine learning, Birhane and Sumpter make a
distinction between closed systems – such as games like Chess and Go,
some image analysis tasks and short term nowcasting of the weather
– that are entirely defined by the available data, and open systems
– like fish schools and other biological systems – similar to those we
discuss above, which can be viewed in multiple ways [103]. The only
systems which can modelled by data alone, in the way Rackauckas
and colleagues propose, are those which are fully closed. Indeed, data-
driven models, are just representations of the data itself, rather than
insights into that data. To take an example given by Nurse, what if
Darwin had just fed in the data of size and shapes of finch beaks
into a neural network? The deep learning algorithm would have found
clusters and patterns and might have predicted the future development
of the beaks on different islands, but would never formulated the
theory of natural selection. An ML approach, when employed in the
absence of activities (1) and (2), can be characterised as a view from
nowhere [104]: without context data analysis becomes meaningless to
us, the scientist interpreting the results.

Not only are there (as we have already emphasised) many ways of
seeing a system, there are also many other reasons for doing modelling,
over and above making predictions. For example, models can also be
used to guide data collection for future experiments, or to capture
qualitative behaviours of overarching interest and lead to new scientific
questions being posed [105]. While pure machine learning models are
focused on prediction, a large part of biological understanding focuses
on mechanistic explanations [106,107]. There is no consensus defini-
tion of mechanisms, but Illari and Williamson offers the following: ‘a
mechanism for a phenomenon consists of entities and activities organ-
ised in such a way that they are responsible for the phenomenon’ [108].
Thus, for a mathematical model to give a mechanistic explanation to
a phenomenon, the model cannot merely summarise and describe the
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data, but rather the model should encode a mechanism generating the
observed phenomenon [109].

Breidenmoser and Wolkenhauer make a distinction between mech-
anistic models, which explain a system by describing underlying bi-
ological processes, and phenomenological models, which only ‘‘save
the phenomena’’ by fitting a curve to the data [106,109]. The key
problem with a purely machine learning based approach is that it
says little about the processes, i.e. mechanisms, behind the data [110],
and instead focuses on ‘‘saving the phenomena’’, to use Breidenmoser
and Wolkenhauer’s term. Phenomenological models, like many ‘view
from nowhere’ machine learning models, might be a good start in
understanding statistical relationships between variables, and thus a
first step towards modelling a phenomena, but these models do not
contribute to a deeper understanding [109].

7. Are hybrid models the answer?

Moving away from the idea that machine learning can fully replace
mathematical modelling, several authors have proposed integration
of mechanistic models and machine learning methods in the form of
hybrid models [1,7]. These come in many forms, from neural ordi-
nary differential equations [100,111] and biologically informed neural
networks (BINNs) [112,113], to symbolic regression [114,115] and
equation learning [116,117]. Hybrid models can both have an un-
derlying specified mechanistic model and then use machine learning
methods to infer parts of the equations (as in BINNs [112]) or aim
to find analytical expressions directly from data (as in equation learn-
ing [101]). The end product is thus a mechanistic model, in form of,
e.g., a dynamical system [117].

To give a concrete mathematical example, consider a reaction dif-
fusion equation of the following form

𝑢𝑡 =
(

(𝑢)𝑢𝑥
)

𝑥 +(𝑢), (1)

where  is a function of 𝑢 describing the diffusion process, and , also a
function of 𝑢, describing the reaction process. This equation is used in a
range of situations in mathematical biology, from pattern formation, to
insect dispersal, to spread of epidemics, to tissue growth. Depending on
the application, (𝑢) and (𝑢) take different forms. For example, in the
Fisher–KPP equation, which was originally used to describe the spatial
spread of a favoured gene,  is a constant and (𝑢) = 𝑟𝑢(1 − 𝑢) [118].
Choosing the correct form of  and  is an open question and the focus
of many research efforts [112]. The traditional approach for solving this
task is to choose an appropriate form of (𝑢) and (𝑢) based on first
principles and then try to fit the parameters of the model to the data.

Another approach, is to not state the form of (𝑢) and (𝑢) explic-
itly, but instead learn the functions directly from data. There are dif-
ferent methods for achieving this. For example, sparse regression [119,
120] and theory-informed neural networks [112] are two of them.
Also, (𝑢) and (𝑢) do not need to be explicitly defined, but can
instead just be modelled with data [121]. This approach is sometimes
referred to as an equation-free approach as parts of the equations do not
need to be explicitly formulated [121]. Other applications of so-called
equation free approaches can be found, for example, in ecosystem
forecasting [122].

Hybrid models are sometimes presented as defining a complete
modelling cycle: doing all three activities – (1) formulating a model, (2)
analysing a model and (3) fitting the model to data. But even though
parts of the equations do not need to be explicitly formulated in this
approach and are directly learnt from the data, the underlying model
(in our case the reaction diffusion equation in Eq. (1)) is already spec-
ified. Thus, equation-free approaches like these are useful for model
selection, validation, and analysis, which is part of activity (2) and (3),
but they do not replace activity (1).
6

Even methods that infer analytical expressions directly from data,
with no underlying model like the reaction–diffusion example, cannot
be used to replace activity (1). Building mathematical models is more
than choosing a set of differential equations that describe data. For
example, equation learning would never have formulated inclusive
fitness theory in the way Hamilton did after careful across species
observations [123]. Nor would symbolic regression produce the Vicsek
equations and the idea of self-propelled particles solely from analysing
videos of bird flocks.

Thus, while approaches combining machine learning and mecha-
nisms are certainly part of the way forward for mathematical biology,
we also need to look critically at whether they are a genuine step
away from the universalist thinking, which we have criticised in earlier
sections of this article.

One important critique in this direction arises when researchers
apply machine learning methods to models, rather than to data from
natural systems. For example, parameters and properties of agent-based
models can be learnt using machine learning methods [124,125]. In
such settings, simulations are seen as a way of generating data on which
to test methods for fitting models (i.e to improve the way we perform
activity 3). The limitation, from the perspective of a complexity ap-
proach, is that simulated data from known models does not come from a
complex system (as defined in Section 2). Models are not in themselves
open-ended or unconstrained, in the same way a biological system is.
Instead, an already well-established view of a system in the form of
one model is studied in the context of another model. This approach
implicitly avoids the challenge of formulating new models.

For example, Roesch and colleagues, apply a collocation based
method for training neural ODE:s, i.e. ODE:s where the derivative is
learnt directly by a neural network [100]. To demonstrate the applica-
bility to biology, the neural ODE is trained on data generated from the
classical Van der Pol oscillator with added Gaussian noise. The authors
view the model as a promising hybrid method for biological applica-
tions, because it uses machine learning methods to infer a (mechanistic)
dynamical system. However, using Breidenmoser and Wolkenhauer’s
distinction between phenomenological and mechanistic models, we
would argue that, even though coated in terms like ‘‘mechanistic’’, this
method is nothing more than a phenomenological model: a curve is
fitted to a derivative, instead of a time series.

A similar critique can be applied to studies in which differential
equations are learnt from model simulations [125]. For example, in
one paper on hybrid models, Nardini et al. show how differential equa-
tions can be learned from agent-based simulations in order to predict
how the latter type of model responds to parameter changes [117].
One justification for this approach is that agent-based models might
be computationally expensive to simulate. The approach also allows
researchers to compare three approaches – an agent based model, mean
field equations derived from the agent based model, and a differential
equation model learnt from the data provided by the agent based
model – in terms of the insights they offer and how well the methods
approximate each other [117]. In terms of the pluralistic approach
(which we advocate) the limitation of such a study is that it gives
the (false) impression of generating three different views of a system,
while it is primarily an exercise in deriving and estimating one model
from another. In many studies describing hybrid approaches, data from
real-world systems is not included.

The danger here is that hybrid and equation-free modelling has
a veneer of doing activities (1) through (3) but are, in fact, limited
to activity (2). Real biological data is noisy, non-stationary and can
be viewed in a multitude of ways. Understanding biology requires an
openness to adopt different view points, rather than an attempt to close
our approach down to one self-consistent framework. Fundamentally,
any mathematical model or method should provide additional insights
to a phenomenon, rather than cement a relationship between models.
Hybrid approaches are not a substitute for, and can run counter to, an

approach based on integrative pluralism.
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Fig. 3. Example of model compared with data from [49]. Simulation of (a) a model
of coupled differential equations describing the interaction of fish and (b) the speed of
two fish over time for a period of 15 s of two guppies swimming in an arena.

8. How we can do better?

The title of this paper is The lost art of mathematical modelling. In
rder to demonstrate why we think that something is lost, we have been
ritical of an emphasis of universalism and formalism in mathematical
iology. It is in activity (2), we believe the subject can get lost. Our
olution is to refocus on activity (1), creating new models. Smaldino
akes a similar stand point but in social science [110]. He argues that ‘‘it
s time to focus on better practices for hypothesis generation. We need
raining programmes in model building and critique, plus consortia-
uilding and funding programmes to invent and test measurements
hat make models tractable. Better methods will help us get the right
nswers; models and measurements will ensure we ask the right ques-
ions’’ [126]. We fully agree with this position. We need to create more
athematical models in biology.

The way forward, we believe, is to view mathematical modelling in
more open way, one that admits biology is complex. This involves,

s we saw in Section 4, creating lots of different models of a system in
rder to build up a broader understanding. There is a need, as Mitchell
mphasises, for an approach based on integrative pluralism [35], which
mphasises creating many different types of models (as is done in
odelling fish locomotion; see Fig. 2).

Creating new models does not have to be a grandiose activity.
or example, in a recent article we have developed a model of social
urst and glide motion by combining a well-studied model of neuronal
ynamics, the FitzHugh–Nagumo model, with a self-propelled model
f fish motion [127]. The FitzHugh–Nagumo equations model the
embrane potential in a neuron, 𝑉 , and the recovery variable, 𝑊 [95].
e found a way to couple this model to the velocity of the fish 𝑣 and
burst potential 𝑏, with the following equations:

𝑑𝑏
𝑑𝑡

= 𝑏 − 𝑏3

3
− 𝑣 + 𝑐

𝑑𝑣
𝑑𝑡

= 𝑔(𝑏) − 𝑘𝑣,

here, 𝑔(𝑏) is given by

(𝑏) = 𝑎
( arctan(𝑧1(𝑏 − 𝑏0))

𝜋
+ 1

2

)

.

ig. 3a shows the burst and glide dynamics of two fish, interacting ac-
ording to these dynamics, with their interactions coupled as a function
f the distance between them. The model captures the responses of fish
o each other, where one fish speeds up when the other fish moves
head of it.
7

The challenge in this research was investigating the plausibility
of a mechanism, i.e. whether the bursting of neurons, captured by
the FitzHugh–Nagumo model, could be successfully related to burst
and glide motion. At this stage of the research, comparison to data is
less important [128]. Fig. 3b shows that data collected from pairs of
interacting guppies (as part of a study on effects of predation [49]) is
not entirely (or even very closely) described by the model, but there is
something worth pursuing. Specifically, fish do respond to each other
in their burst and glides and there is a need to relate this motion to
neuronal mechanisms. The model we propose is certainly not the best
way of predicting the time series in Fig. 3b, but it could potentially be
a way to identify a key mechanism in fish locomotion.

Our point here is not to argue that this specific model is in itself a
breakthrough, it is rather to give a feeling for what a refocussing on
models might look like. It is OK to play around with different sets of
equations and look to see, in a very loose way, whether they capture
aspects of our understanding of a system.

Creating new models can mean leaving our comfort zone. Some
pointers in this direction include research in artificial life, developing
online games where humans interact with simulations and investigating
novel cellular automata (see Fig. 4 for examples). The common theme is
an open-ended attempt to identify emergent phenomena, without ever
trying to close the system with an exhaustive mathematical analysis.
Instead of stifling theoretical development, we believe that mathemat-
ical biology should push to be more creative, to take risks and allow
ourselves to be spectacularly wrong.

It is the small insights, of how things fit together, which have consti-
tuted the biggest steps forward in mathematical biology. From Turing’s
work on morphogenesis [94] and Hodgkin and Huxley’s modelling
of neuronal firing [133], through Hamilton’s proposal of inclusive
fitness [123] and May’s application of chaos theory in ecology [93],
to Vicsek’s model of collective motion [42] and Hogeweg’s models
of multi-level selection [134], it is the formulation of models (rather
than their in-depth analysis) which has led to progress. Instead, of
treating these existing models as sacred Platonic forms, which should
be respected with deeper analysis, we should not be scared to look
for new ideas and approaches. The inconvenient truth – that biology
is itself endlessly rich and varied and never subject to a final analysis
– is sometimes dismissed as an unrigorous approach. Such a situation
is wrong. We need to rediscover the lost art of creating mathematical
models.

9. Epilogue

This article is part of a special collection in memory of Edmund
Crampin. Edmund was a close friend of one of the authors (David
Sumpter) when they were Ph.D. students. What David remembers most
fondly about Edmund was his ability to be critical, both in a very
deep way about his own work and constructively of the work of
others. At that time, at the turn of the new millennium, Edmund was
working on reaction–diffusion equations [135,136], but was always
torn as to whether the technical work he did truly contributed to
biological insight. He felt that the experimental results collected at the
time [137], although supporting reaction–diffusion as a mechanism, did
not entirely justify the extended theory he was working on.

Rather than staying safely within the confines of one model, after
his PhD, Edmund made sure he created new approaches to a variety of
mathematical problems. When we look at his contributions – ranging
from multi-cellular modelling of the heart [138,139], through systems
biology [140] to biochemical reactions [141,142] and fundamentals of
biophysics [143,144] – we see an approach grounded in all three of the
activities (modelling, analysis, comparison to data) we have discussed
here.

Edmund’s self-insight has always stayed with David. And it is this
spirit we have tried to adopt in this paper. Edmund may not have

agreed with everything we have written – we have taken a very strong
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Fig. 4. Sketch examples of creating models of complex biological systems. (a) Langton’s (1984) loop is one of the first examples of a self-reproducing cellular automata [129];
b) Artificial chemistry gives insight into both the origin of life and how complex components arise from simpler units [130]; (c) Nicky Case’s ‘We come what we behold’ is one
xample of an explorable game that allows the user to actively explore complexity [131]; (d) Inigo Quilez work shows how realistic complex, fractal landscapes can be generated
y a few lines of code [132].
osition on what mathematical biology should be – but he would have
nderstood the need to be critical. Most of all, he would have enjoyed,
ver a long lunch or a vigorous walk, talking (and arguing) about the
erits of different approaches to the subject he loved.
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