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An Algorithmic Introduction to 
Numerical Simulation of 
Stochastic Differential 

Equations* 

Desmond J. Highamt 

Abstract. A practical and accessible introduction to numerical methods for stochastic differential 
equations is given. The reader is assumed to be familiar with Euler's method for de- 
terministic differential equations and to have at least an intuitive feel for the concept of 
a random variable; however, no knowledge of advanced probability theory or stochastic 
processes is assumed. The article is built around 10 MATLAB programs, and the topics 
covered include stochastic integration, the Euler-Maruyama method, Milstein's method, 
strong and weak convergence, linear stability, and the stochastic chain rule. 
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1. Introduction. Stochastic differential equation (SDE) models play a promi- 
nent role in a range of application areas, including biology, chemistry, epidemiology, 
mechanics, microelectronics, economics, and finance. A complete understanding of 
SDE theory requires familiarity with advanced probability and stochastic processes; 
picking up this material is likely to be daunting for a typical applied mathematics 
student. However, it is possible to appreciate the basics of how to simulate SDEs 
numerically with just a background knowledge of Euler's method for deterministic 
ordinary differential equations and an intuitive understanding of random variables. 
Furthermore, experience with numerical methods gives a useful first step toward the 
underlying theory of SDEs. Hence, in this article we explain how to apply simple 
numerical methods to an SDE and discuss concepts such as convergence and linear 
stability from a practical viewpoint. Our main target audience comprises advanced 
undergraduate and beginning postgraduate students. 

We have aimed to keep the theory to a minimum. However, we rely on a basic 
assumption that the reader has at least a superficial feel for random variables, in- 
dependence, expected values and variances, and, in particular, is familiar with the 
concept of a normally distributed random variable. Our numerical experiments use 
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a Monte Carlo approach: random variables are simulated with a random number 
generator and expected values are approximated by computed averages. 

The best way to learn is by example, so we have based this article around 10 
MATLAB [3, 13] programs, using a philosophy similar to [14]. The website 

http://www.maths.strath.ac.uk/~aas96106/algfiles.html 
makes the programs downloadable. MATLAB is an ideal environment for this type of 
treatment, not least because of its high level random number generation and graphics 
facilities. The programs have been kept as short as reasonably possible and are 
designed to run quickly (less than 10 minutes on a modern desktop machine). To 
meet these requirements we found it necessary to "vectorize" the MATLAB code. We 
hope that the comment lines in the programs and our discussion of key features in the 
text will make the listings comprehensible to all readers who have some experience 
with a scientific programming language. 

In the next section we introduce the idea of Brownian motion and compute dis- 
cretized Brownian paths. In section 3 we experiment with the idea of integration with 
respect to Brownian motion and illustrate the difference between It6 and Stratonovich 
integrals. We describe in section 4 how the Euler-Maruyama method can be used to 
simulate an SDE. We introduce the concepts of strong and weak convergence in sec- 
tion 5 and verify numerically that Euler-Maruyama converges with strong order 1/2 
and weak order 1. In section 6 we look at Milstein's method, which adds a correction 
to Euler-Maruyama in order to achieve strong order 1. In section 7 we introduce two 
distinct types of linear stability for the Euler-Maruyama method. In order to em- 
phasize that stochastic calculus differs fundamentally from deterministic calculus, we 
quote and numerically confirm the stochastic chain rule in section 8. Section 9 con- 
cludes with a brief mention of some other important issues, many of which represent 
active research areas. 

Rather than pepper the text with repeated citations, we will mention some key 
sources here. For those inspired to learn more about SDEs and their numerical solution 
we recommend [6] as a comprehensive reference that includes the necessary material 
on probability and stochastic processes. The review article [11] contains an up-to-date 
bibliography on numerical methods. Three other accessible references on SDEs are [1], 
[8], and [9], with the first two giving some discussion of numerical methods. Chapters 2 
and 3 of [10] give a self-contained treatment of SDEs and their numerical solution that 
leads into applications in polymeric fluids. Underlying theory on Brownian motion 
and stochastic calculus is covered in depth in [5]. The material on linear stability in 
section 7 is based on [2] and [12]. 

2. Brownian Motion. A scalar standard Brownian motion, or standard Wiener 
process, over [0, T] is a random variable W(t) that depends continuously on t E [0, T] 
and satisfies the following three conditions. 

1. W(0) = 0 (with probability 1). 
2. For 0 < s < t < T the random variable given by the increment W(t)- W(s) is 

normally distributed with mean zero and variance t - s; equivalently, W(t) - 

W(s) /t - s N(0, 1), where N(O, 1) denotes a normally distributed random 
variable with zero mean and unit variance. 

3. For 0 < s < t < u < v < T the increments W(t) - W(s) and W(v) - W(u) 
are independent. 

For computational purposes it is useful to consider discretized Brownian motion, 
where W(t) is specified at discrete t values. We thus set 6t = T/N for some positive 
integer N and let Wj denote W(tj) with tj = j6t. Condition 1 says Wo = 0 with 
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%BPATH1 Brownian path simulation 

randn('state',100) % set the state of randn 
T = 1; N = 500; dt = T/N; 
dW = zeros(1,N); % preallocate arrays ... 
W = zeros(l,N); % for efficiency 

dW(1) = sqrt(dt)*randn; % first approximation outside the loop ... 
W(i) = dW(1); % since W(O) = 0 is not allowed 
for j = 2:N 

dW(j) = sqrt(dt)*randn; % general increment 
W(j) = W(j-1) + dW(j); 

end 

plot([O:dt:T],[O,W],'r-') % plot W against t 
xlabel('t','FontSize',16) 
ylabel('W(t)','FontSize',16,'Rotation',0) 

Listing I M-file bpathl.m. 

probability 1, and conditions 2 and 3 tell us that 

(2.1) Wj = Wj_i +dW j = 1,2,...,N, 

where each dWj is an independent random variable of the form /-tN(0, 1). 
The MATLAB M-file bpathl. m in Listing 1 performs one simulation of discretized 

Brownian motion over [0,1] with N = 500. Here, the random number generator 
randn is used-each call to randn produces an independent "pseudorandom" number 
from the N(O, 1) distribution. In order to make experiments repeatable, MATLAB 
allows the initial state of the random number generator to be set. We set the state, 
arbitrarily, to be 100 with the command randn('state',100). Subsequent runs 
of bpathl.m would then produce the same output. Different simulations can be 
performed by resetting the state, e.g., to randn('state',200). The numbers from 
randn are scaled by V~t and used as increments in the for loop that creates the 
1-by-N array W. There is a minor inconvenience: MATLAB starts arrays from index 
1 and not index 0. Hence, we compute W as W(1),W(2),...,W(N) and then use 
plot( [0:dt:T] , [0,W]) in order to include the initial value W(0) = 0 in the picture. 
Figure 1 shows the result; note that for the purpose of visualization, the discrete data 
has been joined by straight lines. We will refer to an array W created by the algorithm 
in bpathl as a discretized Brownian path. 

We can perform the same computation more elegantly and efficiently by replacing 
the for loop with higher level "vectorized" commands, as shown in bpath2.m in 
Listing 2. Here, we have supplied two arguments to the random number generator: 
randn(1,N) creates a 1-by-N array of independent N(0, 1) samples. The function 
cumsum computes the cumulative sum of its argument, so the jth element of the 1- 
by-N array W is dW (1) + dW(2) + * * + dW(j), as required. Avoiding for loops and 
thereby computing directly with arrays rather than individual components is the key 
to writing efficient MATLAB code [3, Chapter 20]. Some of the M-files in this article 
would be several orders of magnitude slower if written in nonvectorized form. 

The M-file bpath3.m in Listing 3 produces Figure 2. Here, we evaluate the func- 
tion u(W(t)) = exp(t + W(t)) along 1000 discretized Brownian paths. The average 
of u(W(t)) over these paths is plotted with a solid blue line. Five individual paths 
are also plotted using a dashed red line. The M-file bpath3.m is vectorized across 
paths; dW is an M-by-N array such that dW(i,j) gives the increment dWj in (2.1) for 
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W(t) 

0 

-0.5 l ' l l 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

t 

Fig. I Discretized Brownian path from bpathl.m and bpath2.m. 

%BPATH2 Brownian path simulation: vectorized 

randn('state',100) % set the state of randn 
T = 1; N = 500; dt = T/N; 

dW = sqrt(dt)*randn(l,N); % increments 
W = cumsum(dW); % cumulative sum 

plot([0:dt:T],[0,W],'r-') . plot W against t 
xlabel('t' 'FontSize',16) 

ylabel('W(t)', 'FontSize',16, 'Rotation' ,0) 

Listing 2 M-file bpath2.m. 

the ith path. We use cumsum(dW,2) to form cumulative sums across the second (col- 
umn) dimension. Hence, W is an M-by-N array whose ith row contains the ith path. 
We use repmat(t, [M 1]) to produce an M-by-N array whose rows are all copies of t. 
The M-by-N array U then has ith row corresponding to u(W(t)) along the ith path. 
Forming Umean = mean(U) computes columnwise averages, so Umean is a 1-by-N array 
whose jth entry is the sample average of u(W(tj)). 

We see in Figure 2 that although u(W(t)) is nonsmooth along individual paths, 
its sample average appears to be smooth. This can be established rigorously-the 
expected value of u(W(t)) turns out to be exp(9t/8). In bpath3.m, averr records 
the maximum discrepancy between the sample average and the exact expected value 
over all points tj. We find that averr = 0.0504. Increasing the number of samples 
to 4000 reduces averr to 0.0268. 
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%BPATH3 Function along a Brownian path 

randn('state',100) 
T = 1; N = 500; dt = T/N; t = [dt:dt:1]; 

% set the state of randn 

M = 1000; % M paths simultaneouE 
dW = sqrt(dt)*randn(M,N); % increments 
W = cumsum(dW,2); % cumulative sum 
U = exp(repmat(t,[M 1]) + 0.5*W); 
_Umean = mean(U); 

plot([O,t],[l,Umean],'b-'), hold on % plot mean over M pal 
plot([O,t],[ones(5,1),U(1:5,:)],'r--'), hold off % plot 5 individual pe 
xlabel('t','FontSize',16) 
ylabel('U(t)','FontSize ,16, 'Rotation',, 'HorizontalAlignment', right') 
legend('mean of 1000 paths','5 individual paths' ,2) 

sly 

ths 
aths 

averr = norm((Umean - exp(9*t/8)),'inf') % sample error 

Listing 3 M-file bpath3.m. 

U(t) 

0.5 0.6 

t 

Fig. 2 The function u(W(t)) averaged over 1000 discretized Brownian paths and along 5 individual 
paths, from bpath3.m. 

Note that u(W(t)) has the form (4.6) arising in section 4 as the solution to a linear 
SDE. In some applications the solution is required for a given path-a so-called path- 
wise or strong solution. As we will see in section 5, the ability of a method to compute 
strong solutions on average is quantified by the strong order of convergence. In other 
contexts, only expected value type information about the solution is of interest, which 
leads to the concept of the weak order of convergence. 
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%.STINT Approximate stochastic integrals 

% Ito and Stratonovich integrals of W dW 

randn('state',100) % set the state of randn 
T = 1; N = 500; dt = T/N; 

dW = sqrt(dt)*randn(l,N); % increments 
W = cumsum(dW); /, cumulative sum 

ito = sum([0,W(I:end-i)].*dW) 
strat = sum((0.5*([0,W(l:end-l)]+W) + 0.5*sqrt(dt)*randn(l,N)).*dW) 

itoerr = abs(ito - 0.5*(W(end)^2-T)) 
straterr = abs(strat - 0.5*W(end) 2) 

Listing 4 M-file stint .m. 

3. Stochastic Integrals. Given a suitable function h, the integral foT h(t)dt may 
be approximated by the Riemann sum 

N-1 

(3.1) h(tj)(tj+ - t), 
j=0 

where the discrete points tj = jet were introduced in section 2. Indeed, the integral 
may be defined by taking the limit 6t -* 0 in (3.1). In a similar way, we may consider 
a sum of the form 

N-1 

(3.2) E h(tj)(W(tj+l)- W(tj)), 
j=0 

which, by analogy with (3.1), may be regarded as an approximation to a stochastic 

integral Jf h(t)dW(t). Here, we are integrating h with respect to Brownian motion. 
In the M-file stint.m in Listing 4, we create a discretized Brownian path over 

[0,1] with 6t = 1/N = 1/500 and form the sum (3.2) for the case where h(t) is 
W(t). The sum is computed as the variable ito. Here .* represents elementwise 
multiplication, so [0, W (1: end- 1) ] . *dW represents the 1-by-N array whose jth element 
is W(j-l)*dW(j). The sum function is then used to perform the required summation, 
producing ito = -0.2674. 

An alternative to (3.1) is given by 

N-1 tj+tj+l 
(3.3) E h t +t (tj+1 - t3) 

j=0 

which is also a Riemann sum approximation to foT h(t)dt. The corresponding alter- 
native to (3.2) is 

(3.4) h (tj + 
tj+l (W(t+l) - W(t)). 

j=o0 

In the case where h(t) - W(t), the sum (3.4) requires W(t) to be evaluated at 
t = (tj + tj+1)/2. It can be shown that forming (W(tj) + W(tj+l))/2 and adding an 
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independent N(O, At/4) increment gives a value for W((tj + tj+1)/2) that maintains 
the three conditions listed at the start of section 2. Using this method, the sum (3.4) 
is evaluated in stint.m as strat, where we find that strat = 0.2354. Note that 
the two "stochastic Riemann sums" (3.2) and (3.4) give markedly different answers. 
Further experiments with smaller 6t reveal that this mismatch does not go away as 

t -> 0. This highlights a significant difference between deterministic and stochastic 
integration-in defining a stochastic integral as the limiting case of a Riemann sum, 
we must be precise about how the sum is formed. The "left-hand" sum (3.2) gives 
rise to what is known as the It6 integral, whereas the "midpoint" sum (3.4) produces 
the Stratonovich integral.1 

It is possible to evaluate exactly the stochastic integrals that are approximated 
in stint.m. The Ito version is the limiting case of 

N-1 N-1 

W(tj)(W(tj+) - W(tj)) = (W(tj+)2 W(tj)2 - (W(tj+) - W(tj))2) 
j=o j=o 

/ N-1 \ 

(3.5) = 1 W(T)2 - W(0)2 - (W(tj+) -W(tj))2 
j=- 

Now the term Nj=o1 (W(tj+l)- W(tj))2 in (3.5) can be shown to have expected 
value T and variance of O(6t). Hence, for small 6t we expect this random variable to 
be close to the constant T. This argument can be made precise, leading to 

T 

(3.6) W(t)dW(t) = W(T)2 - T, 
Jo 

for the Ito integral. The Stratonovich version is the limiting case of 

N-i 

(W(tj) + W(tj+l) A ) (W(tj+l) - W(tj)) 
j=0 

where each AZj is independent N(0, At/4). This sum collapses to 

N-1 

2 (W(T)2 - W(0)2) + E AZ(w(t+1)- W(t)) 
j=o 

in which the term ^=oL1 AZj(W(tj+l) - W(tj)) has expected value 0 and variance 
O(6t). Thus, in place of (3.6) we have 

T 

(3.7) j W(t)dW(t) = W(T)2. 
Jo 

The quantities itoerr and straterr in the M-file stint.m record the amount 
by which the Riemann sums ito and strat differ from their respective 6t * 0 limits 
(3.6) and (3.7). We find that itoerr = 0.0158 and straterr = 0.0186. 

Ito and Stratonovich integrals both have their uses in mathematical modeling. In 
subsequent sections we define an SDE using the Ito version (a simple transformation 
converts from Ito to Stratonovich). 

Some authors prefer an almost equivalent definition for the Stratonovich integral based on the 
sum N-'1 (h(tj) + h(tj+l))(W(tj+l) - W(tj)). 
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4. The Euler-Maruyama Method. A scalar, autonomous SDE can be written in 
integral form as 

rt rt 

(4.1) X(t) = Xo + / f(X(s)) ds+ g(X(s)) dW(s), 0 < t < T. 

Here, f and g are scalar functions and the initial condition Xo is a random variable. 
The second integral on the right-hand side of (4.1) is to be taken with respect to 
Brownian motion, as discussed in the previous section, and we assume that the It6 
version is used. The solution X(t) is a random variable for each t. We do not attempt 
to explain further what it means for X(t) to be a solution to (4.1)-instead we define 
a numerical method for solving (4.1), and we may then regard the solution X(t) as 
the random variable that arises when we take the zero stepsize limit in the numerical 
method. 

It is usual to rewrite (4.1) in differential equation form as 

(4.2) dX(t) = f(X(t))dt + g(X(t))dW(t), X() = Xo, 0 < t < T. 

This is nothing more than a compact way of saying that X(t) solves (4.1). To keep 
with convention, we will emphasize the SDE form (4.2) rather than the integral form 
(4.1). (Note that we are not allowed to write dW(t)/dt, since Brownian motion 
is nowhere differentiable with probability 1.) If g = 0 and Xo is constant, then the 
problem becomes deterministic, and (4.2) reduces to the ordinary differential equation 
dX(t)/dt = f(X(t)), with X(0) = Xo. 

To apply a numerical method to (4.2) over [0, T], we first discretize the interval. 
Let At = T/L for some positive integer L, and rj = jAt. Our numerical approxi- 
mation to X(rj) will be denoted Xj. The Euler-Maruyama (EM) method takes the 
form 

(4.3) Xj = Xj_l + f(Xj-1)At + g(Xj_1) (W(7j) - W(7j_1)), j = 1,2,..., L. 

To understand where (4.3) comes from, notice from the integral form (4.1) that 

(4.4) X(rj) X(Tj1) +) f( X(s))ds + g f(X(s))dW(s). 
a--1 - 

Each of the three terms on the right-hand side of (4.3) approximates the corresponding 
term on the right-hand side of (4.4). We also note that in the deterministic case (g - 0 
and Xo constant), (4.3) reduces to Euler's method. 

In this article, we will compute our own discretized Brownian paths and use them 
to generate the increments W(rj) - W(Tj_) needed in (4.3). For convenience, we 
always choose the stepsize At for the numerical method to be an integer multiple 
R > 1 of the increment 6t for the Brownian path. This ensures that the set of points 
{tj } on which the discretized Brownian path is based contains the points {rj } at which 
the EM solution is computed. In some applications the Brownian path is specified as 
part of the problem data. If an analytical path is supplied, then arbitrarily small At 
can be used. 

We will apply the EM method to the linear SDE 

(4.5) dX(t) = AX(t)dt + ,uX(t)dW(t), X(0) = Xo, 

where A and p are real constants; so f(X) = AX and g(X) = -X in (4.2). This SDE 
arises, for example, as an asset price model in financial mathematics [4]. (Indeed, the 

532 



NUMERICAL SIMULATION OF SDEs 533 

Y/EM Euler-Maruyama method on linear SDE 

. SDE is dX = lambda*X dt + mu*X dW, X(O) = Xzero, 
% where lambda = 2, mu = 1 and Xzero = 1. 

% Discretized Brownian path over [0,1] has dt = 2"(-8). 
% Euler-Maruyama uses timestep R*dt. 

randn('state',100) 
lambda = 2; mu = i; Xzero = 1; % problem parameters 
T = 1; N = 2^8; dt = 1/N; 
dW = sqrt(dt)*randn(1,N); % Brownian increments 
W = cumsum(dW); ?/ discretized Brownian path 

Xtrue = Xzero*exp((lambda-0.5*mu^2)*([dt:dt:T])+mu*W); 
plot([O:dt:T],[Xzero,Xtrue],'m-'), hold on 

R = 4; Dt = R*dt; L = N/R; % L EM steps of size Dt = R*dt 
Xem = zeros(l,L); %/ preallocate for efficiency 
Xtemp = Xzero; 
for j = 1:L 

Winc = sum(dW(R*(j-l)+l:R*j)); 
Xtemp = Xtemp + Dt*lambda*Xtemp + mu*Xtemp*Winc; 
Xem(j) = Xtemp; 

end 

plot([O:Dt:T],[Xzero,Xem],'r--*'), hold off 

xlabel('t','FontSize',12) 
ylabel('X', 'FontSize' ,16, 'Rotation' ,O,'HorizontalAlignment', 'right') 

emerr = abs(Xem(end)-Xtrue(end)) 

Listing 5 M-file em.m. 

well-known Black-Scholes partial differential equation can be derived from (4.5).) It 
is known (see, for example, [8, p. 105]) that the exact solution to this SDE is 

(4.6) X(t) = X(O) exp ((A - 2 )t + ,LW(t)) . 

In the M-file em.m in Listing 5 we consider (4.5) with A = 2, /u = 1, and Xo = 1 

(constant). We compute a discretized Brownian path over [0,1] with 6t = 2-8 and 
evaluate the solution in (4.6) as Xtrue. This is plotted with a solid magenta line in 
Figure 3. We then apply EM using a stepsize At = RSt, with R = 4. On a general 
step the EM method (4.3) requires the increment W(Tj) - W(Tj_-), which is given 
by 

jR 

W(Tj) - 
W(Tj-) = W(jR6t) - W((j - 1)R6t) = E dWk. 

k=jR-R+1 

In em.m this quantity appears as Winc = sum(dW(R*(j-1)+l :R*j)). The 1-by-L array 
Xem stores the EM solution, which is plotted in Figure 3 as red asterisks connected 
with dashed lines. The discrepancy between the exact solution and the EM solution 
at the endpoint t = T, computed as emerr, was found to be 0.6907. Taking At = R6t 
with smaller R values of 2 and 1 produced endpoint errors of 0.1595 and 0.0821, 
respectively. 
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~~~~X ; ,' 1, i~~~~~*v * - 

2- 

0 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

t 

Fig. 3 True solution and EM approximation, from em.m. 

5. Strong and Weak Convergence of the EM Method. In the example above 
with em.m the EM solution matches the true solution more closely as At is decreased- 
convergence seems to take place. Keeping in mind that X(rn) and Xn are random 
variables, in order to make the notion of convergence precise we must decide how to 
measure their difference. Using E IXn - X(rn), where E denotes the expected value, 
leads to the concept of strong convergence. A method is said to have strong order of 
convergence equal to y if there exists a constant C such that 

(5.1) E IXn - X(T) < CAt_ 

for any fixed r = nAt E [0, T] and At sufficiently small. If f and g satisfy appro- 
priate conditions, it can be shown that EM has strong order of convergence y = 2. 

Note that this marks a departure from the deterministic setting-if g = 0 and Xo is 
constant, then the expected value can be deleted from the left-hand side of (5.1) and 
the inequality is true with y = 1. 

In our numerical tests, we will focus on the error at the endpoint t = T, so we let 

(5.2) eStn : E IXL - X(T)I, where LAt = T, 

denote the EM endpoint error in this strong sense. If the bound (5.1) holds with 
- = ? at any fixed point in [0, T], then it certainly holds at the endpoint, so we have 

(5.3) estrong < CAt? 

for sufficiently small At. 
The M-file emstrong.m in Listing 6 looks at the strong convergence of EM for 

the SDE (4.5) using the same A, ,, and Xo as in em.m. We compute 1000 different 
discretized Brownian paths over [0, 1] with Et = 2-9. For each path, EM is applied 
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%EMSTRONG Test strong convergence of Euler-Maruyama 

% Solves dX = lambda*X dt + mu*X dW, X(O) = Xzero, 
"% where lambda = 2, mu = 1 and XzerO = 1. 

% Discretized Brownian path over [0,1] has dt = 2"(-9). 
% E-M uses 5 different timesteps: 16dt, 8dt, 4dt, 2dt, dt. 
% Examine strong convergence at T=1: E I X.L - X(T) I. 

randn('state',100) 
lambda = 2; mu = 1; Xzero = 1; 
T = 1; N = 2^9; dt = T/N; 
M = 1000; 

% problem parameters 

% number of paths sampled '. number of paths sampled 

Xerr = zeros(M,5); . preallocate array 
for s = 1:M, % sample over discrete Brownian paths 

dW = sqrt(dt)*randn(i,N); % Brownian increments 
W = cumsum(dW); % discrete Brownian path 
Xtrue = Xzero*exp((lambda-0.5*mu^2)+mu*W(end)); 
for p = 1:5 

R = 2'(p-i); Dt = R*dt; L = N/R; % L Euler steps of size Dt = R*dt 

Xtemp = Xzero; 
for j = 1:L 

Winc = sum(dW(R*(j-l)+l:R*j)); 
Xtemp = Xtemp + Dt*lambda*Xtemp + mu*Xtemp*Winc; 

end 

Xerr(s,p) = abs(Xtemp - Xtrue); 
end 

% store the error at t = 1 

Dtvals = dt*(2.'([0:4])); 
subplot(221) % top LH picture 
loglog(Dtvals,mean(Xerr),'b*-'), hold on 
loglog(Dtvals,(Dtvals.^(.5)),'r--'), hold off % reference slope of 1/2 
axis([le-3 le-1 le-4 1]) 
xlabel('\Delta t'), ylabel('Sample average of I X(T) - X.L I') 
title('emstrong.m','FontSize',10) 

./,.%% Least squares fit of error = C * Dt^q %..%%. 
A = [ones(5,1), log(Dtvals)']; rhs = log(mean(Xerr)'); 
sol = A\rhs; q = sol(2) 
resid = norm(A*sol - rhs) 

Listing 6 M-file emstrong.m. 

with 5 different stepsizes: At = 2p-16t for 1 < p < 5. The endpoint error in the sth 
sample path for the pth stepsize is stored in Xerr(s ,p); so Xerr is a 1000-by-5 array. 
The function mean is then used to average over all sample paths: forming mean (Xerr) 
produces a 1-by-5 array where each column of Xerr is replaced by its mean. Hence, 
the pth element of mean(Xerr) is an approximation to est0n for /t = 2P-16t. 

If the inequality (5.3) holds with approximate equality, then, taking logs, 

log estg log C + logAt. log At 2 log C + (5.4) 

The command loglog(Dtvals ,mean (Xerr), 'b*-') in emstrong.m plots our approx- 
imation to estong against At on a log-log scale. This produces the blue asterisks 
connected with solid lines in the upper left-hand plot of Figure 4. For reference, a 
dashed red line of slope one-half is added. We see that the slopes of the two curves 
appear to match well, suggesting that (5.4) is valid. We test this further by assuming 

end 
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Fig. 4 Strong and weak error plots: dashed red line is the appropriate reference slope in each case. 
Top left and right are for EM, bottom left is for weak EM, and bottom right is for Milstein. 

that a power law relation e1trng = CAtq exists for some constants C and q, so that 

log esong = log C + q log At. A least squares fit for log C and q is computed at the 
end of emstrong, producing the value 0.5384 for q with a least squares residual of 
0.0266. Hence, our results are consistent with a strong order of convergence equal to 
one-half. 

While monitoring the error eStng in emstrong. m, we are implicitly assuming that 
a number of other sources of error are negligible, including the following. 

Sampling error: the error arising from approximating an expected value by a 
sampled mean. 

Random number bias: inherent errors in the random number generator. 
Rounding error: floating point roundoff errors. 

For a typical computation the sampling error is likely to be the most significant of 
these three. In preparing the programs in this article we found that some exper- 
imentation was required to make the number of samples sufficiently large and the 
timestep sufficiently small for the predicted orders of convergence to be observable. 
(The sampling error decays like 1//M, where M is the number of sample paths 
used.) A study in [7] indicates that as At decreases, lack of independence in the 
samples from a random number generator typically degrades the computation before 
rounding errors become significant. 

Although the definition of strong convergence (5.1) involves an expected value, 
it has implications for individual simulations. The Markov inequality says that if a 
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random variable X has finite expected value, then for any a > 0 the probability that 
IXI > a is bounded above by (E IXl)/a, that is, 

E lX (Xl > a) < 

Hence, taking a = At1/4, we see that a consequence of EM's strong convergence 
of order y = 2 is 

P(|Xn - X(T) > At1/4) < CAt1/4, 

or, equivalently, 

P(lXn - X(T)l < At1/4) > 1 - CAt1/4. 

This shows that the error at a fixed point in [0, T] is small with probability close to 1. 
The strong order of convergence (5.1) measures the rate at which the "mean of 

the error" decays as At -- 0. A less demanding alternative is to measure the rate of 
decay of the "error of the means." This leads to the concept of weak convergence. A 
method is said to have weak order of convergence equal to - if there exists a constant 
C such that for all functions p in some class 

(5.5) IEp(Xn) - Ep(X(T))I < CAtv 

at any fixed r = nAt E [0, T] and At sufficiently small. Typically, the functions p 
allowed in (5.5) must satisfy smoothness and polynomial growth conditions. We will 
focus on the case where p is the identity function. For appropriate f and g it can be 
shown that EM has weak order of convergence - = 1. 

Mimicking our strong convergence tests, we let 

(5.6) ewak := IEXL - EX(T)I, where LAt = T, 

denote the weak endpoint error in EM. So (5.5) for p(X) = X with y = 1 immediately 
implies that 

(5.7) eweak < t 

for sufficiently small At. 
We examine the weak convergence of EM in the M-file emweak.m in Listing 7. 

Here we solve (4.5) over [0,1] for A = 2, p = 0.1, and Xo = 1. We sample over 50000 
discretized Brownian paths and use five stepsizes At = 2P-10 for 1 < p < 5 in EM. 
This code has one extra level of vectorization compared to emstrong-we compute 
simultaneously with all 50000 paths. This improves the execution time at the expense 
of extra storage requirements. To compensate, we have used different paths for each 
At so that only the current increments, rather than the complete paths, need to be 
stored. Further, we choose the path increment 6t = At for extra efficiency. The 
sample average approximations to E XL are stored in Xem. It follows from (4.6) that 
EX(T) = eAT for the true solution and Xerr stores the corresponding weak endpoint 
error for each At. The upper right-hand plot of Figure 4 shows how the weak error 
varies with At on a log-log scale. A dashed red reference line of slope one is added. 
It seems that (5.7) holds with approximate equality. As in emstrong.m we do a least 
squares power law fit that gives q = 0.9858 and resid = 0.0508, confirming this 
behavior. 
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%EMWEAK Test weak convergence of Euler-Maruyama 

% Solves dX = lambda*X dt + mu*X dW, X(0) = Xzero, 
"% where lambda = 2, mu = 1 and XzerO = 1. 

% E-M uses 5 different timesteps: 2^(p-10), p = 1,2,3,4,5. 
% Examine weak convergence at T=i: I E (X_L) - E (X(T)) I. 
e/ 

% Different paths are used for each E-M timestep. 
% Code is vectorized over paths. 

% Uncommenting the line indicated below gives the weak E-M method. 

randn('state',100); 
lambda = 2; mu = 0.1; Xzero = 1; T = 1; % problem parameters 
M = 50000; % number of paths sampled 

Xem = zeros(5,1); %/ preallocate arrays 
for p - 1:5 % take various Euler timesteps 

Dt = 2^(p-10); L = T/Dt; % L Euler steps of size Dt 

Xtemp = Xzero*ones(M,i); 
for j = 1:L 

Winc = sqrt(Dt)*randn(M,1); 
% Winc = sqrt(Dt)*sign(randn(M,1)); 7./% use for weak E-M .7. 

Xtemp = Xtemp + Dt*lambda*Xtemp + mu*Xtemp.*Winc; 
end 

Xem(p) = mean(Xtemp); 
end 
Xerr = abs(Xem - exp(lambda)); 

Dtvals = 2.'([1:5]-10); 
subplot(222) 
loglog(Dtvals,Xerr,'b*-'), hold on 
loglog(Dtvals,Dtvals,'r--'), hold off 
axis([le-3 le-1 le-4 1]) 
xlabel('\Delta t'), ylabel('l E(X(T)) - 
title('emweak.m','FontSize',10) 

% top RH picture 

% reference slope of 1 

Sample average of X_L I') 

.%%/.. Least squares fit of error = C * dt^q .%%%./. 
A = [ones(p,i), log(Dtvals)']; rhs = log(Xerr); 
sol = A\rhs; q = sol(2) 
resid = norm(A*sol - rhs) 

Listing 7 M-file emweak.m. 

It is worth emphasizing that for the computations in emweak.m, we used different 
paths for each stepsize At. This is perfectly reasonable. Weak convergence concerns 
only the mean of the solution, and so we are free to use any x/tN(O,1) sample for the 
increment W(Tj) - W(rj-1) in (4.3) on any step. In fact, the order of weak conver- 

gence is maintained if the increment is replaced by an independent two-point random 
variable AtVj, where Vj takes the values +1 and -1 with equal probability. (Note 
that v/ItVj has the same mean and variance as /AtN(0,1).) Replacing the Brownian 
increment by vztVj in this way leads to the weak Euler-Maruyama (WEM) method, 
which has weak order of convergence 7y = 1, but, since it uses no pathwise information, 
offers no strong convergence. The motivation behind WEM is that random number 
generators that sample from Vj can be made more efficient than those that sample 
from N(0,1). In the M-file emweak.m we have included the comment line 
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% Winc = sqrt(Dt)*sign(randn(M,1)); %% use for weak E-M %% 
Deleting the leading % character, and hence uncommenting the line, implements 
WEM, since sign(randn(M,1)) is equally likely to be +1 or -1. (Clearly, because we 
are using the built-in normal random number generator, there is no efficiency gain 
in this case.) The resulting error graph is displayed as the lower-left hand picture in 
Figure 4. A least squares power law fit gives q = 1.0671 and resid = 0.2096. 

6. Milstein's Higher Order Method. We saw in the previous section that EM 
has strong order of convergence y = 1 in (5.1), whereas the underlying deterministic 
Euler method converges with classical order 1. It is possible to raise the strong order of 
EM to 1 by adding a correction to the stochastic increment, giving Milstein's method. 
The correction arises because the traditional Taylor expansion must be modified in the 
case of It6 calculus. A so-called Ito-Taylor expansion can be formed by applying It6's 
result, which is a fundamental tool of stochastic calculus. Truncating the Ito-Taylor 
expansion at an appropriate point produces Milstein's method for the SDE (4.2): 

(6.1) Xj = Xj_1 + Atf(Xj_i) + g(Xj_1) (W(Tj) - W(7j_i)) 

+ g(Xj_l)g/(Xj_l)((W(7j) - W(Tj_l))2 - At), j = 1,2,..., L. 

The M-file milstrong.m in Listing 8 applies Milstein's method to the SDE 

(6.2) dX(t) = rX(t)(K - X(t))dt + 3X(t)dW(t), X(0) = Xo, 

which arises in population dynamics [9]. Here, r, K, and 3 are constants. We take 
r = 2, K = 1, 3 = 0.25, and Xo = 0.5 (constant) and use discretized Brownian 

paths over [0,1] with 6t = 2-11. The solution to (6.2) can be written as a closed-form 
expression involving a stochastic integral. For simplicity, we take the Milstein solution 
with At = 6t to be a good approximation of the exact solution and compare this with 
the Milstein approximation using At = 1286t, At = 646t, At = 326t, and At = 166t 
over 500 sample paths. We have added one more level of vectorization compared with 
the emstrong.m file-rather than using a for loop to range over sample paths, we 
compute with all paths simultaneously. We set up dW as an M-by-N array in which 
dW(s,j) is the jth increment for the sth path. The required increments for Milstein 
with timestep R(p)*dt are 

Winc = sum(dW(:,R(p)*(j-l)+l:R(p)*j),2); 
This takes the sub-array consisting of all rows of dW and columns R(p)*(j-l)+l to 
R(p)*j and sums over the second (column) dimension. The result is an M-by-1 array 
whose jth entry is the sum of the entries in row i of dW between columns R(p)* (j -)+1 
and R(p)*j. The M-by-5 array Xmil stores all numerical solutions for the M paths and 
5 stepsizes. The resulting log-log error plot is shown as the lower right-hand picture 
in Figure 4 along with a reference line of slope 1. The least-squares power law fit 
gives q = 1.0184 and resid = 0.0350. 

7. Linear Stability. The concepts of strong and weak convergence concern the 
accuracy of a numerical method over a finite interval [0, T] for small stepsizes At. 
However, in many applications the long-term, t -+ oo, behavior of an SDE is of 
interest. Convergence bounds of the form (5.1) or (5.5) are not relevant in this context 
since, generally, the constant C grows unboundedly with T. For deterministic ODE 
methods, a large body of stability theory has been developed that gives insight into 
the behavior of numerical methods in the At fixed, tj -+ oo limit. Typically, a 
numerical method is applied to a class of problems with some qualitative feature, 
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Y%MILSTRONG Test strong convergence of Milstein: vectorized 
7. 
% Solves dX = r*X*(K-X) dt + beta*X dW, X(O) = Xzero, 
?% where r = 2, K= 1, beta = 1 and Xzero = 0.5. 

% Discretized Brownian path over [0,1] has dt = 2~(-11). 
% Milstein uses timesteps 128*dt, 64*dt, 32*dt, 16*dt (also dt for reference). 

'% Examines strong convergence at T=i: E I X_L - X(T) I. 
% Code is vectorized: all paths computed simultaneously. 

rand('state',100) 
r = 2; K = 1; beta = 0.25; Xzero = 0.5; 
T = 1; N = 2'(11); dt = T/N; 
M = 500; 
R = [1; 16; 32; 64; 128]; 

% problem parameters 

% number of paths sampled 
%/ Milstein stepsizes are R*dt 

dW = sqrt(dt)*randn(M,N); % Brownian increments 
Xmil = zeros(M,5); % preallocate array 
for p = 1:5 

Dt = R(p)*dt; L = N/R(p); % L timesteps of size Dt = R dt 
Xtemp = Xzero*ones(M,1); 
for j = 1:L 

Winc = sum(dW(:,R(p)*(j-l)+l:R(p)*j),2); 
Xtemp = Xtemp + Dt*r*Xtemp.*(K-Xtemp) + beta*Xtemp.*Winc ... 

+ 0.5*beta^2*Xtemp.*(Winc.^2 - Dt); 
end 
Xmil(:,p) = Xtemp; % store Milstein solution at t =1 

end 

Xref = Xmil(:,1); 
Xerr = abs(Xmil(:,2:5) - repmat(Xref,1,4)); 
mean(Xerr); 
Dtvals = dt*R(2:5); 

subplot(224) 
loglog(Dtvals,mean(Xerr),'b*-'), hold on 

loglog(Dtvals,Dtvals,'r--'), hold off 

axis([le-3 le-1 le-4 1]) 
xlabel('\Delta t') 

ylabel('Sample average of I X(T) - X_L I') 

title('milstrong.m','FontSize',10) 

% Reference solution 
% Error in each path 
% Mean pathwise erorrs 
% Milstein timesteps used 

% lower RH picture 

% reference slope of 1 

%7.Y.7. Least squares fit of error = C * Dt^q ..%%%% 
A = [ones(4,1), log(Dtvals)]; rhs = log(mean(Xerr)'); 
sol = A\rhs; q = sol(2) 
resid = norm(A*sol - rhs) 

Listing 8 M-file milstrong.m. 

and the ability of the method to reproduce this feature is analyzed. Although a 
wide variety of problem classes have been analyzed, the simplest, and perhaps the 
most revealing, is the linear test equation dX/dt = AX, where A E C is a constant 
parameter. For SDEs, it is possible to develop an analogous linear stability theory, 
as we now indicate. 

We return to the linear SDE (4.5), with the parameters A and ,u allowed to 
be complex. In the case where /u = 0 and Xo is constant, (4.5) reduces to the 
deterministic linear test equation, which has solutions of the form Xoexp(At). If 
we use the term stable to mean that limt,,oX(t) = 0 for any Xo, then we see 
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that stability is characterized by ({A} < 0. In order to generalize this idea to the 
SDE case, we must be more precise about what we mean by "limt,,o X(t) = 0" 
random variables are infinite-dimensional objects and hence norms are not equivalent 
in general. We will consider the two most common measures of stability: mean-square 
and asymptotic. Assuming that X0o : 0 with probability 1, solutions of (4.5) satisfy 

(7.1) lim EX(t)2 = 0 4= R{A} + j 12 < 0, 
t-*Coo 2 

(7.2) lim IX(t)l = 0, with probability 1 4 JR{A - 22} < 0. 
t -oo 2 

The left-hand side of (7.1) defines what is meant by mean-square stability. The right- 
hand side of (7.1) completely characterizes this property in terms of the parameters A 
and /u. Similarly, (7.2) defines and characterizes asymptotic stability. Setting ,i = 0, 
the characterizations collapse to the same condition, SR{A} < 0, which, of course, arose 
for deterministic stability. It follows immediately from (7.1) and (7.2) that if (4.5) 
is mean-square stable, then it is automatically asymptotic stable, but not vice versa. 
Hence, on this test problem, mean-square stability is a more stringent requirement 
than asymptotic stability. Both stability definitions are useful in practice. 

Now suppose that the parameters A and ,u are chosen so that the SDE (4.5) is 
stable in the mean-square or asymptotic sense. A natural question is then, "For what 
range of At is the EM solution stable in an analogous sense?" The mean-square 
version of this question is easy to analyze. Simple properties of the expected value 
show that 

(7.3) lim EX2 = 0 , 11 + AtA 2 + Atl1l2 < 1 
j-- 00 o 

for EM applied to (4.5). The asymptotic version of the question can be studied via 
the strong law of large numbers and the law of the iterated logarithm, leading to 

(7.4) lim IXj = 0, with probability 1 IE log 1 + AtA + AtuN(0, 1) < 0. 

These results are illustrated by the M-file stab.m in Listing 9. To test mean- 
square stability, we solve (4.5) with Xo = 1 (constant) over [0, 20] for two parameter 
sets. The first set has A -3 and u = v3. These values satisfy (7.1) and hence the 
problem is mean-square stable. We apply EM over 50000 discrete Brownian paths for 
three different stepsizes: At = 1,1/2,1/4. Only the third of these, At = 1/4, satisfies 
the right-hand side of (7.3). The upper picture in Figure 5 plots the sample average of 
X2 against tj. Note that the vertical axis is logarithmically scaled. In this picture the 
At = 1 and At = 1/2 curves increase with t, while the At = 1/4 curve decays toward 
to zero. Hence, this test correctly implies that for At = 1,1/2 and At = 1/4, EM is 
unstable and stable, respectively, in the mean-square sense. However, the number of 
samples used (50000) is not sufficient to resolve the behavior fully; the three curves 
should be straight lines. This highlights the fact that simplistic sampling without 
further checks may lead to misleading conclusions. 

To examine asymptotic stability, we use the parameter set A = 1/2 and ,L = V6. 
It follows from (7.2) that the SDE is asymptotically stable (although, from (7.1), it 
is not mean-square stable). Since asymptotic stability concerns a probability 1 event, 
we apply EM over a single discrete Brownian path for At = 1,1/2,1/4, and because 
computing with a single path is cheap, we integrate over [0, 500]. It can be shown that 
only the smallest of these timesteps, At = 1/4, satisfies the condition (7.4)-this is 
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%STAB Mean-square and asymptotic stability test for E-M 

% SDE is dX = lambda*X dt + mu*X dW, X(0) = Xzero, 
/% where lambda and mu are constants and Xzero = 1. 

randn('state',100) 
T = 20; M = 50000; Xzero = 1; 
ltype = {'b-','r--','m-.'}; % linetypes for plot 

subplot(2ii) %/%%%%%%%%%%% Mean Square .%%%.y%%%%%%%% 
lambda = -3; mu = sqrt(3); % problem parameters 
for k = 1:3 

Dt = 2^(l-k); 
N = T/Dt; 
Xms = zeros(1,N); Xtemp = Xzero*ones(M,1); 
for j = 1:N 

Winc = sqrt(Dt)*randn(M,1); 
Xtemp = Xtemp + Dt*lambda*Xtemp + mu*Xtemp.*Winc; 
Xms(j) = mean(Xtemp.^2); % mean-square estimate 

end 
semilogy([O:Dt:T],[Xzero,Xms],ltype{k},'Linewidth',2), hold on 

end 
legend('\Delta t = l','\Delta t = 1/2','\Delta t = 1/4') 
title('Mean-Square: \lambda = -3, \mu = \surd 3','FontSize',16) 
ylabel('E[X^2]','FontSize',12), axis([O,T,le-20,le+20]), hold off 

subplot(212) %Y././%%. Asymptotic: a single path .%%.%%%%. 
T = 500; 
lambda = 0.5; mu = sqrt(6); % problem parameters 
for k = 1:3 

Dt = 2^(1-k); 
N = T/Dt; 
Xemabs = zeros(l,N); Xtemp = Xzero; 
for j = 1:N 

Winc = sqrt(Dt)*randn; 
Xtemp = Xtemp + Dt*lambda*Xtemp + mu*Xtemp*Winc; 
Xemabs(j) = abs(Xtemp); 

end 
semilogy([0 :Dt :T], [Xzero,Xemabs] ,ltype{k}, 'Linewidth' ,2), hold on 

end 
legend('\Delta t = i','\Delta t = 1/2','\Delta t = 1/4') 
title('Single Path: \lambda = 1/2, \mu = \surd 6','FontSize',16) 
ylabel('lXI','FontSize',12), axis([O,T,le-50,le+100]), hold off 

Listing 9 M-file stab.m. 

illustrated in Figure 6, which is discussed below. The lower picture in Figure 5 plots 
IXjl against tj along the path. We see that only the At = 1/4 solution appears to 
decay to zero, in agreement with the theory. 

Figure 6 offers further insight into these computations. Here we have plotted 
regions of stability for A, , E R. The x-axis and y-axis represent AtA and At,u2, 
respectively. In this notation, it follows from (7.1) that the SDE is mean-square stable 
for y < -2x (horizontal magenta shading, marked SDE:ms) and asymptotically stable 
for y > 2x (vertical green shading, marked SDE:as). The condition (7.3) for mean- 
square stability of EM requires y to be positive and lie beneath the parabola -x(2+x). 
The parabola is shown as a solid red curve in the figure and the corresponding mean- 
square stability region for EM is marked EM:ms. The condition (7.4) that determines 
asymptotic stability of EM leads to the flattened-egg-shaped boundary in solid blue. 
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Mean Square: = 3, = 3 
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Fig. 5 Mean-square and asymptotic stability tests, from stab.m. 
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The resulting region is marked EM:as. To interpret the picture, notice that given 
values for A and u, the point (x, y) = (A, /2) corresponds to the timestep At = 1, 
and then varying the stepsize At corresponds to moving along the ray that connects 

(A,u 2) with the origin. The parameter sets (A, /2) = (-3,3) and (A, /2) = (1/2,6) 
used by stab.m are marked as red squares. We see that the first set lies in SDE:ms 
and the second in SDE:as, but neither are stable for EM with At = 1. Reducing 
At from 1 to 1/2 takes us to the points marked with blue circles in the figure. Now 
the first set is in EM:as (but not EM:ms) and the second set remains outside EM:as. 
Reducing At further to the value 1/4 takes us to the points marked by green triangles. 
We see that the first parameter set is now in EM:ms and the second set in EM:as, so 
the stability property of the underlying SDE is recovered in both cases. 

8. Stochastic Chain Rule. We saw in section 3 that there is more than one 
way to extend the concept of integration to a stochastic setting. In this section we 
briefly mention another fundamental difference between stochastic and deterministic 
calculus. 

In the deterministic case, if dX/dt = f(X) then, for any smooth function V, the 
chain rule says that 

(8.1) dV(X(t)) dV(X(t)) d(X(t)) dV(X(t)) f(X(t)) 
dt dX dt dX 

Now, suppose that X satisfies the Ito SDE (4.2). What is the SDE analogue of (8.1) 
for V(X)? A reasonable guess is dV = (dV/dX)dX, so that, using (4.2), 

(8.2) dV(X(t)) = X()) (f(X(t))dt + g(X(t))dW(t)). dX 

However, a rigorous analysis using It6's result reveals that an extra term arises2 
and the correct formulation is 

dV((t)) dV(X(t) ) dX + 129(X(t)2 
d V(X(t))dt 

dX 2 dX2 

which, using (4.2), becomes 

dV(X(t)) (f (t) dV (t)) + (X(t)) d(X (t)) dW(. dX 2dX2 dX 
(8.3) 
We will not attempt to prove, or even justify, (8.3). Instead we will perform a numer- 
ical experiment. 

We consider the SDE 

(8.4) dX(t) = (a - X(t)) dt + /X(t)dW(t), X(O) = Xo, 

where a and 3 are constant, positive parameters. This SDE is a mean-reverting square 
root process that models asset prices [8, Chapter 9]. It can be shown that if X(O) > 0 
with probability 1, then this positivity is retained for all t > 0. Taking V(X) = V/Y, 
an application of (8.3) gives 

(8.5) dV(t) = ( V - 2 (t)) dt+ ? dW(t). 8v(t) 2 2 

2In fact, (8.2) turns out to be valid in the Stratonovich framework, but here we are using It6 
calculus. 
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NUMERICAL SIMULATION OF SDEs 

%CHAIN Test stochastic Chain Rule 

% Solve SDE for V(X) = sqrt(X) where X solves 

% dX = (alpha - X) dt + beta sqrt(X) dW, X(0) = Xzero, 

%/ with alpha = 2, beta = 1 and Xzero = 1. 
% Xemi is Euler-Maruyama solution for X. 
% Xem2 is Euler-Maruyama solution of SDE for V from Chain Rule. 
% Hence, we compare sqrt(Xeml) and Xem2. 
% Note: abs is used for safety inside sqrt, but has no effect in this case. 

randn('state',100) 

alpha = 2; beta = 1; T = 1; N = 200; dt = T/N; 
Xzero = 1; Xzero2 = 1/sqrt(Xzero); 

Dt = dt; 
Xeml = zeros(1,N); Xem2 = zeros(1,N); 

Xtempl = Xzero; Xtemp2 = Xzero2; 
for j = 1:N 

Winc = sqrt(dt)*randn; 
fl = (alpha-Xtempl); 
gl = beta*sqrt(abs(Xtempl)); 
Xtempl = Xtempl + Dt*fl + Winc*gl; 
Xeml(j) = Xtempl; 
f2 = (4*alpha-beta^2)/(8*Xtemp2) - Xtemp2/2; 
g2 = beta/2; 

Xtemp2 = Xtemp2 + Dt*f2 + Winc*g2; 
Xem2(j) = Xtemp2; 

end 

Y. Problem parameters 

% EM steps of size Dt = dt 

% preallocate for efficiency 

plot([O:Dt:T],[sqrt([Xzero,abs(Xeml)])],'b-', [:Dt:T],[Xzero,Xem2],'ro') 

legend('Direct Solution','Solution via Chain Rule',2) 
xlabel('t','FontSize',12) 

ylabel('V(X)', 'FontSize',16, 'Rotation',0, 'HorizontalAlignment','right') 

Xdiff = norm(sqrt(Xeml) - Xem2,'inf') 

Listing 10 M-file chain.m. 

In the M-file chain.m in Listing 10 we apply EM to the SDE (8.4) for a = 2, / = 1, and 
Xo = 1 (constant). We compute a discrete Brownian path over [0,1] with 6t = 1/200 
and use At = 6t. The square root of the numerical solution is plotted with a solid 
blue line in Figure 7. We also solve the SDE (8.5) for V and plot the solution with a 
red "o" symbol. We observe that there is good agreement between the two solutions. 
This is confirmed by a check on the maximum discrepancy: Xdiff = 0.0151. 

9. Further Issues. This article is designed to give readers a brief and practical 
introduction to the numerical simulation of SDEs with a minimum of technical detail. 
As a consequence, we have glossed over a vast amount of theory and left out many 
important topics. Consulting the references cited at the end of section 1 is a good 
way to fill in some of the gaps. In this final section, we hint at some of the topics 
omitted. 

First, we have not discussed what conditions on f and g in (4.2) can be imposed 
in order to guarantee the existence of a unique solution to the SDE. Typical existence 
and uniqueness theorems (and convergence theorems for numerical methods) impose 
much more stringent constraints than their deterministic counterparts. Second, we 
have not mentioned the connection between SDEs and certain time-dependent par- 
tial differential equations. Third, we restricted attention to scalar problems-the EM 
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Fig. 7 EM approximations of V(X(t)) = /X( using (8.4) directly and the chain rule version 
(8.5), from chain.m. 

method looks much the same when applied to an SDE system, but Milstein's method 
becomes more complicated. Research into numerical methods for SDEs is being ac- 
tively pursued in a number of directions, including the construction of methods with 
high order of strong or weak convergence or improved stability, the design of variable 
timestep algorithms, and the analysis of long-term properties such as ergodicity for 
nonlinear problems. Pointers to the recent literature can be found in [11]. 
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