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Using Mathematics to
Understand HIV

Immune Dynamics
Denise Kirschner 

S
ince the early 1980s there has been a
tremendous effort made in the math-
ematical modeling of the human im-
munodeficiency virus (HIV), the virus
which causes AIDS (Acquired Immune

Deficiency Syndrome). The approaches in this en-
deavor have been twofold; they can be sepa-
rated into the epidemiology of AIDS as a disease
and the immunology of HIV as a pathogen (a for-
eign substance detrimental to the body). There
has been much research in both areas; we will
limit this presentation to that of the immunol-
ogy of HIV, and refer the reader to some excel-
lent references on mathematical modeling of
the epidemiology of AIDS [1,2,3,4]. Our goal then
is to better understand the interaction of HIV and
the human immune system for the purpose of
testing treatment strategies.

An Introduction to Immunology
When a foreign substance (antigen) is introduced
into the body, the body elicits an immune re-
sponse in an attempt to clear the object from the
body as quickly as possible. This response is
characterized in two ways: a cellular immune re-
sponse and a humoral immune response. The
antigen is first encountered by the macrophages,
cells that scavenge, engulf, and examine foreign
particles, then presenting their findings to the
CD4 positive T lymphocytes (CD4+ T cells). The
“CD4” denotes a protein marker in the surface
of the T cell, and the “T” refers to thymus, the
organ responsible for maturing these cells after
they migrate from the bone marrow (where they
are manufactured). These cells, more commonly
referred to as helper T cells (which normally av-
erage 1,000 per cubic mm of blood), serve as the
command center for the immune system. If they
deem an immune response is necessary, a pri-
mary immune response is issued. First, the helper
T cells reproduce to build up command forces,
which can then elicit both cellular and humoral
responses. In addition to this buildup, the cel-
lular immune response also activates a second
type of T cell, the CD8 positive T lymphocytes
(CD8+ T cells). Referred to as killer T cells, once
given a target, they seek out and destroy cells
infected with those pathogens.

In the humoral immune response (more com-
monly known as the antibody response) the
helper T cells signal a third set of cells, called B
lymphocytes (B cells). These are the blood cells
which produce the chemical weapons called an-
tibodies. Antibodies are specifically engineered
to destroy the pathogen at hand and therefore
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Figure 1. Schematic diagram of the working immune system.
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aid as direct antigen killing devices. Figure 1
shows a schematic diagram of the entire im-
mune response process.

Once the immune response is successful, cer-
tain cells of each type retain knowledge of the
attack. These cells are referred to as memory
cells. If this same pathogen (or a close cousin) is
introduced into the body again, a much quicker
and more aggressive campaign can be launched,
and the antigen is eradicated more accurately and
at a much faster rate. This is the idea behind vac-
cines. A small, weaker version of the pathogen
is introduced, eliciting a primary immune re-
sponse; then, if the individual becomes infected
with the more aggressive relative, the response
is immediate and powerful, and the pathogen
does not take hold. (See [7 or 8] for full discus-
sions of immunology.)

HIV Infection
Like most viruses, HIV is a very simple creature.
Viruses do not have the ability to reproduce in-
dependently. Therefore, they must rely on a host
to aid reproduction. Most viruses carry copies
of their DNA (the blueprint of itself) and insert
this into the host cell’s DNA. Then, when the host
cell is stimulated to reproduce (often through the
presence of the same pathogen), it reproduces
copies of the virus.

When HIV infects the body, its target is
CD4+ T cells. Since CD4+ T cells play the key role
in the immune response, this is cause for alarm
and a key reason for HIV’s devastating impact.
A protein (GP120) on the surface of the virus has
a high affinity for the CD4 protein on the sur-
face of the T cell. Binding takes place, and the
contents of the HIV is injected into the host T
cell. HIV differs from most viruses in that it is
a retrovirus: it carries a copy of its RNA (a pre-
cursor to the blueprint DNA) which must first
be transcribed into DNA (using an enzyme it
also carries called reverse transcriptase). One of
the mysteries to the medical community is why
this class of virus has evolved to include this
extra step.

After the DNA of the virus has been duplicated
by the host cell, it is reassembled and new virus
particles bud from the surface of the host cell.
This budding can take place slowly, sparing the
host cell; or rapidly, bursting and killing the
host cell.

The course of infection with HIV is not clear-
cut. Clinicians are still arguing about what causes
the eventual collapse of the immune system, re-
sulting in death. What is widely agreed upon,
however, is that there are four main stages of dis-
ease progression. First is the initial innoculum—
when virus is introduced into the body. Second
is the initial transient—a relatively short period
of time when both the T cell population and

virus population are in great flux. This is followed
by the third stage, clinical latency—a period of
time when there are extremely large numbers of
virus and T cells undergoing incredible dynam-
ics, the overall result of which is an appearance
of latency (disease steady state). Finally, there is
AIDS—this is characterized by the T cells drop-
ping to very low numbers (or zero) and the virus
growing without bound, resulting in death. The
transitions between these four stages are not well
understood, and presently there is controversy
concerning whether the virus directly kills all of
the T cells in this final stage or if there is some
other mechanism(s) at work. For a complete
overview of HIV infection, see [5, 6].

Treatment of HIV Infection
Clearly, there is a necessity for treatment of HIV
infection. To this end, there are several drugs
now employed: AZT (Zidovudine) was approved
for treatment of HIV infection in 1987, and three
other drugs—DDC, DDI, and D4T—have since
been approved. These drugs all work as in-
hibitors of reverse transcriptase. The role of
these reverse transcriptase inhibitors is to in-
terfere with the transcription of the RNA to DNA,
thus halting cellular infection and hence viral
spread. Unfortunately, these drugs are not cures
for the infection, but serve only as a maintenance
program to temporarily prevent further progress
of the virus. Despite this drawback, there is
much clinical evidence to support the use of
these chemotherapies in HIV-infected individu-
als. Aside from the possibility of prolonging life
in an HIV-positive individual, it may make them
less infectious to their sexual partners [9], as well
as reduce rates of mother-to-fetus transmission
[19]. Controversy exists among clinicians, how-
ever, as to who should be treated, when they
should be treated, and what treatment scheme
should be used.

There is much available data on AZT treat-
ment [13, 17, 18]. Many laboratories and clinics
keep close accounts of patient treatment courses
with respect to effectiveness and results. These
provide conflicting evidence as to which is bet-
ter: early treatment (defined as CD4+ T cell
counts between 200—500mm−3 of blood) or
treatment at a later stage (below 200mm−3).
“Better” here is based on overall health of patient
(i.e., side effects) and a retention or increase in
the CD4+ T cell counts. Other questions re-
garding chemotherapy are whether the dosage
should be large or small, what should be the du-
ration of treatment, and what periodicity of
doses should be used (whether the drug should
be administered every 4 hours, 8 hours, etc.). All
the questions can be addressed through the use
of a mathematical model.
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Mathematical Approaches to Modeling
HIV Immunology
There are a variety of mathematical approaches
used in modeling an HIV immunology. Tradi-
tionally, statistics served as a major tool and still
plays an important role in understanding disease
dynamics at all levels. Through the recent dis-
covery and use of cellular automata and neural
networks, much can be explored about the im-
mune system. There are some groups working
on stochastic versions of models of HIV infec-
tion; they consider the populations of cells in-
teracting in a discrete probabilistic setting.

The mathematical modeling presented here
will use more of a deterministic approach to aid
in the understanding of the disease. Continuous
dynamical systems, whether ordinary or partial
differential equations, are lending new insights
into HIV infection. Population models are most
commonly used, and, given hypotheses about the
interactions of those populations, models can be
created, analyzed, and refined. For a good in-
troduction to the biological modeling process,
see [15].

To date there are a number of different mod-
els of HIV immunology. Many individuals and
groups all over the world are involved in mod-
eling HIV. Different phenomena are explained by
the different models each present, but none of
the models exhibit all that is observed clinically.
This is partly due to the fact that much about
this disease’s mechanics is still unknown. Once
a model is tested and is believed to behave well
both qualitatively and quantitatively as com-
pared with clinical data, the model can then be
used to test such things as treatment strategies
and the addition of secondary infections such
as tuberculosis. The remainder of this paper
demonstrates this modeling process through an
example.

A Model
To model the interaction of the immune system
with HIV, we start with the the CD4+ T cells. After
a short time period (less than 24 hours) [12], the
viral RNA has been converted to viral DNA (using
viral reverse transcriptase), and then the viral
DNA is incorporated into the host genome. The
model considers both the noninfected (T) and
infected (T i) CD4+ T cells. Since an immune re-
sponse is included in the model (i.e., T cells
killing virus via killing infected T cells), the class
of CD8+ T cells must also be included in the T
population. These cells cannot become infected
with the virus, but do destroy infected T cells,
and hence virus, during the cellular immune re-
sponse. In essence, we are including the T cells
which are HIV-specific in their immune response.
Finally, the population of virus that is free liv-

ing in the blood (V ) is included. We assume the
dynamics of these three populations take place
in a single compartment. This is to insure that
the equations are all scaled appropriately and
there is no flow to or from outside compart-
ments. Here, the compartment is the blood (as
opposed to tissues or organs, etc.). The model
is as follows. 

(1)

dT (t)
dt

= s(t)− µTT (t)

+ r
T (t)V (t)
C + V (t)

− kVT (t)V (t),

(2)

dT i(t)
dt

= kVT (t)V (t)− µTiT i(t)

− r T
i(t)V (t)
C + V (t)

,

(3)

dV (t)
dt

= Nr
T i(t)V (t)
C + V (t)

− kTT (t)V (t)

+
gVV (t)
b + V (t)

.

Initial conditions are T (0) = T0, T i(0) = 0,
V (0) = V0. (We assume the initial innoculum is
free virus and not infected cells; however, the
model is robust in either case.) The model is ex-
plained as follows. The first term of Equation 1
represents the source of new T cells from the thy-
mus (see Table 1 for the form of s(t)). Since it
has been shown that virus can infect thymo-
cytes, we choose a function describing the de-
creasing source as a function of viral load; as-
suming that the uninfected T cell populations
are reduced by half. This is followed by a nat-
ural death term, because cells have a finite life
span, the average of which is 

1
µT

.
The next term

represents the stimulation of T cells to prolif-
erate in the presence of virus; r is the maximal
proliferation rate, and C is the half saturation
constant of the proliferation process. The idea
is as follows. It is clear that both CD8+ and
CD4+ T cells specific to HIV will be directly stim-
ulated; however, we also know that T cells, once
activated, stimulate other CD8+ and CD4+ T
cells (which may or may not be specific to HIV).
We believe this term encompasses these desired
effects. The last term represents the infection of
CD4+ T cells by virus and is determined by the
rate of encounters of T cells with virus; we sup-
pose a constant rate kV . Based on the large num-
bers of cells and virion involved, we can assume
the law of mass action applies here.

Equation 2 describes changes in the infected
population of CD4+ T cells. The first term, a gain
term for T i , carries from the loss term in Equa-
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tion 1. Then, infected cells are lost either by
having finite life span or by being stimulated to
proliferate. They are destroyed during the pro-
liferation process by bursting due to the large
viral load [14].

In Equation 3, both the first and third terms
are the source for the virus population. Virion
are released by the burst of the infected CD4+

T cells (from Equation 2), described by the first
term, in which an average of N particles are re-
leased per infected cell. The third term repre-
sents growth of virus from other infected cells
(such as macrophages and infected thymocytes).
The growth rate of the process is gV, and the half
saturation constant is b. This term also accounts
for natural viral death. The second term is a
loss term by the specific immune response (i.e.,
CD8+ T cells killing virus). This also is a mass
action type term, with a rate kT.

Before numerical results can be explored, es-
timations for the parameter values are necessary.

Parameter Values
Clinical data are becoming more available, mak-
ing it possible to get actual values (or orders of

values) directly for the individual parameters in
the model. By this I mean that it is possible to
calculate the actual rates for the different
processes described above based on data col-
lected from clinical experiments. For example,
it has been shown that infected CD4+ T cells live
less than 1–2 days [10]; therefore, we choose the
rate of loss of infected T cells, µTi, to be values
between .5 and 1.0.

When this type of information is not available,
estimation of the parameters can be determined
from simulations through behavior studies. Bi-
furcation and sensitivity analyses can be car-
ried out for each parameter to get a good un-
derstanding of the different behaviors seen for
variations of these values. For example, the pa-
rameter N in the model (representing the aver-
age number of virus produced by an infected
CD4+ T cell) is not verifiable clinically; however,
since it is a (transcritical) bifurcation parameter,
we know that for small values the infection
would die out and that for large values the in-
fection persists. This may be an indication to clin-
icians that finding a drug which lowers this viral
production may aid in suppressing the disease.

TABLE 1

Variables and Parameters

Dependent Variables Values

T = Uninfected CD4+ T cell population 2000 mm−3

Ti = Infected CD4+ T cell population 0.0

V = Infectious HIV population 1.0 x 10−3mm−3

Parameters and Constants Values

s(t) = source of new CD4+T cells from thymus (.5s +           )

µT = death rate of uninfected CD4+T cell population 0.02 d−1

µTi = death rate of infected CD4+T cell population 0.5 d−1

kV = rate CD4+T cells becomes infected by free virus 2.4 x 10−5 mm3 d−1

kT = rate CD8+T cells kill virus 7.4 x 10−4 mm3 d−1

r = maximal proliferation of the CD4+T cell population 0.01 d−1

N = number of free virus produced by bursting infected cells 1000

C = half saturation constant of the proliferation process 100 mm−3

b = half saturation constant of the external viral source 10 mm−3

gV = growth rate of external viral source other than T cells 2 d−1

amax = maximum age (life span) of infected CD4+T cells 12 d

a1 = [0, a1] is max int. during which rev. transcrp. occurs .25 d−1

γ (t,a) = periodic, of period p, treatment function varies

p = period of dosage in treatment function 0 ≤ p ≤ 1 d

c = total daily drug dosage in chemotherapy varies

k = decay rate of AZT based on half-life of 1 hour 16.66 d−1

5s
1+V (t )
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In general, this process can be helpful to clini-
cians, as a range for possible parameter values
can be suggested. A complete list of parameters
and their estimated values for this model is
given in Table 1. Previous papers which have ex-
amined these estimations are [16, 20].

Numerical simulations can now be carried
out, the output of which is presented in Figure
2. (All numerical simulations were carried out
using Mathematica [21].) We see the model ex-
hibits the three types of qualitative behaviors
seen clinically: (a) an uninfected steady state
where infection is suppressed (which is a locally
stable state); (b) an infected steady state (latency)
where infection is in quasisteady state (which is
a locally stable state); and (c) a progression to
AIDS state where the immune system crashes
(where the virus grows at most linearly, without
bound, and the T cells go to zero).

Testing the Model
Now that we have a model that we believe mim-
ics a clinical picture, we can use the model to in-
corporate treatment strategies. To include AZT
chemotherapy in the model, it is necessary to
mimic the effects of the drug which serves to re-
duce viral infectivity. The parameter kV in the
model is multiplied by a function which is “off”
outside the treatment period and “on” during the
treatment period. When the treatment is “on”,
viral infectivity is reduced, which mimics the
effect of treatment for a given time frame. The
function which achieves this is 

z(t) =


1 outside the treatment period

P (t) percent effectiveness during

AZT treatment

 ,

Figure 2. These are the numerical solutions to Model 1, 1-3. Parameter values used to generate theses figures can
be found in Table 1. Panel A is the infected steady state with gV = 2; if the external source is increased, i.e. gV = 20,
then it pushes the system into the progression to AIDS, Panel B. Panel C represents the entire course of HIV
infection. This occurs when the external growth is variable and changes from gV = 2 to gV = 20 over time. (Notice
the steep crash at day 1500 occurs over a period of a year.)
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where P (t) is a treatment function, 0 < P (t) < 1.
This affects the model as follows:

dT (t)
dt

=s(t)− µTT (t) + r
T (t)V (t)
C + V (t)

− z(t) · kVT (t)V (t),
dT i(t)
dt

=z(t) · kVT (t)V (t)− µTiT i(t)

− r T
i(t)V (t)
C + V (t)

,

dV (t)
dt

= Nr
T i(t)V (t)
C + V (t)

− kTT (t)V (t) +
gVV (t)
c + V (t)

,

where the initial conditions are still
T (0) = T0, T i(0) = 0, V (0) = V0 . Drugs such as
AZT reduce viral activity in a dose-dependent
manner. The efficacy of the chemotherapy may
differ from patient to patient; therefore, P (t)
represents the varying effectiveness of the drug
in halting viral activity in a given patient. P (t) is
not directly correlated to the actual oral dose of
the drug in this approach.

Running simulations, we can test different
treatment initiations to help answer the question
whether earlier treatment (beginning 100 days
after infection) or later (initiated 200 days after
infection) treatment is better (Figure 3). From the
results, it seems that the CD4+ T cell count is
higher overall when treatment is initiated dur-
ing the later stages of infection.

Improvements
Suppose we wish to improve on this original
model because the chemotherapy simulation is
not so mechanistic in nature (for example, it
doesn’t take into account the drug half-life). We
begin by incorporating age structure into the
infected CD4+ T cells (T i) of the first model.

An age structured model, which is mecha-
nistically based on a time scale commensurate
with a drug administration schedule of several
doses per day, will be better suited to the com-
parison of different number of doses per day.
Let a denote the age of cellular infection (i.e.,
time elapsed since the cell became infected with
HIV), and let T i(t, a) be the density of infected
T cells with age of infection a at time t. The total
infected T cell population at time t is∫ amax

0 T i(t, a)da, where amax is the maximum
age of T cells. The system (1)–(3) is modified as
follows: 

(4)

dT (t)
dt

=s(t)− µT (t) + rT (t)
V (t)

C + V (t)
− kVT (t)V (t),

(5) T i(t,0) = kVT (t)V (t),

(6)

∂T i(t, a)
∂t

+
∂T i(t, a)
∂a

=− µTiT i(t, a)

− rT i(t, a)
V (t)

C + V (t)
,

Figure 3. This is Model 1 showing (3A) early continuous treatment at 100 days (T cells ~600 mm-3) for six months,
and (3B) late treatment starting at 200 days (T cells ~400 mm-3) for six months.
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dV (t)
dt

=Nr
V (t)

C + V (t)

∫ amax
0

T i(t, a)da

− kTT (t)V (t) +
gVV (t)
b + V (t)

,(7)

with initial conditions T (0) = T0, V (0) = V0,
T i(0, a) = 0,0 ≤ a ≤ amax .

Equations 4–7 are derived under the same bi-
ological assumptions as described for Equations
1–3. Equation 6 describes the change in T i(t, a)
in time t and cellular infection age a. The bound-
ary condition 5 arises from the input of infected
T cells with infection age 0. When the infected

cells die (from bursting) in 6, the integral of
T i(t, a) over all possible ages of infection arises
as the source of the virus in 7. A mathematical
analysis reveals that the steady states of both
the ODE and ODE/PDE model are equivalent (see
the cited article by Kirschner and Webb). The nu-
merical results are therefore the same (Figure 4).
Note that the age-structured infected T cell pop-
ulation (T i) (Figure 4c) is now presented as a dis-
tribution, but the time edge of the cube
matches the time evolution of the previous
model (Figure 2a).

Figure 4. These are numerical solutions to Model 2, Equ. 4-7. Parameter values used to generate these figures can
be found in Table 1. Panel A is the infected steady state; if the external source is increased, i.e. gV = 20, then it
pushes the system into the progression to AIDS, Panel B. Panel C shows the distribution of infected T cells, T i(t, a).
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Improved Model for Treatment
We use these improvements to study the
chemotherapy. Age structure was introduced to
better facilitate modeling the mechanism by
which AZT serves to interrupt the T cell infec-
tion process. Only T i cells with age less than a1
are affected by the drug (where a1 is the maxi-
mum age at which reverse transcription takes
place). T i cells with age less than a1 revert back
to the uninfected class during the “on” phase of
the treatment.

Treatment will correspond to a loss term
−γ(t, a;p)T i(t, a) added to Equation 6, where
the treatment function γ(t, a;p) is periodic in
time t with period p and depends on the age of
cellular infection a. The revised equations are 

dT
dt

=s(t)− µT (t) + rT (t)
V (t)

C + V (t)
− kVT (t)V (t)

+
∫ a1

0
γ(t, a;p)T i(t, a)da,

T i(t,0) = kVT (t)V (t),

∂T i

∂t
+
∂T i

∂a
=− µTiT i(t, a)− rT i(t, a)

V (t)
C + V (t)

− γ(t, a;p)T i(t, a),

dV
dt

=Nr
V (t)

C + V (t)

∫ amax
a1

T i(t, a)da

− kTT (t)V (t) +
gVV (t)
b + V (t)

,

with initial conditions T (0) = T0, V (0) = V0,
T i(0, a) = T i0(a).

Although we do not directly model the
pharmokinetics of AZT chemotherapy, we do
take into account some key aspects of the treat-
ment. For example, since AZT has a half-life of
one hour, we assume that γ(t, a;p) is an expo-
nential decaying function in t during each pe-
riod, with decay rate k = 16.66, where time units
are in days. Assume that the chemotherapy has
effect only during the first a1 hours after cel-
lular infection (for AZT a1 = 6 hours [10]), and
that the period p has range 0 < p ≤ 1(=day).
The intensity of chemotherapy has value c at the
beginning of each period. This value has no di-
rect correlation with actual oral dosages, but
serves to determine an appropriate range for that
parameter. The average value of the treatment
for any period is: 

1
p

∫ p
0
ce−ktdt =

c(1− e−kp)
kp

.

Therefore, to remove the period dependence
from the average value of treatment, scale c by:

(1− e−kp)
p

.

This correlates to the desired total daily dose
being divided by the number of doses given per
day. The treatment function γ(t, a;p) is then: 

Figure 5. These are the different treatment functions, γ(t, a;p) to
be used in the simulations of Figures 6 and 7. Panel A represents
treatment every four hours, which is the present recommended
schedule. Panel B represents treatment every twelve hours, and
Panel C represents treatment every eight hours.
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

cp
(1−e−kp)e

−kt if 0 ≤ a ≤ a1

and 0 ≤ t ≤ p
cp

(1−e−kp)e
−k(t−p) if 0 ≤ a ≤ a1

and p ≤ t ≤ 2p
...

0 if a > a1


.

Figure 5 gives examples of three treatment func-
tions corresponding to treatment which is given
six times a day, three times a day, and twice a
day. The amount of treatment given over the day
is equal for all three cases.

Now, we can not only simulate treatment to
study early versus late timing questions, we can
study periodicity of treatment as well. Figure 6
shows three different daily treatment periods for

an early (at 100 days) treatment regime, and Fig-
ure 7 shows three different daily treatment pe-
riods for a late (at 300 days) treatment regime.

Examining the results of the second model,
two things are evident. First, we still see that the
overall T cell counts, once again, are better for
later treatment. Second, it is clear that the period
of chemotherapy administration does not effect
the overall outcome of treatment. It should be
noted here that in the dynamics of this and other
diseases, such as cancer, disease progression
states are not states of stabilization, but states
where there is a rapid physical collapse of the sys-
tem. In these models, the infected steady state
(latency period) is a state of stabilization; how-
ever, the progression to AIDS (collapse of the
CD4+ T cell population) is not, since the viral pop-
ulation grows without bound. The fact that AZT

Figure 6. These are the numerical solutions to Model 2 including chemotherapy starting at an early stage of the
disease progression (100 days) and administered for 150 days. All treatment was carried out during the
progression to AIDS, i.e., gV = 20 (cross reference with Figure 4B). Hash marks indicate treatment initiation and
cessation. Panel A represents treatment once a day (cross reference with Figure 3), Panel B represents treatment
every twelve hours (cross reference with Figure 5B), and Panel C is treatment every four hours (cross reference
with Figure 5A).
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chemotherapy serves to perturb the collapsing
system back into a stable state (i.e., latency) was
a central thesis of this work. It should be noted
that the main obstacle in HIV drug treatment is
resistance. We are presently exploring this phe-
nomenon.

Some Discussion
A key point to be stressed is that this is by no
means a completed work. This project alone
spawned three different new projects, the efforts
of which are not only to improve the models, but
also to study these systems as a purely math-
ematical exercise (i.e., well posedness, existence,
optimal control, etc.).

Through this simple example, I hope it is also
clear that there can and should be a role for
mathematics in medicine. The biggest obstacles

facing collaboration is the inability of clinicians
to understand advanced mathematics, and, on
the mathematician’s part, the lack of knowledge
of the underlying medical problem. It can take
years to come to terms with all the medical jar-
gon, especially in a continually evolving area. This
can be overcome through serious cross-train-
ing of interdisciplinary scientists whose goal
will be doing good science—which in turn would
advance knowledge in both disciplines.
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