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Replicating oncolytic viruses are able to infect and lyse cancer cells and spread through the tumor,

while leaving normal cells largely unharmed. This makes them potentially useful in cancer therapy, and

a variety of viruses have shown promising results in clinical trials. Nevertheless, consistent success

remains elusive and the correlates of success have been the subject of investigation, both from an

experimental and a mathematical point of view. Mathematical modeling of oncolytic virus therapy is

often limited by the fact that the predicted dynamics depend strongly on particular mathematical terms

in the model, the nature of which remains uncertain. We aim to address this issue in the context of ODE

modeling, by formulating a general computational framework that is independent of particular

mathematical expressions. By analyzing this framework, we find some new insights into the conditions

for successful virus therapy. We find that depending on our assumptions about the virus spread, there

can be two distinct types of dynamics. In models of the first type (the ‘‘fast spread’’ models), we predict

that the viruses can eliminate the tumor if the viral replication rate is sufficiently high. The second type

of models is characterized by a suboptimal spread (the ‘‘slow spread’’ models). For such models, the

simulated treatment may fail, even for very high viral replication rates. Our methodology can be used to

study the dynamics of many biological systems, and thus has implications beyond the study of virus

therapy of cancers.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Cancer therapy by means of oncolytic viruses has attracted
attention of clinicians, wet lab oncologists and mathematical
modelers (Bell, 2007; Bell et al., 2003; Crompton and Kirn, 2007;
Davis and Fang, 2005; Kaplan, 2005; Kelly and Russell, 2007; Kirn
and McCormick, 1996; McCormick, 2003, 2005; Novozhilov et al.,
2006; O’Shea, 2005; Parato et al., 2005; Post et al., 2005; Roberts
et al., 2006; Vaha-Koskela et al., 2007; Wodarz, 2001, 2003). The
idea behind this treatment is to infect a tumor with engineered
viruses which specifically infect and kill tumor cells, and have the
potential to spread throughout the tumor. Healthy cells are
largely spared. The aim is that the virus drives the tumor extinct
and then goes extinct itself. Examples of such viruses include
adenoviruses (such as ONYX-015), vesicular stomatitis virus
(VSV), Newcastle disease virus (NDV), and several others.

While some encouraging results have been published in
clinical trials (Aghi and Martuza, 2005; Davis and Fang, 2005;
Lorence et al., 2003; McCormick, 2005), systematic and reliable
ll rights reserved.

a).
tumor eradication by oncolytic viruses has not been achieved.
Computational methods, including mathematical modeling, have
been suggested as one of the tools to untangle the problem and
achieve a better understanding of cancer-virus dynamics, with a
goal of designing better treatment strategies (Bajzer et al., 2008;
Dingli et al., 2006; Friedman et al., 2006; Novozhilov et al., 2006;
Wein et al., 2003; Wodarz, 2001; Wodarz and Komarova, 2005).
Such studies have lead to some useful insights, but a common
feature of these approaches is that they contain arbitrary
mathematical expressions to describe biological processes of
uncertain nature. An important example are ODE models of virus
dynamics, and in particular, the expressions that are used to
describe the infection of cells. These are typically mass action
terms in which the viral infectivity is simply proportional to the
number of uninfected and infected cells. This tends to lead to
‘‘boom and bust’’ dynamics in which unrealistically strong
oscillations are observed in the population of viruses and cancer
cells. The infection term can be altered in many ways to include
saturation effects which are more realistic. However, the resulting
dynamics strongly depend on the exact mathematical expressions
that are used to describe this. These expressions in turn are
arbitrary and their biologically correct form is not known.

In this paper, we construct a mathematical framework that is
based on ordinary differential equations and that aims to reduce

www.elsevier.com/locate/yjtbi
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the arbitrariness of mathematical choices. We adopt a
modeling approach whereby we list all the relevant biological
facts that are known about various terms and try to perform
a general analysis of the resulting system. In this way, all
the results are a consequence of the explicitly stated biological
assumptions, and not artifacts of arbitrary mathematical
formulations. This methodology continues a long tradition of
mathematical modeling in biology which goes back to Gauss
and Kolmogorov, see e.g. (Sigmund, 2007). Our generalized
analysis will provide a framework upon which to base model
selection and validation procedures when applied to specific
experimental data.

Apart from this, our analysis also provides new insights into
the correlates of successful oncolytic virus therapy. We find that
the behavior can be classified into two general groups, depending
on the general characteristics of the infection term used. In one
scenario, which we call the ‘‘fast-spread virus model’’, most
infected cells will be able to contribute to virus spread. In this
setting, there exists a clear viral replication rate threshold beyond
which the virus is predicted to control or eliminate the cancer.
In the second scenario, called the ‘‘slow-spread model’’, it is
assumed that only some of the infected cells can contribute to
virus spread, and the fraction of cells contributing to virus spread
declines as the number of infected cells increases. In this case,
there is no clear viral replication rate threshold beyond which
virus-mediated tumor control or elimination is possible. Uncon-
trolled cancer growth always remains a possible outcome,
especially if the initial number of cancer cells upon start of
treatment is relatively high.

The rest of the paper is organized as follows. In Section 2 we
describe the model construction. In Section 3 we define the two
models of viral spread. In Section 4 we present the most general
analysis of the system and explain how treatment outcomes
depend on the viral replication rate for different types of viral
growth. Section 5 contains case studies of fast and slow types of
viral propagation. Section 6 is reserved for discussion and
conclusions.
2. Model construction

Since arguably no fundamental laws can assist us in formulat-
ing a mathematical description of a biological cancer-virus
system, empirical modeling has been used to gain insights about
both the long-term treatment outcome and temporal dynamics of
the treatment process. And as always with such studies, the major
drawback is a certain arbitrariness of mathematical choices made
by authors when designing their studies. While ‘‘simplicity’’ is
often cited as a factor dictating the form of the empirical relations,
a particular choice must always be checked for robustness. The
outcome of a model should be compared with the outcomes of
alternative models; it can be considered robust if it remains
unchanged while different modeling choices are used which are
still compatible with known biological constraints. If the out-
comes change depending on the particular choice of (unknown)
terms in the mathematical model, this may mean that the result is
an artifact of the particular mathematical system used, and its
meaning should be questioned. In this paper we aim to
demonstrate how various choices of a modeler can affect model
results.

We will restrict ourselves to the methodology of ordinary
differential equations. This means that we will not be explicitly
including spatial and non-local effects in our description;
also, we will ignore all stochastic effects. Despite these well-
known shortcomings, we believe that it is important to under-
stand the consequences of ODE modeling before extending the
framework to spatial and stochastic systems. Modeling features
that are not robust under small changes of assumptions in the
ODE systems are likely to remain non-robust in more complicated
scenarios.

The basis of our model for the cancer-virus system is the
interaction between the population of infected and uninfected
cells (Nowak and May, 2000; Wodarz and Komarova, 2005). Two
of the uncertain components of the model are (i) the cancer
growth term and (ii) the infection term. We leave these as general
functions of the two components of the population and explore
the consequences of various biological assumptions. We will
consider the dynamics of the cancer-virus system by looking at
the numbers of infected (y) and uninfected (x) cells. We will adopt
the following very general predator–prey type system:

_x ¼ xFðx; yÞ�byGðx; yÞ; ð1Þ

_y ¼ byGðx; yÞ�ay: ð2Þ

Here, the function F reflects cancer growth and death processes, G

is the rate of infection. The coefficient b in front of the infection
term represents the viral replication rate. The virus-infected
cells death rate is assumed constant and denoted by a. The
particular form of the terms F and G is unknown, but there are
several biologically motivated requirements that these function
must satisfy. These requirements are listed below. One of the
goals of the paper is to understand the consequences of these
assumptions and investigate what kinds of dynamics they are
compatible with.

Ultimately, we are interested in the conditions under which
the virus can drive the tumor cell population extinct. Because we
are dealing with ODEs describing population averages, extinction
as such cannot occur in the equations. However, if the number of
tumor cells drops below a threshold level (e.g. less than one cell
remains on average), then we can consider treatment a success.

We do not include a separate equation for the free virus in
the system. The turnover of free virus is fast compared to that
of infected cells, allowing us to make a quasi-steady-state
assumption. Also, we do not consider the effects of the immune
system. While immunity is likely to play a role in the dynamics of
oncolytic viruses in vivo, inclusion of immunity adds another
layer of complexity and introduces a variety of highly uncertain
biological assumptions. Unless we have gained a sound under-
standing of the dynamics in the simpler setting, it will be
impossible to assess the impact of immune responses in a realistic
way. The models explored here can nevertheless be applied to
experimental data that document oncolytic virus dynamics
in vitro or in simple in vivo settings that do not involve immune
responses, e.g. Harrison et al. (2001).
2.1. Cancer growth term

The function F, which we call the growth rate, reflects both the
rates of cancer cell division and death. For example, if both
divisions and death events happen exponentially, that is,
proportionally to the total number of cells, then F is the difference
between the constant division and death rates. We assume that
the net cancer growth term (xFðx; yÞ) satisfies the following
biological requirements:
1.
 The function F is non-negative and continuous for all x; yZ0.

2.
 A symmetry requirement: Fðx; yÞ ¼ FðxþyÞ: the growth is

controlled by infected and uninfected cells equally.

3.
 At the beginning, the growth is exponential: limz-0 FðzÞ ¼ 1.

Note that this requirement fixes the scaling of the time-
variable. In general, if the initial growth-rate limz-0 FðzÞ ¼ r,



ARTICLE IN PRESS

Table 1
Some examples of virus spread terms.
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we scale time t0 ¼ tr, and also use a0 ¼ a=r and b0 ¼ b=r.
The primes are dropped for convenience.
4.

Gðx; yÞ HxðyÞ HyðxÞ Fast or slow?

x=ðxþyþeÞ y x Fast
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xþyþep
ð
ffiffiffi
x
p
þ

ffiffiffi
y
p
þ

ffiffiffiffiffiep Þ

y x Fast
The growth slows down as the number of cells increases:
dFðzÞ=dzr0.

Some examples are:

1 2

x

ðxþe1Þðyþe2Þ

Const Const Slow

ffiffiffip ffiffiffip
�

x

Exponential growth: F ¼ 1,

ffiffiffiffiffip ffiffiffip ffiffiffip ffiffiffiffiffip y x Slow
�
ð xyþe1Þð xþ yþ e2Þ

xffiffiffi
x
p
ðyþcÞþxþe

y
ffiffiffi
x
p

Slow
Surface growth in 3D: F ¼ ðZ=ðZþxþyÞÞ1=3 and in 2D:
F ¼ ðZ=ðZþxþyÞÞ1=2. These expressions are derived as follows.
We assume that the increment in the number of uninfected
cells is proportional to the number of uninfected cells in the
tumor surface. This in turn is proportional to x=ðxþyÞ (the total
fraction of uninfected cells) times ðxþyÞ2=3 (the surface area of
a spherical the tumor in 3D, similarly in 2D). We obtain the
expression x=ðxþyÞ1=3, which we replace with xðZ=ðxþyþZÞÞ1=3

in order to allow for ‘‘volume growth’’ on scales xþy5Z.

�
 Linear growth: F ¼ Z=ðZþxþyÞ.

�
 Logistic growth: F ¼ 1�ðxþyÞ=W .

�
 Gompertzian growth: F ¼ logðWþZÞ=ðxþyþZÞðlogðWþZÞ=ZÞ�1.

Different aspects of modeling tumor growth kinetics are discussed
in Adam and Bellomo (1997).

In all cases except for the exponential growth, there is a
parameter (denoted by Z or W in the expressions above) which
defines at what spatial scale the growth slows down and departs
from exponential. The growth is unlimited unless there is a point
z� ¼ x�þy� such that Fðz�Þ ¼ 0. In the examples above, logistic
growth and Gompertzian growths are bounded: we have
x�þy� ¼W . We point out that the particular growth terms
presented above are listed for the purposes of illustration, and
our approach is not restricted to these functional forms. On the
contrary, in the sections below we will develop a very general
theory where the results will be based on the biological
assumptions underlying the model rather than particular choices
of mathematical expressions.

2.2. Virus spread term

We assume that the virus spread term (byGðx; yÞ) satisfies the
following biological requirements:
1.
 The function G is non-negative and continuous for all x; yZ0.

2.
 For small values of x and y, the growth should be exponential

to reflect perfect mixing:

lim
x-0

lim
y-0

Gðx; yÞ=x¼ lim
y-0

lim
x-0

Gðx; yÞ=x¼ 1:

The growth term must monotonically increase with x and y:
3.
@ðyGðx; yÞÞ

@x
Z0;

@ðyGðx; yÞÞ

@y
Z0:

The growth rate, Gðx; yÞ=x, must slow down with x and y:
4.
@ðGðx; yÞ=xÞ

@x
r0;

@ðGðx; yÞ=xÞ

@y
r0:

The growth has to be saturated in both x and y, such that
5.
lim
x-1

yGðx; yÞ ¼HxðyÞ; 0oHxðyÞo1;

where HxðyÞ is a function of y independent of x. Similarly, with
y.
6.
 For large values of x, the growth term cannot be positive in the
limit of small y, that is,

lim
y-0

HxðyÞ ¼ 0:

Similarly, with x.
7.
 For large values of x and y the spread cannot stop completely:

lim
x-1

lim
y-1

yGðx; yÞ ¼ lim
y-1

lim
x-1

yGðx; yÞ40:

Note that this expression could be infinite.
Table 1 presents examples of virus spread terms allowed by
above requirements. The meaning of the ‘‘fast’’ and ‘‘slow’’ is
explained later in the paper. The different virus spread terms are
based in part on the work done in the context of epidemio-
logical models of infectious diseases, reviewed in McCallum et al.
(2001). Note that the most frequently used infection term,
yGðx; yÞ ¼ xy, does not satisfy assumption 5 above. This term
corresponds to complete mass-action, and can be viewed as
lime-0 ð1þeÞxy=ðxþyþeÞ, see the first term in Table 1.
2.3. The scales of cancer growth and virus spread

Unless cells divide exponentially (F ¼ 1), there is at least one
spacial scale defined by the function F which is related to the
colony size at which the growth slows down and deviates from
exponential. Let us denote the corresponding quantity st , where
the subscript t stands for ‘‘tumor’’. The quantity st can be obtained
from each particular function F. For example, in the case of linear
growth, st � Z. The units of the quantity st are the same as the
units of x, which can be volume, mass of the number of cells.
The (linear) spacial scale is thus related to s1=3

t . Note that in
the general case, the function F could have many parameters
corresponding to different scales on which the growth law
changes, but in many intuitive cases we envisage a growth which
starts off as exponential and then deviates from it. Therefore, we
can think of the quantity st as the colony size at which cancer
growth first starts to slow down.

In a similar way we can define the value sv, where v stands for
‘‘virus’’. This is defined as a characteristic size at which the
infection spread become slower than exponential. To clarify this
in the context of our system, let us consider the equation
_y ¼ bxy�ay and assume that the pool of susceptible cells is large
and constant. We can see that in this case the number of infected
cells grows exponentially as long as bx4a. This may be a good
approximation if the system size is small, but for larger values of x

and y this cannot hold anymore. The scale at which the growth of
infected cells deviates from exponential is sv.

In what follows we will present a rigorous analysis of system
behavior for different types of functions G and F. An intuitive
understanding of these results can often be achieved by thinking
about the two characteristic scales, st and sv and how they trade
off and influence the dynamics of disease spread and treatment.
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3. Equilibrium solutions and two classes of virus spread

The fixed points of system (1)–(2) are given by ð0;0Þ and all the
solutions to the equations

xFðxþyÞ ¼ ay; ð3Þ

Gðx; yÞ ¼
a

b
: ð4Þ

The trivial point ð0;0Þ has eigenvalues Fð0Þ and �a and is thus a
saddle. The number of solutions to Eqs. (3)–(4) depends on the
particular shapes of the functions F and G. In order to find the
non-trivial equilibria, we solve Eq. (3) to find yðxÞ, and then
substitute it into Eq. (4). The equilibria are thus defined by the
roots of equation

Gðx; yðxÞÞ ¼ a=b: ð5Þ

The behavior of the function GðxÞ is rigorously studied in
Appendix A. In particular, we show that it is zero for x¼ 0, and
that as x-1, the function GðxÞ approaches a finite limiting value,
which can be zero or non-zero.

Let us suppose that F ¼ 1, that is, the cancer cells grow
exponentially. Solving Eq. (3), we obtain

yðxÞ ¼ x=a� yexpðxÞ;

the above expression defines the function yexpðxÞ. Further we
introduce the notation

GexpðxÞ ¼ Gðx; yexpðxÞÞ:

Depending on the behavior of the function GexpðxÞ, we will
separate all functions G into two classes in the following way. If

lim
x-1

GexpðxÞ ¼ 0

then we will regard the virus spread to be slow. If

lim
x-1

GexpðxÞ ¼ G1exp40;

with G1expo1, we will regard this as fast spread. Examples of fast
and slow virus spread terms are given in Table 1.1 Note that we
used the exponential cancer growth law, F ¼ 1, to define the two
classes of G. It turns out that the definitions of slow and fast
spread defined above are useful when studying any other cancer
growth models. In the next sections we explore the mathematical
consequences of the virus term being fast or slow, and show how
changes in the cancer growth term affect the dynamics.

3.1. Fast virus spread

Fig. 1 presents a graphical way of solving Eq. (5) by plotting the
left hand side and the (constant) right hand side as functions of x

for different values of the parameter b. The number of
intersections of GexpðxÞ with the constant function b=a equals
the number of roots in Eq. (5).

In the case of fast virus spread, the function GexpðxÞ is either a
monotonically increasing function (Fig. 1(a)), or it can attain one
or more local extrema before converging to its non-zero
horizontal asymptote, G1exp, Fig. 1(b). In all cases, low values of b
correspond to zero roots in Eq. (4), which means that the cancer
growth will continue indefinitely. As b crosses a critical value,
which we call bc , one or more roots appear in Eq. (4), which
signals a possibility of treatment success. The threshold values of
b are shown on diagrams below each graph in Fig. 1.
1 Note that the mass-action virus spread term, which corresponds to

Gðx; yÞ ¼ x, can be classified as ‘‘super-fast’’, because in this case GexpðxÞ diverges

as x-1.
For a monotonically increasing Gexp (Fig. 1(a)), as b crosses a
critical value defined by bc ¼ a=G1exp, exactly one root appears in
Eq. (4). The value of x at this root drops as b increases (this is due
to the convergence of Gexp to an asymptote, G1exp). For large values
of b, the value of x at the intersection tends to zero.

If the function Gexp attains one or more local extrema
(Fig. 1(b)), we will refer to the lowest local minimum of the
function GexpðxÞ as cmin, and to its highest local maximum as cmax.
In this case, an initial increase of b above bc ¼ a=cmax results in the
appearance of two roots. Additional local extrema will result in
appearance and disappearance of pairs of roots. However, as b
increases through a second threshold, only one (the lowest) root
remains. This second threshold is given by a=c2, where c2 is the
lower of the values fG1exp; cming.

In all cases, for sufficiently large values of b, there will be only
one root in Eq. (4). Introducing other cancer growth laws can
increase the limiting value of G thus decreasing the value of bc . In
the case of a monotonically increasing Gexp, there will be no
qualitative change. If Gexp is one- or multiple-humped, the
hump(s) may disappear. Whether this qualitative change happens
depends on the relative size of the two spacial scales involved.
The first scale is defined by the location of the maxima of Gexp and
is related to the virus spread scale, sv. The second scale is given by
the size, st , at which cancer growth law starts to deviate from
exponential. Once st � sv (or it is smaller), the limiting value of G

becomes sufficiently large such that the ‘‘hump’’ disappears.
Fig. 2 illustrates the case where the function Gexp is

monotonically increasing. We use a particular law of virus
spread coupled with three different laws of cancer growth:
exponential, surface growth and linear growth, see the three solid
lines in the figure. In all cases, the function is monotonically
growing with a horizontal asymptote. The slower the cancer
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growth, the higher is the asymptote and the lower is the threshold
value, bc , which corresponds to the possibility of treatment
success.

It is useful to investigate the value of x at the equilibrium as a
function of b, for different values of st . Suppose that the graph of
Gðx; x=aÞ is a monotonically growing function of x which
approaches a limiting value, G1exp. Suppose that the cancer growth
slows down around the scales near st . So near x� st , the function
Gðx; yðxÞÞ deviates from the horizontal line G1exp, and starts growing
toward a different, and higher horizontal asymptote, which we
will call G14G1exp, see Fig. 3 for a particular example. The phase
diagram as b increases can be seen as follows: for boa=G1, there
are no roots. As b crosses the first threshold, a=G1, one root
appears. The value of x at this equilibrium decays rapidly from
infinity to values around st , as b grows (because of the fact that G1

is a horizontal asymptote). Then as b grows through its second
threshold, a=G1exp, the value of x at equilibrium drops from st to
values of order 1. The second transition is sharp if the following is
satisfied: st bx1, where x1 is the value of x such that
jGðx1; yðx1ÞÞ�G1expj ¼ jG1�G1expj. In other words, x1 is the value of x

where the function Gðx; yðxÞÞ comes near the horizontal line
defined by G1exp (‘‘near’’ means that it is at least as close to G1exp, as
G1exp is to G1). If st bx1, then the function G has a significant
interval in x where it approaches its horizontal asymptote, G1exp,
before it deviates from it to start growing toward G1. This
guarantees a threshold effect.

We conclude that for all cancer growth laws and for all
functions G corresponding to fast virus spread, increasing b
beyond a threshold leads to the existence of only one equilibrium,
whose value correlates negatively with the infectivity, b. For large
enough st , there is a ‘‘threshold’’ effect, such that the size at
equilibrium decreases very sharply as b approaches a defined
value. In biological terms, this class of models is always
characterized by a viral replication rate threshold beyond which
oncolytic virus therapy results in the elimination of the cancer.
3.2. Slow virus spread

In this case, the function GexpðxÞ is a one- or a multiple-humped
function, which for large x decreases to zero (Fig. 1(c) and (d)). We
refer to the global maximum of the function GexpðxÞ as cmax, and to
the lowest local minimum (if it exists) as cmin.

In the case of an exponential growth, the bifurcation diagram
looks as follows. As before, small values of b correspond to no
equilibria (zero roots in Eq. (4)). As we increase b, a pair of roots
appears after the threshold given by bc ¼ a=cmax. As b increases
further, other roots may appear and disappear in pairs, see
Fig. 1(d). Since the function Gexp has zero as its horizontal
asymptote, there will be two equilibria for all values of b larger
than a threshold. This threshold is given by a=cmin, if GexpðxÞ

possesses a local minimum; it is equal to bc otherwise. Two roots
for large values of b is a universal feature of the systems with a
slow virus spread term.

Let us next consider how non-exponential laws of cancer
growth modify this picture. In the case of a linear growth, let us
call the corresponding solution yðxÞ of Eq. (3), yðxÞ � ylinðxÞ, and
also GlinðxÞ � Gðx; ylinÞ. The function ylinðxÞ converges to a non-zero
constant, c1, for large x, and we have limx-1 GlinðxÞ ¼

limx-1 Gðx; c1Þ ¼ Gxðc1Þ ¼ c2o1, which is a non-zero constant.
Depending on the value of st , Glin can take different shapes. For
example, it can be a one- or a multiple-humped function. If st is
similar or smaller than the location of the highest local maximum
of Gexp, it will become a monotonically increasing function of x. In
either of these cases, there exists a finite value of b given by a=c2

such that for all values of b larger than this value, there is only one
root in Eq. (4).

The following approximate estimate takes place. Let us
suppose that the function GexpðxÞ has one local maximum. The
position of the maximum is defined by the only spatial scale
present in this case, which is sv, that is, the scale on which the
virus spread slows down. Therefore, roughly for st � sv, treatment
becomes possible. In other words, the cancer must slow down on
spatial scales comparable or lower than the scale of virus spread
in order to yield successful treatment.

By changing the function F, we make the cancer growth slower
than exponential. In some cases (e.g. the case of linear growth
described above), this will lead to the horizontal asymptote of
Gðx; yðxÞÞ becoming non-zero. In general whether this happens
depends on the functional forms of both G and F. For growths
faster than linear but slower than exponential, we have y-1 as x

grows, but y¼ oðxÞ, i.e. it grows slower than x. In some cases the
function G will retain a zero asymptote (e.g. in the case where
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G¼ x=ðxþ1Þ=ðyþ1Þ and a surface growth law for F). In other cases
it will acquire a non-zero limit (e.g. with G¼ x=ðxþ1þ

ffiffiffi
x
p
ðyþ1ÞÞ

and a surface growth law for F).
Two particular cases are illustrated in Fig. 4(a) and (b), solid

lines. We can see that in (a), where we took G¼ a=ðxþ1Þ=ðyþ1Þ,
both the exponential and surface cancer growth laws lead to a
one-humped function G with a zero asymptote, which means that
no matter how high b is, there are two roots in the system which
corresponds to the existence of a saddle point and a possibility
for the system to escape to infinity. A linear cancer growth leads
to a one-humped function with a non-zero asymptote for larger
value of st , and to a monotonically increasing function for smaller
st , such that for b high enough, only one root exists which
corresponds to cancer control.

Fig. 4(b) presents a different virus spread term, G¼ x=ðxþ1þffiffiffi
x
p
ðyþ1ÞÞ. We can see that for the surface growth, the particular

function G presented in Fig. 4(b) acquires a non-zero limit. For this
system, the growth of virus is slow (Gexp tends to zero), but if
surface cancer growth is implemented, this results in a non-zero
asymptote. In this case we can say that the surface cancer growth
is sufficiently slow to warrant successful treatment given the
particular mode of viral spread.

3.3. Bounded tumor growth

In all the considerations above we performed our analysis
under the assumption of an unbounded cancer growth. Next, we
consider a growth term which becomes zero in a finite time.

We assume that the growth starts off exponential (Fð0Þ ¼ 1)
and at some size, st , it slows down (we do not exclude the
possibility that st � 1, that is, the growth becomes slower than
exponential right away). Then there exists another characteristic
size, Wbst such that the growth slows down further and stops. In
particular, we define W such that FðWÞ ¼ 0. Note that if st �W

then there is no need to introduce the two scales, st and W.
Therefore, the assumption st 5W must hold.

Now, we can see that the analysis above holds on the scales
intermediate between st and W, such that st 5x5W . In Figs. 2
and 4, the function G in the case of growth limited by a size W is
plotted with dashed lines. For values x5W , the shape of the curve
Gðx; yðxÞÞ is similar to that obtained for the corresponding
unlimited growth. As x grows far beyond st and approaches W,
the function G approaches GðW ;0Þ. If, for the unbounded growth,
the limiting value of the G function is c2, we have in general
GðW ;0ÞZc2. In other words, the curve G takes an upward turn in
the vicinity of x¼W . This means that Eq. (4) acquires an
additional root corresponding to the cancer growing to its
carrying capacity, W. In the systems with unrestricted growth
this was equivalent to an unlimited growth of the cell population.

It is useful to note the following: in systems with a limited size,
the function Gðx; yðxÞÞ is always bounded away from zero.
Therefore, strictly speaking, we can always find a threshold value
bt such that for b4bt , only one root is present. However, if
Wbsv, such values of b are very large compared to bc , and in
most cases are probably not achievable.
4. Stability properties of the equilibria

Let us suppose that ðx0; y0Þ with x0Z0 and y0Z0 is a solution
to system (3)–(4), and consider its stability. The Jacobian of the
system can be written as a 2� 2 matrix,

J¼ fmijg ¼
Fþx0F 0�by0Gx x0F 0�bðGþy0GyÞ

by0Gx by0Gy

 !
;

where the functions F and G and their derivatives are evaluated at
the point ðx0; y0Þ: Gx ¼ @G=@xjx ¼ x0 ;y ¼ y0

, and similarly with Gy and
F 0. The equilibrium is stable if the following two conditions hold:

m11þm22o0; ð6Þ

m11m22�m21m12Z0; ð7Þ

where mij are components of the Jacobian matrix.

4.1. Saddle points

Condition (7) is equivalent to the positivity of the derivative of
G in the direction defined by the implicit relation ya¼ xFðxþyÞ,
Eq. (3). The latter expression is one of the two equations that
define the equilibria. Differentiating it, we get: ady¼ FdxþxF 0

ðdxþdyÞ. The directional derivative is equal to ðGxdxþGydyÞ

¼ ½Gxða�F 0x0ÞþGyðFþx0F 0Þ�=ða�F 0x0Þ. The denominator is positive,
so this expression has the same sign as the left hand side of
condition (7).

The equilibria are defined by the roots of Eq. (5). From Eq. (3)
we can see that yð0Þ ¼ 0. We know from assumption (2) on the
function G that Gð0;0Þ ¼ 0. Therefore, all the odd roots of Eq. (5)
will correspond to a positive, and the even ones to a negative
slope of the left hand side of Eq. (5).

This means that all even equilibria are saddles. To prove this
we note that in such cases, the directional derivative is negative,
condition (7) is violated, and therefore there are two real
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eigenvalues of opposite signs. On the other hand, an odd root can
be either a sink, a source or a spiral (stable or unstable). This is
because for such a root, condition (7) is always satisfied, so that
we could either have complex eigenvalues, or real roots of the
same sign (positive or negative).

In the presence of a saddle, an infinite outcome (corresponding
to an unchecked cancer growth) is possible. For large values of x,
we have

_x ¼ xF1�byG1ðyÞ; ð8Þ

_y ¼ yðbG1ðyÞ�aÞ; ð9Þ

where limx-1 Gðx; yÞ ¼G1ðyÞ and limx-1 Fðx; yÞ ¼ F1. The growth
of y becomes negative as y increases if limy-1 G1ðyÞ ¼ 0, which
suggests that y settles to a finite value which make the right hand
side of Eq. (9) zero, such that the outcome ð1; constÞ is observed. If
limy-1 G1ðyÞ ¼ const40, then for large enough values of b we
can have an outcome of the form ð1;1Þ.
4.2. Properties of the internal equilibrium

Let us first show that for large values of b, there will be an
equilibrium, ðx0; y0Þ, such that limb-1 x0 ¼ 0 and limb-1 y0 ¼ 0.
We call this equilibrium the ‘‘internal equilibrium’’. Its existence
follows from Eq. (5) and the properties of the function G. We
know that yð0Þ ¼ 0, and also that Gð0;0Þ ¼ 0. It is also clear that
there is an interval of x, ½0;x�, where G is a growing function.
Therefore, by continuity, for all bZa=Gðx; yðxÞÞ, there will be a
solution of Eq. (5). From monotonicity of the function G, the value
of x at the intersection with a=b decays with b. From Eq. (3) it
follows that there is an interval of x, ½0; x1�, where y is a growing
function of x. Therefore, we conclude that for large enough b,
there is an equilibrium, ðx0; y0Þ, whose values x0 and y0 decay with
b and approach 0 in the limit b-1.

Let us evaluate the left hand sides of inequality (6) for small
values of x0 and y0. First, we approximate the curve yðxÞ by its
Taylor series for small values of x0:

y0 ¼ Fx0=aþðaþFÞF 0ðx0=aÞ2þðaþFÞððF 0Þ2þ1=2ðaþFÞF
00

Þðx0=aÞ3

þO½ðx0=aÞ4�; ð10Þ

where the function F and its derivatives are evaluated at 0. This
expression follows from expanding both sides of Eq. (3) in Taylor
series in terms of x0 and y0, solving for y0 and using a Taylor
expansion of this expression. Next, we express b from Eq. (4):
b¼ a=Gðx0; y0Þ. Now, let us multiply the left hand side of
inequality (6) by Gðx0; y0Þ, and use expression (10). Expanding in
terms of small x0, we obtain:

Gðx0; y0Þðm11þm22Þ ¼ ðF
0GxþGxy�Gxx=2Þx2

0

þ
1

a

�
ðaþ1ÞF

00

Gxþðaþ2ÞF 0GxyþGxyy

þ
1

2
ðða�1ÞGxxy�F 0GxxÞ�

1

3
aGxxx

�
x3

0þOð½x0�
4Þ:

ð11Þ

Here the functions F and G and their derivatives2 are evaluated at
zero. To derive the above expression we also used the fact that the
function G and its y-derivatives are equal to zero if x¼ 0, and
Fð0Þ ¼ 1.
2 Here we assume that the functions F and G are differentiable at zero.

Non-differentiable functions are handled similarly by using generalized expan-

sions.
Next, we evaluate the left hand side of inequality (7) in the
same manner:

Gðx0; y0Þðm11m22�m21m12Þ ¼ aGxx0þðaF 0Gxþ2GxyþaGxxÞx
2
0þOð½x0�

3Þ:

We can see that the expression above is always positive, so
condition (7) is satisfied for large enough values of b. Condition
(6) however is not necessarily satisfied, as follows from expres-
sion (11). The expansion can be positive or negative, depending on
the particular properties of the functions F and G. Later we will
encounter examples where the internal equilibrium changes
stability depending on the model parameters.

Next, we would like to investigate whether the eigenvalues are
real or complex. For the eigenvalues to have an imaginary part,
the following condition has to be satisfied:

ðm11�m22Þþ4m12m21o0: ð12Þ

Performing a Taylor expansion of the above expression for small
values of x0 and y0 at internal equilibrium, we obtain

Gðx0; y0Þððm11�m22Þþ4m12m21Þ ¼ �4aG2
x x2

0�2Gxð2aF 0Gxþ6Gxy

þ3aGxxÞx
3
0þOð½x0�

4Þ:

We can see that this quantity is always negative. Therefore, we
conclude that the internal equilibrium has complex eigenvalues
for sufficiently large values of b.

4.3. Is a fixed point analysis a valid tool?

Our investigations are primarily based on the analysis of fixed
points of the cancer-virus system, and contain little information
on the actual dynamics of the system’s components. Therefore,
one might argue that the picture provided by our analysis is
incomplete. While this is a true statement, the fixed point analysis
turns out to be sufficient to demonstrate the points we are making
in this paper.

To illustrate this, let us first consider a system with a slow
spreading virus. Our result is that there exists a saddle point
which separates two possible equilibria, the larger one corre-
sponding to treatment failure. We then conclude that the
treatment outcome is uncertain in this situation because it
depends on the initial conditions, even for very large values of
viral infectivity, b. A fixed point analysis of this kind does not
include the following scenario. The population could go extinct
before it even had a chance to reach an equilibrium. However, in
our case, such outcomes do not change the conclusions. The
system may go extinct (which corresponds to treatment success),
but it also may not which corresponds to treatment failure. The
existence of a stable equilibrium corresponding to cancer growth
means that even for very large values of the infectivity parameter,
treatment failure may occur. Thus, even in the presence of
dynamic extinction the outcome is ‘‘bistability’’, which is exactly
the conclusion we reach.

Similarly, in the case of fast virus spread, our results remain
unchanged by the process of dynamic extinction. For fast
spreading viruses we show that for sufficiently large values of b,
only one equilibrium is possible, which corresponds to very low
cell numbers. We then conclude that this indicates a positive
treatment prognosis. It is still possible that the system goes
extinct before it reaches the ‘‘treatment’’ equilibrium, but in
biological terms this corresponds to the same treatment outcome:
cancer extinction.
5. Case studies of fast and slow virus spread models

In this section we will investigate properties of several fast-
spread and slow-spread virus models and demonstrate how the
dynamics change depending on the particular form of G.
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5.1. Fast spread: equilibria and their stability

We start with the virus term defined by

Gðx; yÞ ¼
xð1þeÞ
xþyþe : ð13Þ

We refer to this term as ‘‘generalized frequency-dependent virus
spread’’. Note that in the limit where e-0 we have the
conventional frequency-dependent spread term, bxy=ðxþyÞ, and
in the limit where e-1 we have bxy, the complete mixing
approximation. Both are often used in SIR and predator–prey-type
models (Anderson and May, 1991; McCallum et al., 2001).

Suppose that the cancer growth term is given (in dimensional
variables) by xrFðxþyÞ. If we scale x and y in terms of e, time in
terms of r, and define b0 ¼ bð1þeÞ=ðreÞ and a0 ¼ a=r, we get the
following equations (omitting the primes):

_x ¼ xFðxþyÞ�
bxy

xþyþ1
; ð14Þ

_y ¼
bxy

xþyþ1
�ay: ð15Þ

In steady state the following equations hold:

FðxþyÞ�
by

xþyþ1
¼ 0; ð16Þ

bx

xþyþ1
�a¼ 0: ð17Þ

Adding the two equations, and calling z¼ xþy, we obtain

bz

1þz
¼ FðzÞþa: ð18Þ

The left hand side of this equation is equal to zero at z¼ 0, and it
tends to b as z increases; this is a monotonically increasing
function. The right hand side starts at 1þa for z¼ 0, and it decays
monotonically. For unlimited growth we have limz-1 FðzÞ ¼ 0,
and for limited growth FðWÞ ¼ 0, such that in both cases the right
hand side tends to a for increasing x. Therefore, if b4a for
unlimited growth, or if b4aðWþ1Þ=W in the presence of a
carrying capacity, W, then there is exactly one root in this
equation. This root corresponds to a non-trivial amount of cancer
and virus present. We will call the threshold value of b defined
here bc , and the corresponding equilibrium ðx0; y0Þ.

Other fixed points are ð0;0Þ (complete extinction) and ðW ;0Þ
(extinction of the virus) for growth with carrying capacity W; for
an unlimited growth the latter fixed point is equivalent to
growing off to ð1;0Þ.

The point ð0;0Þ is unstable as long as Fð0Þ40 (non-trivial cancer
growth from low numbers). The point ðW ;0Þ is stable for bobc.

In Section 4.2 we showed that the internal equilibrium may or
may not be stable depending on the model. Let us show that
in the case of generalized frequency-dependent virus spread,
the equilibrium ðx0; y0Þ is stable as long as b4bc . We perturb the
system near the non-trivial equilibrium and write down the
equation for the corresponding eigenvalues, L:

L2x2
0�Lx0F 0ðx0þy0ÞþaF2

ðx0þy0Þ=ðby0Þ�ay0F 0ðx0þy0Þ ¼ 0: ð19Þ

Since F 0ðx0þy0Þr0, the coefficient in front of L0 is positive, which
means that the two roots have the same sign. They are negative
because the coefficient in front of L1 is positive.

It turns out that for other parameterizations of G (which still
correspond to fast virus spread) we may have an unstable
equilibrium. Consider the following term G:

G¼
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xþyþe1
p

ð
ffiffiffi
x
p
þ

ffiffiffi
y
p
þ

ffiffiffiffiffie2
p
Þ
: ð20Þ
By rescaling x0 ¼ x=e2 and y0 ¼ y=e1 and assuming for simplicity
e1 ¼ e2, we obtain (in rescaled variables) the virus spread term
x=ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþyþ1

p
ð
ffiffiffi
x
p
þ

ffiffiffi
y
p
þ1ÞÞ. We will use the methodology of

Section 4.2 to investigate the stability properties of the internal
equilibrium for large values of b. An interesting feature of this
dependency is that G is not differentiable in y at point y¼ 0, and
therefore expansion (11) cannot be used. Instead we need to use a
generalized expansion of the left hand side in (6) to obtain

Gðx0; y0Þðm11þm22Þ ¼
1�

ffiffiffi
a
p

2
x3=2

0 þ
ffiffiffi
a
p
�

1ffiffiffi
a
p þF 0ð0Þ

� �
x2

0þOð½x0�
5=2Þ:

We can see that for a41, the first term is negative, so that the
equilibrium is stable. For ao1, it is unstable. For a¼ 1, the first
term is identically zero, and the second term is proportional to
F 0ð0Þ, which is negative. We conclude that the equilibrium is
stable for aZ1 and unstable otherwise.

It is interesting that the stability condition changes signifi-
cantly if we modify the G term slightly. Let us use

Gðx; yÞ ¼
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xþyþ1
p

ð
ffiffiffiffiffiffiffiffiffiffiffiffi
xþd1

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
yþd2

p
þ1Þ

:

Now, the function G is differentiable, and formula (11) can be
used. We obtain the following expansion:

d�1=2
1 þd�1=2

2

2ð1þ
ffiffiffiffiffi
d1

p
þ

ffiffiffiffiffi
d2

p
Þ
2
þ

F 0ð0Þ

1þ
ffiffiffiffiffi
d1

p
þ

ffiffiffiffiffi
d2

p
 !

x2
0þOð½x0�

3Þ:

Now the stability is defined by the values of d1;2 and the
derivative of F at zero.

Finally, we consider the example of the usual frequency
dependent transmission, G¼ x=ðxþyÞ (see Eq. (13) with e¼ 0).
This function has a singularity at 0. A generalized expansion yields
for the left hand side of condition (6) (multiplied by Gðx0; y0Þ):

aF 0x0

1þa
þ

F
00

ð1þaÞ�ðF 0Þ2

1þa
x2

0þOð½x0�
3Þ:

This expression is negative for non-constant functions F, which
means that the equilibrium is stable. For F ¼ 1 the real part of the
eigenvalues is zero, which corresponds to neutral cycles in the
dynamics.

Stability properties of the internal equilibrium for large values of
the viral replication rate are defined by the behavior of the functions F

and G at zero (for very small values of the populations x and y). By
varying the functional form of G near zero we can in principle change
the stability properties of the equilibrium. However this mathematical
manipulation is not meaningful biologically. The difference between
‘‘stable’’ and ‘‘unstable’’ becomes apparent when the population
diminishes to very low levels. The response of the system at the
troughs of the oscillations is what makes them convergent or
divergent. In biological terms, both outcomes probably correspond
to extinction. Thus we conclude that for sufficiently large values of b,
the cancer will be driven extinct by the virus through (convergent or
divergent) oscillations.

5.2. Fast spread: the dependency of the equilibrium on b

As was shown in general terms in Section 3.1, the root of
Eq. (18) is a monotonically decreasing function of b. Here we
explore in some detail the threshold phenomenon in the context of
some examples of fast virus spread terms. In particular, we would
like to find the condition for the root to change in a threshold
manner as a function of b. Suppose st is the size for which cancer
growth deviates from exponential, and consider the roots of
equation Gðx; yðxÞÞ ¼ a=b for the generalized frequency-dependent
virus spread G (Eq. (13)) and different types of F. For x5st , G

comes close to the asymptote Gexp (which is given by a=ðaþ1Þ),
see Fig. 3. For x4st , G tends to limx-1 G¼ 1. It is possible to show
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that G is near a=ðaþ1Þ when x� a (we assume that ab1 to derive
that result). By ‘‘near’’ we mean that G�a=ðaþ1Þ ¼ a�a=ðaþ1Þ,
that is, the distance between the function G and its first
asymptote3 becomes smaller than the distance between the two
asymptotes (and the latter could be small for large a). If st 5a then
there is a large interval where G is close to its first asymptote
before it deviates from it. Therefore, in such cases there is a very
sharp decline of the equilibrium x value around the value
b¼ aþ1. Its value drops by the amount st�a while Z increases
from a to aþ1. For an alternative explanation of the threshold
behavior, see Appendix B.

The above analysis is illustrated in Fig. 5, where the equilibrium
number of cells is plotted as a function of b for a particular choice of
the function F (linear growth). We can see that for the upper curve
corresponding to st ba (Zb107), there are two threshold values
of b. The first one is given by b¼ a. After this threshold a stable
equilibrium appears whose value decreases from infinitely large
values to values of the order of st (which is this model are given
approximately by Z). The second threshold value is given by b¼ aþ1.
As b crosses this value, the equilibrium rapidly decreases to values of
the order sv (given approximately by e). The two threshold values are
independent of the choice of F and are only defined by G.

While the presence of two threshold values of b is universal for
all fast virus growths with large values of sv, the actual threshold
values are different for different systems. For example, for the
term described in Eq. (20), the first asymptote has value 1�1=

ffiffiffi
a
p

(for large values of a) while the second one is at 1. The value of x

for which G becomes close to its first asymptote (in the sense
described above) is given by x� a2. Therefore, for values st ba2,
there is a sharp threshold in the behavior of the equilibrium near
b¼ a=ð1�1=

ffiffiffi
a
p
Þ.

In the opposite case where st is small, we can approximate
Gðx; yðxÞÞ by x=ðxþ1Þ and find that the value at the equilibrium is
x0 	 bc=ðb�bcÞ, that is, there is no sharp transition in the
dependency of the equilibrium on b for b4bc . This can be seen
in Fig. 5, where the lower solid curve corresponds to the plot of x0

for Z¼ 20oa, and the dashed curve—to its approximation with
bc=ðb�bcÞ. Again, the particular dependency of the equilibrium
value on b is not universal, for example, for G in Eq. (20), we have
3 The line Gexp is not an asymptote but rather a line that becomes an

asymptote if st-1.
x0pðb�bcÞ
�2. The robust feature is that threshold behavior is not

observed for small values of st . This makes sense from a biological
point of view. If tumor growth saturates at relatively low levels,
then treatment is easier. If the virus replicates fast enough to
establish an infection in the tumor, it is likely to drive the tumor
extinct. There is not a significant parameter region in which the
tumor is maintained at relatively high level in the presence of the
virus.

5.3. A particular slow virus spread model

In this section we concentrate on the following slow virus
spread term:

Gðx; yÞ ¼
xð1þe1Þð1þe2Þ

ðxþe1Þðyþe2Þ
:

Let us keep the cancer growth term in its general form, F, and
rescale the variables as follows: x0 ¼ x=e1, y0 ¼ y=e2, t0 ¼ rt, and
define b0 ¼ bð1þe1Þð1þe2Þ=ðre1Þ, a0 ¼ a=r and l¼ e1=e2. Omitting
the primes, we obtain

_x ¼ xF�
bxy

ðxþ1Þðyþ1Þ
; ð21Þ

_y ¼
blxy

ðxþ1Þðyþ1Þ
�ay: ð22Þ

As before, we assume that for all F except for the exponential,
there is a parameter (denoted as st or W) which defines at what
spatial scale the growth slows down and departs from exponen-
tial. The non-dimensionalized quantity measures the ratio of this
spatial scale and e1.

As before, a convenient way to study the number of roots is to
solve the equation Gðx; yðxÞÞ ¼ a=ðblÞ, where yðxÞ is obtained from

xFðxþy=lÞ ¼ ay:

For the exponential growth, F ¼ 1, ypx, and G is a one-humped
function which decays to zero as x-1. Therefore, as b increases,
we acquire a pair of roots, which remain for all b. If the growth is
superlinear, then limx-1 xF ¼1, and therefore limx-1 yðxÞ ¼1.
Therefore, limx-1 Gðx; yðxÞÞ ¼ 0, and the behavior is qualitatively
the same. Next, we consider linear growth. Now, limx-1 xF ¼ c,
0oco1, and thus limx-1 yðxÞ ¼ c1 is also a non-zero constant
(in our example with F ¼ Z=ðxþyþZÞ, we have c1 ¼ Z=a). There-
fore, limx-1 G¼ c2, a non-zero constant (for the particular law we
consider here, we have c1 ¼ 1=ðZ=aþ1Þ). If c1 is sufficiently low,
then we have two roots for an interval of b, and for larger values
of bFonly one root. However, if c1 is large there may not be a
second root. This happens if st � sv or st osv. In this case, as b
crosses its critical value, only one root appears.

If the growth is limited, we have FðWÞ ¼ 0 for some W ¼ x�þy�.
Then yðx�Þ ¼ 0, and x� ¼W . We have Gðx�;0Þ ¼ x�=ðx�þ1Þ which is
close to one for Wb1. The behavior of G near W introduces an
additional root in the equation G¼ a=ðblÞ; this root is located near
ðW ;0Þ and represents cancer grown to nearly its full capacity. This
root is present as long as the saddle point is present, and it is
always stable. Therefore, the behavior is as follows. For low values
of b, the only stable root is the full cancer growth. Then,
depending on the growth of cancer at intermediate scales (much
smaller than W), either two additional roots appear, being a
saddle, or the full growth root disappears and is replaced by an
extinction root.

To summarize in biological terms, we recall that the virus spread is
exponential before the mass reaches sv (this is defined by constants
e1;2); after that infection spreads much slower. If the tumor growth
slows down/stops before the virus spread slows down, that is, if
st osv, then the treatment is most likely to be successful, assuming
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that the infectivity, b, is sufficiently high. However, if the tumor
growth is superlinear for sizes where the virus cannot spread fast
anymore, i.e. if st 4sv, then treatment success is sensitive to the initial
conditions, and only small tumors can be eradicated. The restriction
on the initial tumor size becomes more stringent as the difference
between st and sv grows. If the virus spread slows down while the
tumor still grows fast, and well before the tumor growth slows down,
then treatment becomes nearly impossible.

In Appendix C we study three particular types of the cancer
growth in the context of this slow virus spread model: exponential,
logistic and linear growth. We discuss the equilibria, their stability,
and the oscillatory behavior of the solutions.
6. Discussion and conclusions

This paper has provided a detailed mathematical analysis of an
ODE modeling approach that investigates the dynamics of oncolytic
viruses in a general setting, going beyond specific models in which
results can depend on unknown and arbitrarily chosen mathematical
formulations. This is very important if the aim is to generate
predictive models, because the dynamics of the cancer and virus
populations, and thus the correlates of successful therapy, can be
heavily influenced by those unknown and arbitrary mathematical
terms. We found that all possible 2-component ODE models can be
divided into two categories with fundamentally different behaviors.
We characterized those behaviors, and also investigated specific
models that belong to the two different categories as case studies.

The main findings of this paper can be summarized as follows:
�
 All types of virus spread terms can be separated into two
categories, which we call fast spread and slow spread.

�
 As expected, viral replication rate is an essential parameter

which plays an important role in defining the treatment
outcome. A less obvious factor which is just as important is the
type of virus spread that is observed.

�
 For fast spreading viruses, there exists a viral replication rate

threshold beyond which tumor control is the only outcome.

�
 For slow spreading viruses, we observe more complicated

dynamics in which the outcome of therapy might go either
way, depending on the initial number of cells and viruses.

�
 In systems with slow virus spread, we observe a race between

the growth of the tumor and the spread of the virus. If the
tumor growth slows down/stops before the virus spread slows
down, then the treatment is most likely to be successful,
assuming that the viral replication rate is sufficiently high. If
the virus spread slows down while the tumor still grows fast,
then treatment becomes nearly impossible even for very high
viral replication rates.

Our results provide certain insights about the correlates of
success in oncolytic virus treatment. Based on both previous
experimental and theoretical work, it is believed that increasing
the rate of virus replication will improve the chances of therapy
success. In our terms, this notion is based on models where virus
spread terms belong to the fast spreading class. In this paper we
investigated different types of virus spread and demonstrated the
existence of a second, slow class of virus spread. In this second
class, successful therapy is more difficult to achieve, especially
when tumor growth only saturates at larger tumor sizes. The
outcome of the dynamics is predicted to depend on the initial
conditions. If the number of cancer cells lies above a threshold,
the cancer cell population will outrun the virus population, and
therapy will fail. This creates problems because there is only a
narrow window between the size at which the cancer is detected
(about 1010 cells) and the size at which the cancer is lethal (about
1013 cells). In this case, increasing the rate of viral replication even
to unrealistically large values will not significantly promote
treatment success. Successful treatment is only possible if tumor
growth saturates at relatively low tumor sizes. In this case, a
parameter region exists in which tumor control is the only
outcome. If tumor growth saturates at even lower sizes, this effect
disappears altogether and tumor control is the only outcome. This
suggests the strategy if combining oncolytic virus therapy with
conventional treatment approaches which will limit tumor
growth to a certain degree and allow the virus to gain the upper
hand over the cancer. Previous data indicate that a combination of
chemotherapy with virus therapy tends to be more effective than
virus therapy alone.

In summary, studying constraints in the virus spread term, as well
as the cancer growth term, has allowed us to gain new insights into
the correlates of successful virus therapy. In particular, our results
highlight potential difficulties in the treatment of tumors with virus
therapy alone, even if the virus replicates with a relatively fast rate.

We would like to emphasize that our results pertain to the
idealized situation of homogeneous tumors. It is a well-known
fact that tumor therapy can fail due to the failure of the virus to
penetrate and reach the core, e.g. because of intratumoral barriers
or pressure. Such situations are not the focus of this paper; here
we do not consider tumor inhomogeneities. Instead, we have
found a much less obvious pattern. According to the model, for a
virus spreading throughout a homogeneous solid tumor, it is still
possible that the therapy fails, even for arbitrarily high virus
infectivity parameters.

Next, we address the question of quantitative result inter-
pretation and population extinction. It is a well-known fact that
normally, ODEs cannot explicitly predict extinction (see also
Novozhilov et al., 2006 for interesting results regarding this issue).
Normally, size reduction to ‘‘low numbers’’ is interpreted as
extinction, but then a question arises what numbers qualify as
‘‘low’’. Most of the graphs presented here are expressed in terms
of rescaled variables. For example, x, the number of uninfected
cells, is measured in the units of e, the characteristic size of virus
growth saturation. Therefore, ‘‘1’’ in the rescaled equations does
not correspond to one cell remaining in the system. In order to
relate the equations to observations, one needs to feed in the
model parameters. For instance, once we have a measured value
for the parameter e, then we can rescale the variables back to their
biological units and directly compare the growth/decay curve
with ‘‘1’’. Values below 1 would signal extinction, and values
much above 1 would mean survival of the colony.

The difficulty is of course in the parameter measuring. In our
recent paper (Wodarz and Komarova, 2009) we performed data
fitting of published data of oncolytic viruses, and concluded that
even though many models can be found which are in a reasonably
good agreement with the data, much more experimental
information is needed in order to choose the ‘‘best’’ model. Future
experimental studies will hopefully resolve the problem of model
validation by (i) reducing the data spread by using larger samples,
(ii) running the experiments for longer periods of time to obtain
more points, and (iii) measuring some of the parameters directly.
Once we know model parameters, the model can then be used for
quantitative (and not just qualitative) predictions.

An advantage of our approach is its consistency and generality.
A disadvantage is the fact that the less information we specify
about the system, the less we can say about its behavior. For
example, if we employ particular functional forms for functions F

(the cancer growth term) and G (the virus spread term) and thus
define the system of ODEs completely, then we can describe its
behavior to any degree of precision, given the set of parameters
and initial conditions. On the other hand, if only some (but not all)
properties of the functions F and G are known, then the best we
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can hope to achieve is to describe the phase space in some general
terms. A very exciting result of this particular work is that despite
a high degree of generality of the system, we were still able to
generate a set of predictions about the system’s behavior, both the
dynamics and the long-term states.

We further note that the framework we used only contained two
types of populations, uninfected and infected cancer cells. In reality
other populations may play an important role in the dynamics, such
as healthy cells, and the immune system. As mentioned before, it only
makes sense to explore such added complexities once we have
obtained a sound understanding of the basic dynamics between the
virus and its target cells. Including the immune system will be a
particular challenge for future mathematical work, since basic
immune response dynamics can be described by a variety of
mathematical functions that are unknown.

Our approach is necessarily limited by the choice of ODEs as
our ‘‘toolbox’’. By restricting ourselves to this framework we make
it impossible to take into account explicitly many essential
properties of biological systems such as random fluctuations
and spatial constraints. As mentioned before, some of the effects
of spatial interactions are mimicked by the choice of rate terms F

and G; however this is only a crude approximation whose validity
is a topic of a separate investigation and is work in progress.

The other big topic is the inclusion of noise. In the present
research we restricted ourselves to simply commenting that if the
population of cells in ODEs drops to low levels, this probably
means extinction in a stochastic system. Nonetheless we believe
that the insights provided by our fully deterministic model are
useful. The main theoretical result is that for ‘‘slow’’ virus growth,
cancer control is not guaranteed even if the virus infectivity is
arbitrarily high. On the other hand, if the virus spread is of the
‘‘fast’’ type, then the virus will control the tumor, given a high
enough infectivity parameter. This result is independent of the
stochastic modeling. That is, even though extinction described
here will be mediated by stochastic fluctuations, the main driving
force of extinction are dynamic interactions between cancer and
virus. We do not need to explicitly include noise in the description
in order to show the extinction. It is enough to show that in the
deterministic model, the population will be driven to arbitrarily
low levels (given that the infectivity is high enough and the virus
spread is of the ‘‘fast’’ type). In our view, this proof of principle is a
major result of the paper. We have found a pattern of behavior
which is independent of details of modeling and particular
assumptions. An extension of the present system to include
stochastic effects is part of ongoing research.

The present paper is a conceptual basis for a more complex and
biologically realistic modeling effort. We argue that this first step
is necessary because complexity can only be explored layer by
layer, with the more basic models being worked out first and the
resulting insights used to shed light into the behavior of more
realistic and relevant mathematical systems.
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Appendix A. Supplementary calculations for the studies of the
equilibria

In this section we study the properties of system (3)–(4). Non-
trivial equilibria are obtained from Eq. (5). Let us consider the
dependence of the left hand side of Eq. (5) on x. First, we study the
behavior of Gðx; yðxÞÞ at x¼ 0. Using Eq. (3), we obtain yð0Þ ¼ 0.
From assumption 2 on the function G we obtain that Gð0;0Þ ¼ 0,
and from assumption 1 we see that this function grows for small
values of x. Next, we study the limiting behavior of Gðx; yðxÞÞ for
large values of x. For that we need to know the behavior of yðxÞ for
large x. We have from Eq. (3): limx-1 yðxÞ ¼ limx-1 xFðxÞ=a. There
are three cases:
(i)
 For a linear type growth, we have limx-1 xFðxÞ ¼ c0, a non-zero
constant. In this case, limx-1 yðxÞ ¼ c0=a, with 0oc0o1.
(ii)
 For any growth F which is superlinear but slower than
exponential, we have limx-1 yðxÞ ¼1, but limx-1 y=x

¼ limx-1 FðxþyÞ=a¼ 0, that is, y increases slower than x.

(iii)
 Finally, for exponential growth, F ¼ 1 and yðxÞ ¼ x=a, such that

yðxÞ � x for large values of x.
From the biological assumptions on the function Gðx; yÞ listed above,
it follows that for any of the possible dependencies yðxÞ, the function
Gðx; yðxÞÞ approaches a finite limiting value as x-1, and this value
can be zero or non-zero. To prove this statement we note that from
requirement 5, limx-1 Gðx; yÞo1 for constant values of y. For non-
constant values of y we only need to show that the limit is finite in
the case where y-1. But from requirement 4 we deduce that if
limx-1 yðxÞ ¼1, then limx-1 Gðx; yðxÞÞr limx-1 Gðx; constÞo1.
This completes the proof.

The above statement is of course true for the function
GexpðxÞ ¼ Gðx; yexpðxÞÞ. Note that for all laws of cancer growth
slower than exponential, we have Gðx; yðxÞÞZGexpðxÞ. This is
because yðxÞryexpðxÞ, and G is a decreasing function of y.
Appendix B. Fast virus spread: threshold behavior and
singular equilibria

In Section 5.2 for fast virus spread terms, we observe a sharp
threshold behavior of the equilibrium as a function of the
infectivity b for large values of st . This phenomenon can be
explained in a different way. Let us consider the generalized
frequency-dependent virus spread, and a particular realization of
the term F, where cancer growth is supposed to follow a logistic
curve, FðxþyÞ ¼ 1�ðxþyÞ=W . In order to make some biological
connections more transparent, we will not scale x and y with e in
this section, but rather work with the following system directly:

_x ¼ x 1�
xþy

W

� �
�
bð1þeÞxy

eþxþy
; ð23Þ

_y ¼
bð1þeÞxy

eþxþy
�ay: ð24Þ

We will explore the behavior of this system in some detail, and in
particular, consider the limiting case where e-0. There are four
fixed points in the system:
�
 x¼ y¼ 0, complete extinction;

�
 x¼W , y¼ 0, extinction of the virus;

�
 x¼ x140, y¼ y140 (for e40), a fixed point corresponding to

coexistence (non-trivial values) of both x and y;

�
 x¼ x2o0, y¼ y2o0 (for e40). The exact solutions for the

latter two fixed points can be easily obtained; we do not
present them here because they are rather cumbersome.

The first fixed point is unstable. The second fixed point is stable
if the following condition holds:

bob1
c � a

1þ
e

W
1þe

;
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where for small values of e we have b¼ aþOðeÞ. The third fixed
point is stable as long as b4b1

c ; and the forth (negative) fixed
point is always unstable.

The function x1ðbÞ is a monotonically decreasing function of b.
Let us consider the limit where e-0. We define the second
threshold value of b as b2

c ¼ aþ1, and study the asymptotic
behavior of the fixed points for bob2

c and b4bc
2. Assume that the

values of b are not too close to the second threshold, such that

jb�b2
c jbe:

Then we have the following expansions for the positive fixed
point:

x1 ¼

aWðaþ1�bÞ
b

þOðeÞ; b1
c obob2

c ;

ae
b�ðaþ1Þ

þOðe2Þ; b4bc
2;

8>>><
>>>:

y1 ¼

ðb�aÞðaþ1�bÞ
b

þOðeÞ; b1
c obob2

c ;

e
b�ðaþ1Þ

þOðe2Þ; b4bc
2:

8>>><
>>>:

The negative fixed point satisfies

x2 ¼

ae
b�ðaþ1Þ

þOðe2Þ; b1
c obob2

c ;

aWðaþ1�bÞ
b

þOðeÞ; b4bc
2;

8>>><
>>>:

y2 ¼

e
b�ðaþ1Þ

þOðe2Þ; b1
c obob2

c ;

ðb�aÞðaþ1�bÞ
b

þOðeÞ; b4bc
2:

8>>><
>>>:

It is instructive to consider the behavior of the fixed points when
e¼ 0 (this limiting case was studied in detail by Novozhilov et al.,
2006). We have two branches of solution for b4b1

c . They
correspond to

x� x ¼
aWðaþ1�bÞ

b
and x¼ 0;

respectively, see Fig. 6, gray lines. The two branches cross over at
point b¼ b2

c . At this point we have a bifurcation, such that the
solution x¼ x is stable for b1

c obob2
c , and the solution x¼ 0 is
0.8 1.0 1.2 1.4 1.6 1.8 2.0

-1

0

1

2

3

4

β

β2
c

Fig. 6. Bifurcation diagram for the case e51. The gray lines correspond to e¼ 0

and the black lines to e¼ 0:05. In the former case, the quantities x and 0 are

plotted vs. b; in the latter case, the values x1 and x2 are plotted as functions of b.

The solid lines represent stable solutions and dashed lines represent unstable

solutions. The parameters are a¼ 0:5 and w¼ 10.
stable for b4b2
c (stable solutions are represented by solid lines,

and unstable ones by dashed lines). We can see that in this
extreme case, for b4b2

c , the system tends to extinction.
This bifurcation disappears as soon as e40, see black lines in

Fig. 6, but the qualitative interpretation of the solutions remains
the same. For b1

c obob2
c , we have a non-trivial coexistence

equilibrium, and for b4b2
c the solution (which is still non-trivial)

is vanishingly small, and it corresponds to extinction in a realistic
generalization of our model where stochastic effects are included.

The fact that for sv ¼ 0, the branch x¼ 0 appears in the
bifurcation diagram, is general and is independent of the exact
form of the functions G and F. This can be seen from Fig. 3. The
curve Gðx; yðxÞÞ by construction starts from Gð0Þ ¼ 0, and increases
to values of the order G1exp when x� sv. Obviously, if sv-0, this
first transition becomes very sharp, and in the limit of sv ¼ 0, this
curve may be considered exactly vertical. Thus the intersection of
the curves Gðx; yðxÞÞ and a=b (a horizontal line) corresponds to
values x¼ 0 for all b above a threshold. This corresponds to the
models with a singular equilibrium considered by Berezovskaya
et al. (2007). In this paper, homoclinic orbits originating from, and
converging to the origin, have been described and interpreted as
extinction in systems of ODEs. Here we recovered this behavior as
a singular limiting case of a more general class of frequency-
dependent models.
Appendix C. Slow virus spread: the effect of the cancer
growth term

C.1. Exponential cancer growth

Let us specify the simplest, exponential, growth law for the
cancer cells,

Fðx; yÞ ¼ 1:

The fixed points of the corresponding system can be found
explicitly

xt ¼ 0; x0;s ¼
1

2l
ð�ðaþð1�bÞlÞ8Q Þ; yt;0;s ¼

x0;i;sl
a

;

where we defined

Q �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþð1�bÞlÞ2�4al

q
:

The subscript t refers to ‘‘trivial’’, and subscripts 0 and s

correspond to the internal and saddle equilibria. The non-trivial
points are real and positive as long as b4bc , with
bc ¼ ð

ffiffiffi
a
p
þ

ffiffiffi
l
p
Þ
2=l. The point x0 decays with b, and the point xs

grows with b. For large values of b, we have

x0 �
a

lb
; xs � b:

Stability of the internal equilibrium: The eigenvalues corre-
sponding to solution ðx0; y0Þ are given by

1

4bl
ðP7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2�16ablQ

q
Þ; P¼ blð1�aÞþðaþ1Þða�lÞ�ð1�aÞQ :

The stability of the internal equilibrium is defined by parameters
a, l and b. The sign of the real parts of the eigenvalues
corresponds to the sign of P. We will now study the sign of this
quantity, as a function of b.

First we note that

@P

@b
¼

2ða�1Þl2x0

Q
:

Therefore, P decays for ao1 and grows for a41. Next let us
determine if P changes sign for positive values of b. The equation
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PðbÞ ¼ 0 has a root if

1rarl; 1r1=lra; ar1=lr1; lrar1:

In these cases we have Pðb0Þ ¼ 0 with

b0 ¼
ða�lÞ2

ða�1Þð1�lÞl
:

We can see that this root is positive only if ar1rl or lr1ra.
Combining these conditions with the conditions above, we
determine that there exists a positive b0 if

1r1=lra or ar1=lr1:

Since

b0�bc ¼
ð
ffiffiffi
a
p
ðl�1Þþ

ffiffiffi
l
p
ða�1ÞÞ2

ð1�aÞðl�1Þl

we can see that b04bc as long as b040.
In the cases where P does not change sign, we can determine

its sign by looking at the quantity

lim
b-1

PðbÞ ¼ 2að1�lÞ:

Combining these results, we obtain a full chart of the signs of P,
which corresponds to the stability properties of equilibrium
ðx0; y0Þ. This is presented in Table 2. There are the following
special cases: if l¼ 1 (the case where e1 ¼ e2, considered above),
we have b0 ¼1, such that for al¼ a41, Po0, and for alo1,
P40. Also, if al¼ 1, then b0 ¼ bc , such that for l41, Po0 and for
lo1, P40. Finally, if b¼ b0, P¼ 0 in all cases.

Note that the results for large values of b, as seen from the
table and our calculations, are as follows: for l41, the
equilibrium is stable, and for lo1 it is unstable. If l¼ 1, then it
is stable for a41 and unstable for ao1. These results can be
obtained from our general methods, Eqs. (6) and (11). For the
functions F and G discussed here, we have

Gðx0; y0Þðm11þm22Þ ¼
1�l
e2

1e2
x2

0þ
ðl�aÞð2�lÞ

ae3
1e2

x3
0;

where we used the original, unscaled variables x and y. One can
see that for la1, the stability is decided by the quantity l�1. For
l¼ 1, the first term in the expansion disappears, and we use the
next term, which is proportional to 1�a.

Oscillations: To determine if the eigenvalues have an imaginary
part, we need to consider the expression

WðbÞ ¼ P2�16ablQ :

We have

WðbcÞ ¼ 4að
ffiffiffi
a
p
ðl�1Þþ

ffiffiffi
l
p
ða�1ÞÞ240;

lim
b-1

WðbÞ ¼ lim
b-1
�ð4al2bÞ2 ¼�1:

Therefore, for small values of b the eigenvalues are real and for
large values they are complex.

Simulations show that for all l, there exists one value of b,
bosc 4bc , such that for bobosc the eigenvalues are real and for
b4bosc , the imaginary part becomes non-zero. We have found
Table 2
Stability conditions for the equilibrium ðx0 ; y0Þ.

al41 alo1

l41 Po0 P40 for bob0, Po0 for b4b0

lo1 Po0 for bob0, P40 for b4b0 P40

P40 corresponds to the equilibrium being unstable and Po0Fstable.
this value analytically for the special cases of e1-1 and e2-1.
The results are as follows.

If l-0 (e2-1), the quantity ðbosc�bcÞ=bc becomes large if
a-0, and it behaves as

bosc�bc

bc

�
1

2
ffiffiffi
a
p :

In this case the point ðx0; y0Þ is unstable, see Table 2.
If l-1 (e1-1), the quantity ðbosc�bcÞ=bc becomes large if

a-1, and it behaves as

bosc�bc

bc

�

ffiffiffi
a
p

2
:

Eigenvectors and phase portraits: Let us now study the unstable
and the stable manifolds of the saddle point ðxs; ysÞ. Let us first set
b¼ bc . If la41, the stable manifold has the eigenvector

ð

ffiffiffiffiffiffiffiffiffiffi
a=l3

q
;1ÞT , and the unstable one the eigenvector ða=l;1ÞT . They

are reversed if lao1. Note that
ffiffiffiffiffiffiffiffiffiffi
a=l3

q
oa=l if la41, and the

inequality is reversed for lao1, we conclude that the slope of the

stable manifold at b¼ bc is larger than that of the unstable one.
Numerical simulations suggest that the slope of the stable

eigenvector increases with b, and the slope of the unstable one
decreases, such that the slope of the stable manifold remains

larger than that of the unstable one for all b. Finally, we take the

limit of large values of b. We have the stable eigenvector ð0;1Þ and

the unstable one ð1;0Þ. This means that for large values of b, the
stable manifold tends to a vertical line, and the unstable one to a
horizontal line.

If a¼ 1=l and b¼ ðð1þlÞ=lÞ2, then both eigenvalues are zero
and both eigenvectors are ðl�2;1ÞT . This point is the only one
where the slopes of the eigenvectors coincide.

In the case where the behavior of the intermediate equilibrium
is oscillatory (that is, for large values of b), there are two
types of phase portraits, depending on whether the internal
equilibrium is stable or unstable. They are presented in Fig. 7,
where (a) corresponds to a stable internal equilibrium and (b) to
an unstable one.

C.2. Logistic growth

It is interesting to see what happens if we add saturation in the
term F. Using the functional form FðxþyÞ ¼ 1�ðxþyÞ=W , we have
the corresponding term in the rescaled equation 1�ðxþy=lÞ=W ,
where ~W ¼W=e1, and the tilde is omitted. If W is very large, the
phase portrait is similar to that of the original, unsaturated
equation. The same three equilibria (the trivial point St , the
internal equilibrium S0 and the saddle equilibrium Ss) are present,
and the difference is that there are two more fixed points in the
system. One of them is a saddle ðW ;0Þ and the other point, Sc , is a
x x

Fig. 7. The phase portrait for system with F ¼ r and G¼ xð1þe1Þð1þe2Þ=½ðxþe1Þ

ðyþe2Þ�, a schematic: (a) the intermediate equilibrium is stable and (b) it is

unstable.
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stable node with a relatively large value of x and a non-trivial y.
This latter point is infinitely far when W-1; for large values of
W it is given by

xc ¼W�
1þa

a
b�

a

l

� �
; yc ¼

lb
a
�1:

As W decreases, the point xc decreases, and eventually a
bifurcation happens which changes the system’s behavior. The
point Sc collides with the point Ss and they annihilate. There are
two separate cases based on the properties of the point S0:
�
 If S0 is a stable spiral, then we have a typical saddle-node
bifurcation, resulting in only one, globally stable, fixed point S0.

�
 If S0 is an unstable spiral, the picture is more complicated. As W

decreases, first the stable node Sc becomes a stable spiral. Thus we
have an unstable and a stable spiral (points S0 and Sc respectively)
separated by a saddle point, Ss. Then, as W decreases even further,
the points Sc and Ss collide and annihilate, giving rise to a stable
limit cycle around the point S0.

C.3. Linear growth

Now we use FðxþyÞ ¼ rZ=ðxþyþZÞ. Rescaling ~Z ¼ Z=e1, we
obtain the growth term:

xZ
xþy=lþZ :

In this case there are exactly four fixed points in the system. We
set l¼ 1 to simplify the analysis of the equilibria. One of them is
always negative. Another one (S0) is the usual saddle point, ð0;0Þ.
The third one corresponds to S0 for large Z and is a spiral. The
fourth one corresponds to the saddle point Ss for large values of Z.
The value xs, as a function of Z, has a discontinuity. As Z decreases,
it grows and tends to þ1 as Z-Zc on the right. On the left of that
point, xs-�1, and for ZoZc we have xso0.

In order to find the point Zc , we can use the analytical solution
for the value xs obtained as a solution of a cubic equation (because
S0 factors out). The denominator of this expression as a function of
Z has three zeros, corresponding to

Z¼ b�a; Z¼ ðq17
ffiffiffiffiffiffiffiffi
3q2

p
Þ=ð2aÞ; ð25Þ

where q1 ¼ b�3ðaþ1Þ and q2 ¼�b
2
�2ðaþ1Þb�ða2�6a�3Þ. We

can see that q2o0 for b4b0, with b0 ¼ �ð1þaÞþ2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2a
p

obc , so
clearly the second and the third roots in expression (25) are
always complex. Therefore, we have

Zc ¼ b�a:

To summarize, as Z decreases (which in general terms
corresponds to a decrease in the cancer scale, st), we observe a
change in the number of equilibria. This result was obtained and
discussed in general terms in previous sections of this paper. The
two examples considered here (the logistic and linear growth)
illustrate the following point. Depending on the exact growth
term, we can have very different types of bifurcation experienced
by the system as the viral scale decreases. Each system
demonstrates its own unique features. A detailed analysis of each
type of terms can be performed. However, we would like to argue
that such bottom-up approach is not very fruitful, because it is
difficult to generalize on the basis of several particular examples.
In our top-down approach, where we analyzed the system before
we specified particular functional forms of the cancer and virus
terms, we were able to uncover features of behavior common to
all realizations of the unknown cancer and virus terms. Particular
examples can be studied as more biological information becomes
available to further specify the relevant terms in the equations.
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