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ABSTRACT Phenotypic cell-to-cell variability or cell population heterogeneity originates from two fundamentally different
sources: unequal partitioning of cellular material at cell division and stochastic fluctuations associated with intracellular
reactions. We developed a mathematical and computational framework that can quantitatively isolate both heterogeneity
sources and applied it to a genetic network with positive feedback architecture. The framework consists of three vastly different
mathematical formulations: a), a continuum model, which completely neglects population heterogeneity; b), a deterministic cell
population balance model, which accounts for population heterogeneity originating only from unequal partitioning at cell
division; and c), a fully stochastic model accommodating both sources of population heterogeneity. The framework enables the
quantitative decomposition of the effects of the different population heterogeneity sources on system behavior. Our results
indicate the importance of cell population heterogeneity in accurately predicting even average population properties. Moreover,
we find that unequal partitioning at cell division and sharp division rates shrink the region of the parameter space where the
population exhibits bistable behavior, a characteristic feature of networks with positive feedback architecture. In addition,
intrinsic noise at the single-cell level due to slow operator fluctuations and small numbers of molecules further contributes
toward the shrinkage of the bistability regime at the cell population level. Finally, the effect of intrinsic noise at the cell population
level was found to be markedly different than at the single-cell level, emphasizing the importance of simulating entire cell
populations and not just individual cells to understand the complex interplay between single-cell genetic architecture and
behavior at the cell population level.

INTRODUCTION

Biological complexity originates from various sources. First,

the DNA of organisms is comprised of a large number of

genes, which, depending on the intracellular state, might be

on or off or have intermediate expression levels. This, in

turn, gives rise to a huge number of possible gene expression

states. In addition, cells contain a large variety of chemical

components, including ribonucleic acids, lipids, amino-acids,

proteins, and metabolites of many different chemical com-

positions. These cellular components participate in many

different processes, such as signal transduction, DNA trans-

cription, DNA replication, translation of mRNA into pro-

teins, transport between different cellular compartments or

between the cell and the extracellular space, as well as

transformation of chemical compounds into metabolic prod-

ucts. Furthermore, products of one set of processes typically

affect (inhibit or enhance) the rates of another set of pro-

cesses, leading to highly coupled nonlinear interactions.

Finally, intracellular processes occur at multiple, vastly dif-

ferent timescales. For example, cell proliferation may occur

at the timescale of minutes or hours or days depending on the

strain or cell type, the media, and the environmental con-

ditions, whereas regulatory molecules typically exert their

influence in the timescale of seconds.

All of the aforementioned sources of complexity are

related to processes at the single-cell level. However, the

objective of most biotechnological applications is to max-

imize the productivity of products formed by a population of

cells. Moreover, treatment of entire cell populations is the

main focus of most approaches dealing with pathological

conditions and medical applications in general. In addition,

the majority of the powerful experimental techniques that are

available today (e.g., DNA arrays, two-dimensional gels,

liquid chromatography-mass spectroscopy, etc.), collect

measurements from entire cell populations, instead of indivi-

dual cells. These considerations lead us to define the cell

population, rather than the individual cell, as the biological

system. Such a definition, however, necessitates the consid-

eration of an extra source of complexity related to the fact

that cell populations are heterogeneous systems in the sense

that cellular properties are unevenly distributed among the

cells of the population. Thus, at any given point in time, cells

of an isogenic cell population contain different amounts of

DNA, mRNA, proteins, metabolites, etc. In short, cell popu-

lation heterogeneity can be defined as phenotypic variability

among the cells of an isogenic cell population.
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This biological phenomenon is certainly not new. As early

as 1945, Delbrück showed significant variations in phage

burst sizes (1). Moreover, cell population heterogeneity has

been observed in cell division times (2), the lysogenic states

of phage-infected cells (3,4), the tumbling and smooth-

swimming states of flagellated bacteria (5), flagellar phases

(6), induction or repression states of bacterial differentiation

(7), and sporulating cultures of Bacillus subtilis containing
fusions between sporulation genes and lacZ (8). Further-

more, cell population heterogeneity in b-galactosidase ac-

tivities of cell populations expressing the lac operon genes

has been demonstrated in various systems (9,10). Recently,

Elowitz and co-workers constructed various genetic net-

works, which were incorporated into the chromosome of

Escherichia coli cells (11). They employed two reporter

fluorescent proteins to study the behavior of the correspond-

ing cell populations using fluorescence microscopy. The

results from this elegant set of experiments showed that the

E. coli cell populations were vastly heterogeneous under a

variety of conditions.

Heterogeneity of an isogenic cell population in a uniform

extracellular environment originates from two fundamentally

different sources. First, the amounts of most intracellular

components of mother cells partition unequally between

daughter cells (12). Variability in daughter cell content and

especially in the number of regulatory molecules leads to

different phenotypes. Due to the operation of the cell cycle,

this phenomenon repeats itself, thus leading to further vari-

ability. The type of heterogeneity originating from this source

will be called ‘‘extrinsic’’. Second, regulatory molecules,

which largely determine the cellular phenotype, typically

exist in small concentrations (13). Thus, random fluctuations

characterize the reaction rates these molecules regulate.

Hence, at a given point in time, even cells with equal numbers

of regulatory molecules may behave differently. The type of

heterogeneity originating from such stochastic intracellular

events will be called ‘‘intrinsic’’. Note that any stochastically

acting cellular component will constitute a source of extrinsic

heterogeneity since it will lead to different cellular states at the

next point in time. Thus, the two types of heterogeneity are

coupled. We note that the aforementioned definitions of

intrinsic and extrinsic heterogeneity have differences from

other definitions used in the literature. According to the bulk

of the relevant studies, intrinsic noise originates from the

discrete nature and random birth/death rate of the molecules

(e.g., mRNA, protein) produced by a particular gene circuit.

Extrinsic heterogeneity (14) originates from all other sources

and includes the intrinsic noise of RNAP, ribosomes,

transcription factors, and other sources in addition to the

noise of unequal partitioning at cell division. We emphasize

that in this study, extrinsic heterogeneity is defined to be

related only to unequal partitioning of cellular material upon

randomly occurring cell division events.

The inherently stochastic nature of gene expression and its

regulation has been incorporated in many stochastic kinetic

models, which provided realistic insights into the behavior of

various genetic networks (e.g., (15)). However, the contri-

bution of extrinsic heterogeneity originating from unequal

partitioning at cell division to the overall heterogeneous

phenotype of cell populations has not yet been quantified. In

this work, we will focus on a genetic network with positive

feedback architecture. There are several regulatory networks

with this distinct feature, the most representative of which is

the well-known lac operon circuit (16,17). In this network,

lacI repressor molecules inhibiting expression of the three

lac operon genes are constitutively expressed. In the absence
of lactose, the lac operon genes are turned off due to the

binding of lacI repressor molecules to the operator site.

However, when lactose is present extracellularly, it is trans-

ported through the cell membrane via regular diffusion,

where it binds to repressor molecules. This, in turn, leads to

an increase in the number of free operator sites, which can

now express the lac operon genes. The resulting expression

of lac permease (one of the three lac operon genes) enhances
transport of extracellular lactose, which leads to further

expression. Therefore, the lac operon network functions as

an autocatalytic positive feedback loop. Although single-cell

models have offered significant insights into the function of

the lac operon and similar positive feedback genetic net-

works (15,18–20), here we are interested in understanding

the fundamental features of the relationship between phe-

nomena at the single-cell level and the distribution of phe-

notypes at the cell population level. For this purpose, modeling

of dynamics of the entire cell population is required.

To this end, the extrinsic, heterogeneous nature of cell

growth processes can be naturally captured in a special class

of models known as cell population balance (CPB) models,

first formulated by Fredrickson and co-workers (21–23).

These models predict the entire cell-property distribution and

describe the state-dependent, single-cell reaction and cell

division rates, as well as unequal partitioning at cell division.

Thus, they explicitly account for the fundamental source of

extrinsic heterogeneity. However, cell population balance

models are deterministic, continuous integro-partial differ-

ential equations. Therefore, they neglect the discrete char-

acter of cell population systems and do not account for

stochastic division effects, which can be particularly impor-

tant at low cell densities. They can be viewed as an average

approximation of a master density equation, which, in gen-

eral, is impossible to solve.

The stochastic behavior of entire cell populations was first

simulated by Shah and Ramkrishna (24), who developed a

Monte Carlo algorithm to describe cell mass distribution

dynamics. Due to the linear kinetics for the mass of each

individual cell, an analytical expression for the time between

division events could be obtained. Intracellular processes,

however, such as those describing the function of gene reg-

ulatory networks are highly nonlinear. Such systems cannot

be simulated with this algorithm. This algorithm was later

extended by Hatzis et al. (25) and applied to a much more
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complex system describing the multi-staged growth of

phagotrophic protozoa. Despite their predictive power and

ability to simulate the system starting from a single cell,

these algorithms suffered from increased central processing

unit (CPU) time requirements due to the increase of the size

of the cell population as a function of time. Thus, the simu-

lation of the cell population until reaching the well-known,

time-invariant state of balanced growth was not feasible.

Information about this state is particularly important for

extracting valuable information about the content-dependent

single-cell behavior from experimentally determined distri-

butions, through the use of inverse population balance

modeling techniques (26,27).

The problem of increasing sample size can be bypassed by

using the constant-number Monte Carlo approach, where the

sample size is kept constant throughout the simulation and

does not follow the dynamics of cell density. This type of

algorithm has been developed and successfully applied to a

variety of nonbiological particulate processes (28–30).

However, in the case of cell population dynamics, it is of

great interest to simulate the process even at very early stages

where the cell number might be much lower than a constant

sample size of a magnitude appropriate to yield accurate

realizations of cell population dynamics. We recently devel-

oped a Variable Number Monte Carlo (VNMC) algorithm,

which successfully addressed the aforementioned problems

(31). The algorithm accounts for stochastic division effects

that were shown to be important at low cell densities, and can

simulate cell population dynamics starting from a single-cell

until balanced growth is reached. However, it employed only

deterministic descriptions of single-cell behavior. Hence, it

cannot account for intrinsic sources of population heteroge-

neity and consequently offers only a limited view of cell

population dynamics.

In this work, we develop a framework for quantitatively

decomposing the effects of both intrinsic and extrinsic

sources of population heterogeneity. We first present a sim-

ple single-cell model for a network with positive feedback

architecture. Comparison of the predictions between its de-

terministic and stochastic versions enables us to assess the

impact of intrinsic noise on single-cell behavior. We then

incorporate the deterministic version of the single-cell model

into the Deterministic Cell Population Balance (DCPB)

formulation and study the interplay between extrinsic hetero-

geneity and positive feedback architecture at the cell popu-

lation level. Finally, we present a fully Stochastic Variable

Number Monte Carlo (SVNMC) model, which can account

for both intrinsic and extrinsic population heterogeneity

sources. To obtain quantitative insight into the asymptotic

and transient behavior of cell populations equipped with

genetic networks with positive feedback architecture, the

predictions of the SVNMC model are compared with those

of two other models: a), the corresponding DCPBmodel, and

b), the corresponding continuum model, which neglects

population heterogeneity altogether.

Single-cell modeling

Consider a genetic network where a single gene enhances its

further expression. The operator responsible for expression

of the gene of interest exists in either the occupied or the

unoccupied state. The operator becomes occupied when a

dimer of the gene product (a monomer) binds to a free

operator. The rate of gene expression in the unoccupied state

(ko) is significantly lower than that in the occupied state (k1).
As a result, gene expression enhances further expression of

the same gene, which is the signature of networks with

positive feedback architecture. Such a genetic network can

be described by the following reaction set (32):

Oo ��!ko Y

O1 ��!k1 Y

Y ��!l d

Oo 1 Z ��! ��f

af
O1

Y1 Y ��! ��x

bx
Z:

Let Oo, O1 denote the fraction of free and occupied oper-

ator sites, and let y and z be the number of monomer and

dimer molecules, respectively. Assuming that the production

rates are proportional to the fractions of unoccupied and

occupied operator sites and that degradation is a linear func-

tion of intracellular content, the single-cell monomer dy-

namics are described by the equation

dy

dt
¼ koOo 1 k1O1 � ly; (1)

where l is the degradation rate constant. Due to the con-

servation of operator sites, we have

Oo 1O1 ¼ 1: (2)

It is further assumed that the occupied and unoccupied

states are in equilibrium with each other:

Ooz ¼ aO1; (3)

and that the same holds for the dimerization reaction:

y
2 ¼ bz; (4)

where a and b are the equilibrium constants of the operator

transition and dimerization reactions, respectively. Substitut-

ing Eqs. 2–4 into Eq. 1 yields

dy

dt
¼ koab1 k1y

2

ab1 y2
� ly: (5)

The number of parameters in Eq. 5 can be reduced by

nondimensionalizing the intracellular content y and time t as
follows:

Cell Population Heterogeneity 4273

Biophysical Journal 92(12) 4271–4288



x ¼ y

y
� (6)

t ¼ t

t
�: (7)

Setting:

k1t
�

y
� ¼ 1 (8)

p ¼ ko
k1

(9)

r ¼ ab

y
�2 (10)

d ¼ lt
�

(11)

and substituting Eqs. 6–11 into Eq. 5, the following non-

dimensional form is obtained:

dx

dt
¼ pr1 x

2

r1 x
2 � dx: (12)

The reference time t* and reference number of molecules

y*, related through Eq. 8, will be fully defined later, when the
single-cell model is incorporated into the cell population

balance model. We note that p � 1 since this parameter

quantifies the relative magnitude of the rate of monomer

production in the unoccupied and occupied states.

Due to its positive feedback feature, the network dynamics

described by Eq. 12 exhibit the classical bistable behavior,

where two stable steady states (upper and lower) coexist with

an unstable steady state of intermediate magnitude over a

significant region of the three-dimensional (p,r,d) parameter

space. Since the steady-state version of Eq. 12 has a cubic

form, it is possible to analytically find the region of the

parameter space where bistability is exhibited. The (p,r,d)
bistability region is defined by the following inequalities (see

Appendix for proof):

For 0, rd
2
#

1

4
: 0,p,

ð9rd2 � 2Þ1 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 3rd

2Þ3
q

27rd
2

For
1

4
, rd

2
#

1

3
:
ð9rd2 � 2Þ � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 3rd

2Þ3
q

27rd
2

,p,
ð9rd2 � 2Þ1 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 3rd

2Þ3
q

27rd
2 :

(13)

The model described by Eq. 5 or Eq. 12 is fully

deterministic. Hence, it does not account for intrinsic noise

at the single-cell level. For this particular genetic network,

intracellular noise originates from the small number of

molecules as well as from slow operator fluctuations. It is of

great interest to understand the implications of these sources

of stochasticity on the transient and asymptotic behavior of

the system. Since a reaction network is available, such a

question can be addressed through Monte Carlo (MC) simu-

lations (33) offering sample paths of the process represented

by the master equation formulation (34), and comparison

of their predictions with those of Eq. 12. Specifically, by

performing multiple MC simulations for each set of param-

eter values, one can obtain the steady-state marginal density

function �pðxÞ; expressing the probability that the cell has

dimensionless intracellular content x.
For single variable systems, stochastic bistability leads to

bimodal �pðxÞ; whereas in regions of the parameter space

where the system exhibits only one steady state stochasti-

cally, �pðxÞ is unimodal (35). By exploring the parameter

space this way, one can quantitatively assess the effects of

stochasticity at the single-cell level.

For the exploration of the entire parameter space, such

simulations can be very time consuming. For this purpose,

Kepler and Elston (32) developed a brilliant, Fokker-Planck,

fast-and-small noise approximation of the master equation

formulation and they applied it to the same genetic network.

However, they used a different nondimensionalization with

respect to time. To derive the Fokker-Planck approximation

that corresponds to the nondimensionalization presented here,

we applied their methodology and obtained the following:

@pðx; tÞ
@t

¼ � @

@x
½AðxÞpðx; tÞ�1 1

2

@
2

@x
2½BðxÞpðx; tÞ�; (14)

where

AðxÞ ¼ pr1 x
2

r1 x2
� dx

� 2rxðp � 1Þ½ððp � 2Þ1 dxÞx2 1 rðdx � pÞ�
Kðr1 x

2Þ4
(15)

BðxÞ ¼ 1

y
�
rðp1 dxÞ1 x

2ð11 dxÞ
r1 x

2

� �
1

1

K

rx
2ðp � 1Þ2
ðr1 x

2Þ3
� �

:

(16)

Equations 14–16 become identical to the corresponding

equations presented by Kepler and Elston (32) for d ¼ 1, a

choice that also renders their deterministic single-cell model

and ours identical.

One significant advantage of this approximation is that

sample paths of the process can be generated in a fraction of

the time required for MC simulations, using the stochastic

differential equation (SDE) corresponding to the Fokker-

Planck Eq. 14 or otherwise known as Langevin equation

dx

dt
¼ AðxÞ1

ffiffiffiffiffiffiffiffiffi
BðxÞ

p
jðtÞ; (17)

where jðtÞ is a Gaussian white noise process and A(x), B(x)
are given by Eqs. 15 and 16, respectively.

A second advantage is related to the ease by which the

effects of stochasticity on the asymptotic single-cell behavior

can be computed. The steady-state version of the linear
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Eq. 14 with reflecting boundary conditions can be easily solved

analytically to yield the well-known potential solution (36)

�pðxÞ ¼ c

BðxÞ exp 2

Z x

0

AðzÞ
BðzÞ dz

� �
; (18)

where c is a normalization constant, rendering �pðxÞa density
function. Thus, the existence or not of two modes in the

shape of the stationary density function can be evaluated for

the entire region of the parameter space much quicker than

the alternative based on the master equation formulation,

which does not allow for analytical solutions. Specifically,

the number of modes in �pðxÞ can be found by analyzing the

solution space of the following, simple algebraic equation

AðxÞ � 1

2

dBðxÞ
dx
¼ 0: (19)

An additional advantage of this approximation is that it

offers analytical insight into the effect of stochasticity on

network dynamics. Notice that Eqs. 14 and 17 contain two

extra parameters compared to the deterministic single-cell

model (Eq. 12): a), the reference number of molecules y*,
and b), parameter K, defined as follows:

K ¼ ft
�
y
�2

b
: (20)

K can be thought as a measure of the rate of operator

fluctuations. Thus, the two extra parameters quantify the

effect of the two main sources of stochasticity at the single-

cell level for the given reaction network, i.e., small numbers

of molecules and slow operator fluctuations. We emphasize

that there might exist others sources of intrinsic noise in

networks with positive feedback architecture, such as burst-

ing, repressor fluctuations, small numbers of mRNA mole-

cules, etc. However, here we consider only those sources of

single-cell stochasticity associated only with the given reac-

tion network. Notice also that as K/N (very fast operator

fluctuations) and y�/N (large numbers of molecules), the

Langevin equation (17) becomes identical to the determin-

istic single-cell model (Eq. 12), since, at these limits, the

noise term B(x) vanishes and A(x) yields the right-hand side

of Eq. 12.

Comparison between MC simulations and simulations of

the Langevin Eq. 17 at various parameter values has shown

that the approximation is valid for very small numbers of

molecules (y* as low as 25) and very slow operator fluc-

tuations (K as low as 40) as was also shown in the original

study. The same also applies when comparing entire steady-

state density functions as predicted by the master equation

formulation and by the Fokker-Planck approximation. Thus,

the latter has a very large range of validity. Based on this

result, the analytical expressions (Eqs. 18 and 19) were uti-

lized to assess the effect of the two sources of noise (K and

y*) on the region of bistability (i.e., region of the parameter

space where �pðxÞ is bimodal). Notice (Figs. 1 and 2) that for

very fast operator fluctuations and large number of mole-

cules, the regions of stochastic and deterministic bistability

overlap, as expected. However, slower operator fluctuations

and smaller numbers of molecules have a profound effect on

single-cell asymptotic behavior. Small values of K drasti-

cally increase the region of bistability. Only for very slow

operator fluctuations, a small region of deterministic bista-

bility becomes monostable. Small numbers of molecules

have a more pronounced dual effect: they can generate or

eliminate bistability although the former effect is visibly

more significant. An interesting feature in both cases is the

presence of isolated regions of bistability. For example, for

fixed values of p, there exist stochastically bistable regions

in the r parameter space separated by monostable intervals

for intermediate values of r. This behavior is not exhibited
by the corresponding deterministic single-cell model.

Deterministic cell population balance modeling

The aforementioned single-cell stochastic model takes into

account intrinsic noise, inherently present in regulation of

gene expression guided by the function of genetic networks.

Thus, it is definitely more realistic than the corresponding

deterministic single-cell model. However, by construction,

both types of models cannot simulate system behavior at the

cell population level. This goal can be achieved with a

different class of models, DCPB models first formulated by

Fredrickson and co-workers (21–23). The main unknown of

a DCPB formulation is the number of cells that at time t have
intracellular content between y and y 1 dy. The generalized
DCPB equation for the corresponding number density

function h(y,t) in the case of a single intracellular species

is as follows (see (31) for a derivation):

@hðy; tÞ
@t

1
@

@y
½rðyÞhðy; tÞ�1 gðyÞhðy; tÞ ¼

2

Z ymax

y

gðy9ÞPðy; y9Þhðy9; tÞdy9� hðy; tÞ
Z ymax

0

gðyÞhðy; tÞdy; (21)

where r(y) is the single-cell reaction rate describing the rate

of production or consumption of species y due to intracellular
reactions; g(y) is the single-cell division rate relating cell

division with intracellular content; and P(y,y9) is the partition
probability density function describing the mechanism by

which mother cells of content y9 produce, upon cell division,
one daughter cell with content y and another with content

y9�y. Assuming no nutrient limitations and in the absence of

cell death, these three functions (collectively called intrinsic

physiological state functions) fully determine the behavior of

the cell population. Finally, ymax is the maximum attainable

intracellular content.

The first term of Eq. 21 describes the accumulation of cells

with content y, whereas the second term is the rate by which

cells with content y are lost from the cell population due to

the fact that they react to produce cells of content different

than y. The third term accounts for loss of cells with content y
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due to division yielding daughter cells with smaller content.

The first term in the right-hand side describes the birth of

new daughter cells of content y from the division of all cells

with content greater than y. The factor of 2 accounts for the

fact that each division event leads to the birth of two daughter

cells. Finally, the second term in the right-hand side describes

the dilution effect due to cellular growth. This nonlinear sink

term is responsible for the number density function reaching

a steady state, known as the state of balanced growth. An

appropriate initial condition ho(y) is used, whereas contain-
ment or regularity boundary conditions (23) are used for the

solution of Eq. 21, describing the fact that cells of the

population do not grow outside the domain [0,ymax]:

rð0Þhð0; tÞ ¼ rðymaxÞhðymax; tÞ ¼ 0: (22)

Notice that this model takes into account cell division and

explicitly includes the fundamental source of extrinsic popu-

lation heterogeneity, namely unequal partitioning of mother

cell content at cell division. However, this model is fully

deterministic despite the presence of a partition probability

density function. Therefore, both the single-cell reaction and

division rates need to be deterministic functions of intracel-

lular content y. Hence, DCPB models cannot account for

stochastic division effects as well as intrinsic noise at the

single-cell level, which also constitute important sources of

cell population heterogeneity.

To describe the positive feedback architecture, the single-

cell reaction rate describing the rate of change of intracellular

content y is taken to be the deterministic single-cell model

derived earlier:

rðyÞ[ dy

dt
¼ koab1 k1y

2

ab1 y
2 � ly: (23)

In general, a correlation between the rate by which cells

divide and the intracellular content of substances exits even

if these substances do not participate in the progression of the

cell cycle. To capture such a correlation, a phenomenological

power-law expression was used:

gðyÞ ¼ m
y

Æyæ

� �m

; (24)

where m is a measure of the growth rate of the population and

has units of inverse time; Æyæ represents the average expres-
sion level among the cells of the population; and the ex-

ponent m quantifies the sharpness of the division rate. This

type of functional form for the division rate has also been

obtained from experimental data using inverse cell popula-

tion balance modeling techniques (37).

For the partition probability density function, the simplest

possible mechanism describing unequal, asymmetric parti-

tioning at cell division is considered. Specifically, every

FIGURE 1 Effect of rate of operator fluctuations (K) on the region of

bistability at the single-cell level (d¼ 1 and y*¼ 1000). (Solid lines) Single-

cell deterministic model (steady state of Eq. 12). (Symbols) Single-cell

stochastic model. (a) K ¼ 200,000, (b) K ¼ 2,000, and (c) K ¼ 50.
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mother cell is assumed to give a fraction f of its content

to one daughter cell and a fraction 1� f to the other. Clearly,
0, f # 0:5. This discrete asymmetric partitioning mecha-

nism is mathematically described by the expression

Pðy; y9Þ ¼ 1

2f
dðfy9� yÞ1 1

2ð1� f Þ dðð1� f Þy9� yÞ; (25)

where d is the delta function. To express Eq. 21 with the

nondimensional variables x and t, Eqs. 6–11 are applied.

Moreover, setting

hðy; tÞdy ¼ nðx; tÞdx (26)

defining the reference time as

t� ¼ 1

m
(27)

and substituting the special form of the partition probability

density function (Eq. 25) into Eq. 21, the following non-

linear, functional partial differential equation is obtained:

@nðx; tÞ
@t

1
@

@x
½RðxÞnðx; tÞ�1GðxÞnðx; tÞ ¼

1

f
G

x

f

� �
n

x

f
; t

� �
1

1

1� f
G

x

1� f

� �
n

x

1� f
; t

� �

� nðx; tÞ
Z xmax

0

GðxÞnðx; tÞdx (28)

subject to the boundary conditions

Rð0Þnð0; tÞ ¼ RðxmaxÞnðxmax; tÞ ¼ 0 (29)

and an initial condition no(x), which is taken to be a truncated
Gaussian number density function with mean Æxæo and stan-

dard deviation so. The dimensionless single-cell reaction

rate R(x) is given by the previously derived, nondimensional,

deterministic single-cell model

RðxÞ[ dx

dt
¼ pr1 x

2

r1 x
2 � dx: (30)

Moreover, the nondimensional division rate becomes

GðxÞ ¼ x

Æxæ

� �m

: (31)

Application of this choice for the reference time t*
(Eq. 27) into Eqs. 8, 10, 11, and 20 yields the reference num-

ber of molecules and the relationship between all nondi-

mensional and dimensional parameters:

y
� ¼ k1

m
(32)

r ¼ abm
2

k
2

1

(33)

d ¼ l

m
(34)

FIGURE 2 Effect of number of molecules (y*) on the region of bistability
at the single-cell level (d ¼ 1 and K ¼ 200,000). (Solid lines) Single-cell

deterministic model (steady state of Eq. 12). (Symbols) Single-cell stochastic

model. (a) y* ¼ 1,000, (b) y* ¼ 50, and (c) y* ¼ 20.
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K ¼ fk
2

1

bm
3 (35)

We note that parameter d captures the timescale of divi-

sion relative to protein degradation. In all simulations that

will be presented in the following, we used the value of 0.05,

which renders protein degradation much slower than divi-

sion as is the typical case.

The DCPB model defined by Eqs. 28–31 represents a

challenging numerical problem. It consists of a nonlinear,

functional partial differential equation that has an unknown,

upper boundary (xmax). Moreover, due to the nonlinear,

single-cell kinetics and the nonlinear term of the equation,

it may exhibit multiple steady states of largely different

magnitude as is the case with the corresponding single-cell

model. These challenges cannot be addressed by standard

fixed boundary algorithms. Therefore, a moving boundary

algorithm was developed to simulate system behavior both

transiently and asymptotically. It consists of an appropriate

variable transformation and utilizes a spectral method with

sinusoidal basis functions in conjunction with the RK4 time

integrator.

Corresponding continuum model

The DCPB model just described predicts the entire distribu-

tion of intracellular content and, more importantly, explicitly

accounts for the extrinsic sources of cell population heter-

ogeneity. It is of great significance to quantitatively isolate

the effects of extrinsic population heterogeneity on system

behavior for the given genetic network. However, to achieve

such a goal, a corresponding model that also predicts cell

population dynamics but neglects cell population heteroge-

neity is required for comparison purposes. Neglecting cell

population heterogeneity implies the assumption that all cells

of the population behave the same and exactly like the aver-

age cell. Hence, the required model will, by construction,

predict only the average population dynamics (since the dy-

namics of all other cells are identical), and will assume that

the cell population is a lumped biophase, behaving like a

continuum. For this reason, this type of a model will

henceforth be called ‘‘continuum model’’.

Since the continuum model will only predict the average

population dynamics and since it needs to correspond to the

DCPB (Eqs. 28–31), the average population dynamics pre-

dicted by the DCPB model will need to be derived first.

Taking the first moment of Eq. 28, applying the boundary

conditions (Eq. 29) as well as conservation of intracellular

content at cell division yields

dÆxæ
dt
¼

Z xmax

0

RðxÞnðx; tÞdx � Æxæ
Z xmax

0

GðxÞnðx; tÞdx:
(36)

The assumption that all cells of the population behave

exactly like the average cell, which needs to be made for the

continuum formulation, is mathematically expressed as

follows:

nðx; tÞ ¼ dðx � ÆxæÞ: (37)

Substituting Eq. 37 into Eq. 36 yields the continuum

model that corresponds to the DCPB model (Eqs. 28–31):

dÆxæ
dt
¼ RðÆxæÞ � GðÆxæÞÆxæ: (38)

Thus, comparing the predictions of Eq. 38 with those of

the DCPB for the average population behavior will enable

the quantitative isolation of the extrinsic population heter-

ogeneity effects. We note that the predictions of Eqs. 36 and

38 will agree only in the special case where the single-cell

reaction and division rates are linear functions of the intracel-

lular content, conditions that are certainly not satisfied here.

Figs. 3 and 4 show the effects of the extent of partitioning

asymmetry (parameter f) and sharpness of the division rate

(parameter m), respectively, on the average, asymptotic

expression level. Notice that extrinsic population heteroge-

neity always shrinks the region of bistability, and at the same

time it shifts it toward smaller values of r. Moreover, the

extent of shrinkage is more pronounced for more asymmetric

partitioning and sharper division rates. Very asymmetric

partitioning can even eliminate the entire bistability region

altogether. In addition, although not directly comparable, it is

worth noting that extrinsic heterogeneity affects the asymp-

totic behavior at the cell population level in the aforemen-

tioned, very specific way as opposed to the dual effects that

intrinsic noise may have at the single-cell level.

From the systems biology perspective, the results in Figs.

3 and 4 establish the critical importance of taking into

account cell population heterogeneity to accurately predict

system behavior, even if it is of interest to predict only

average population property dynamics. Specifically, neglect-

ing extrinsic population heterogeneity may lead to huge

differences in the predictions of the qualitative behavior of

the system (bistability versus monostability). Furthermore,

as shown in Figs. 3 and 4, even in regions of the parameter

space where the population is monostable, neglecting popu-

lation heterogeneity leads to significant overprediction of the

average induced state, especially for very asymmetric par-

titioning and very sharp division rates.

The DCPB model can predict the entire distribution of

expression levels. Fig. 5 shows a representative example of

the three steady-state number density functions (normalized

around the average expression level) coexisting at a given

set of parameter values where the cell population exhibits

steady-state multiplicity. Notice that the unstable number

density function is visibly broader than the two stable ones

and that the stable number density function with the lower

average is the narrowest of the three, a pattern that persists

for other sets of parameter values for which steady-state

multiplicity exists.
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Fig. 6 shows the normalized steady-state number density

function for different extents of partitioning asymmetry in a

region of the parameter space where the DCPB exhibits

monostable behavior. Notice that more asymmetric parti-

tioning leads to broader number density functions. More

importantly, it changes the shape of the number density func-

tion from unimodal to bimodal. This is a consequence of the

interplay between the particular genetic architecture and the

division and partitioning mechanisms. Specifically, due to

the autocatalytic nature of the genetic network, the single-

cell induction rate has a sigmoidal shape. As a result, there

exists a large discrepancy between the induction rates of cells

with low and higher expression levels. Thus, cells with low

expression levels at a given point in time t require a signif-

icantly larger amount of time to become fully induced com-

pared to their peers, which, at the same point in time, have

higher expression levels. Higher extent of partitioning asym-

metry gives birth to daughter cells that have larger differ-

ences in their initial intracellular content. Thus, if the extent

of partitioning asymmetry is above a certain threshold (f is
below a certain value), the daughter cell with low initial

content does not have enough time before division to become

fully induced and ‘‘catch up’’ with the daughter cell that was

born at the same time but inherited a much larger intracel-

lular content. Hence, if this argument is raised to the entire

population level, two distinct subpopulations are formed:

one below and one above a certain single-cell induction

threshold, thus resulting in the bimodal shape.

Stochastic cell population balance modeling

The DCPB model explicitly accounts for cell division and

unequal partitioning of mother cell content and predicts the

FIGURE 4 Effect of sharpness of division rate (m) on average gene

expression at the cell-population level as a function of dimensionless

parameter r (f ¼ 0.3, p ¼ 0.03, d ¼ 0.05). (Dashed line) Continuum model.

(Solid line, open triangles) m¼ 8.(Dashed line, solid squares) m¼ 5. (Solid
line, open squares) m ¼ 3. (Dashed line, solid circles) m ¼ 2. (Solid line,

open circles) m ¼ 1.

FIGURE 3 Effect of partitioning asymmetry (f) on average gene expres-

sion at the cell-population level as a function of dimensionless parameter r

(m ¼ 2, p ¼ 0.03, d ¼ 0.05). (Dashed line) Continuum model. (Solid line,

open triangles) f ¼ 0.5. (Dashed line, solid squares) f ¼ 0.4. (Solid line,
open squares) f ¼ 0.3. (Dashed line, solid circles) f ¼ 0.2. (Solid line, open

circles) f ¼ 0.1.

FIGURE 5 Three time-invariant number density functions, normalized

around the average expression level, coexisting in the bistable regime of the

parameter space (m ¼ 2, f ¼ 0.3, p ¼ 0.03, d ¼ 0.05, and r ¼ 0.1). (Solid
line, open circles) Stable steady state corresponding to highest average ex-

pression level. (Dashed line, solid circles) Unstable steady state correspond-

ing to intermediate average expression level. (Solid line, open squares) Stable

steady state corresponding to lowest average expression level.
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entire distribution of expression levels instead of just average

properties. However, it represents the state of the population

at each point in time with a continuous distribution. Hence, it

does not ‘‘respect’’ the fact that cells are discrete entities. In

addition, the DCPB model is fully deterministic, and thus

cannot describe the stochastic nature of cell division, which

can in turn significantly influence cell population dynamics

in growth stages where cell density is low (24,31). An even

more severe consequence of its deterministic nature is that it

cannot incorporate intrinsic noise at the single-cell level.

Therefore, the DCPB formulation offers only a partial view

of cell population heterogeneity and its effects on system

behavior. To overcome these shortcomings, a fully discrete

and stochastic treatment of cell population dynamics is re-

quired. To address this challenge, a fully SVNMC algorithm

was developed, the details of the derivation of which are

given in Appendix B, whereas a schematic of its basic steps

is presented in Fig. 7. The SVNMC model uses the same

type of information as the DCPB model (i.e., a single-cell

reaction rate, a single-cell division rate, and a partition prob-

ability density function) and at the same time accounts for

stochastic division, as well as noise associated with intra-

cellular reactions.

To examine the validity of the SVNMC algorithm,

consider a hypothetical situation where intrinsic noise has

a very small contribution to the expression level dynamics of

each individual cell (i.e., K/N and y�/N). Then, the

single-cell reaction rate (Eq. 17) would resemble the deter-

ministic single-cell model described by Eq. 12. Moreover, it

was shown that for high enough initial cell density and when

the single-cell kinetics are fully deterministic, the predictions

of the DCPB model are in excellent agreement with those of

a VNMC model, which neglects intrinsic noise effects (31).

Hence, the predictions of the SVNMC algorithm in cases

where intrinsic noise is negligible and the initial cell density

is high enough should agree with those of the DCPB model

presented earlier. Fig. 8 shows such a comparison for the

number density function dynamics. Despite the fact that the

two algorithms and mathematical formulations are vastly

different, the agreement is excellent. This is true even at early

time points where the number density function exhibits

abrupt dynamics with complex, multimodal shapes and it

also holds throughout the course of the simulation until the

cell population reaches a time-invariant state.

Since the SNVMC algorithm incorporates both intrinsic

and extrinsic sources of population heterogeneity in its for-

mulation, whereas the corresponding DCPB model accounts

only for extrinsic heterogeneity, comparison of the predic-

tions of the two models can rigorously assess the effects of

intrinsic noise on cell population dynamics in regions of the

parameter space where intrinsic noise is quantitatively signif-

icant. Fig. 9 shows such a comparison. Notice that through-

out the course of the simulation and until the population

becomes stationary, the multimodal shapes that the number

density function obtains deterministically become less well-

defined when intrinsic noise is accounted for. Moreover, the

population is shifted toward lower average expression levels,

whereas the number density function is spread over a wider

range of expression levels as also shown in Fig. 10 b. These
patterns are general; the results presented in Fig. 9 constitute

just a representative example.

This behavior can be understood when considering the

effects that molecular characteristics and division have on

the particular genetic architecture. Specifically, low values of

y* and K can be due to faster cell division (quantified by m)
relative to the rate of gene expression when the operator is in

the occupied state (k1). In this case, cells produce lower

numbers of monomer proteins before cell division occurs.

Since cells divide at lower expression levels, the daughter

cells will also have lower intracellular content. Thus, the

average expression level becomes lower than in the case

where intrinsic noise is not considered. Due to the autocat-

alytic nature of this network, there exists a wide discrepancy

in the induction rate between cells with low and high expres-

sion levels as is also reflected in the single-cell reaction rate

expression (Eq. 12). Thus, the intracellular content of low

expressing cells increases much slower than that of cells with

expression level above a certain single-cell threshold. Hence,

in the case where intrinsic noise is significant and intracel-

lular contents are lower on average, the corresponding num-

ber density function is broader as some cells live below and

some above the single-cell induction threshold.

Fig. 10 a presents the time evolution of the average ex-

pression levels as predicted by the three models starting from

FIGURE 6 Effect of partitioning asymmetry (f) on the shape of the

normalized around the average expression level, time-invariant number

density function in the monostable regime of the parameter space (m ¼ 2,

p ¼ 0.03, d ¼ 0.05, and r ¼ 0.03(Solid line, open circles) f ¼ 0.1. (Dashed

line, solid circles) f ¼ 0.2. (Solid line, open squares) f ¼ 0.3. (Dashed line,
solid squares) f ¼ 0.4. (Solid line, open triangles) f ¼ 0.5.
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the same initial average expression level and the same over-

all distribution for the DCPB and SVNMC models. Notice

that the incorporation of intrinsic noise further amplifies the

quantitative effect that extrinsic cell population heterogene-

ity has on cell population dynamics as the difference between

the predictions of the continuum and SVNMC models be-

comes larger. This further enhances the significance of

accounting for population heterogeneity effects, even in

cases where predictions of only the average population be-

havior is of primary interest. Moreover, extrinsic heteroge-

neity is quantitatively more significant than intrinsic noise, a

pattern that persists in other regions of the parameter space as

well. Thus, by using these three fundamentally different

mathematical formulations, it is possible to obtain deeper

insight into the complex relationship between network struc-

ture, molecular characteristics of the network, and the

distribution of phenotypes among the cells of the entire cell

population.

The SVNMC model was subsequently employed to

perform bifurcations studies to isolate the intrinsic noise

effects on population behavior. For each point in the param-

eter space, triplicate simulations were performed with the

FIGURE 7 Schematic of the SVNMC algorithm that accounts for both intrinsic and extrinsic sources of cell population heterogeneity. See text for detailed

description.
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SVNMC algorithm. The population dynamics were simulated

for an amount of time sufficient for the main distribution

characteristics (average and coefficient of variation) to reach

a plateau in the stochastic sense. To capture possible steady-

state multiplicity, three different Gaussian initial conditions

were used, corresponding to each of the three simulations

for every point in the parameter space: a), Æxæo ¼ 0.1,

so ¼ 0.025; b), Æxæo ¼ 0.25, so ¼ 0.05; and c), Æxæo ¼ 0.5,

so ¼ 0.1.

As expected, for low intrinsic noise levels (high values of

K and y*), the asymptotic behavior of the population was

found to be practically deterministic since the predictions of

the SVNMC model agree with those obtained with the

DCPB model and presented in Figs. 3 and 4. However, the

situation is different in the presence of significant intrinsic

noise. Fig. 11 shows predictions of the SVNMC and DCPB

models for the asymptotic behavior of the average expres-

sion level as a function of dimensionless parameter r for K¼
500 and y* ¼ 50. For these parameter values, intrinsic noise

has a profound impact on the asymptotic behavior at the

single-cell level as was shown in Figs. 1 and 2.

First, notice that in all regions of the parameter space

where the system is monostable, both stochastically and

deterministically, the population average is always smaller

when intrinsic noise is significant. Similar to the special

case presented in Fig. 10 b, the corresponding number

density function is always broader compared to the deter-

ministic prediction. Second, notice that different, stochastic

solutions for the population average exist in the region:

0:07# r# 0:09. This apparent hysteresis in the predictions

of the SVNMC model indicates the presence of multiple

stationary solutions. As also shown in Fig. 11, multiple

steady states coexist deterministically but in a wider re-

gion:0:075# r# 0:115. Therefore, the qualitative effect of

FIGURE 8 Validation of the SVNMC algorithm: comparison of SVNMC predictions (dashed lines) with DCPB model predictions (solid lines) for very low
intrinsic noise (K ¼ 50,000, y* ¼ 100,000) and for m ¼ 2, f ¼ 0.2, p ¼ 0.03, d ¼ 0.05, and r ¼ 0.02. (a) t ¼ 0, (b) t ¼ 0.195, (c) t ¼ 0.405, (d) t ¼ 0.595,

(e) t ¼ 1.005, (f) t ¼ 1.405, (g) t ¼ 1.995, (h) t ¼ 2.995, and (i) t ¼ 5.
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intrinsic noise on the bifurcation structure of the system is

the same as that of extrinsic heterogeneity: significant

intrinsic noise shrinks the region of bistability and shifts it

toward lower values of r.
This effect of intrinsic noise at the cell population level has

fundamental differences from its effect at the single-cell

level. As shown in both Figs. 1 and 2, intrinsic noise creates

isolated discontinuous bistable regimes in the r parameter

space for fixed values of p. This is not the case at the cell

population level. Moreover, slow operator fluctuations pri-

marily generate very big regions of bistability at the single-cell

level (Fig. 1), whereas the effect of noise on the population

average is almost the opposite. Although small number of

molecules primarily generate bistability, small values of y*
can also eliminate significant areas of bistable behavior for

high values of r. Thus, similar to the observed effect at the

population level, small numbers of molecules shift the region

of bistability toward lower values of r. However, at the cell
population level (Fig. 11), this shift is accompanied by a

shrinkage of the bistable regime, which is the opposite of

what is observed at the single-cell level (Fig. 2).

Fig. 12 illustrates a characteristic example (r ¼ 0.1) of

bistability loss due to intrinsic noise. The figure shows the

time evolution of the average expression level and coeffi-

cient of variation of the number density function in the

absence and presence of intrinsic noise for two different

initial conditions. Notice that in the deterministic case, for

low initial averages, the population evolves toward an un-

induced state, whereas when the initial average expression is

above a certain threshold, the population reaches a different

induced state. On the contrary, when intracellular behavior is

dominated by noise, the system evolves toward the unin-

duced state, even for high initial average expression levels,

after an initial overshoot in Æxæ.

FIGURE 9 Effect of significant intrinsic noise (K ¼ 500, y* ¼ 50) on number density function dynamics for m ¼ 2, f ¼ 0.3, p ¼ 0.03, d ¼ 0.05, and

r ¼ 0.07. (Solid lines) Predictions of the DCPB model neglecting intrinsic noise effects. (Dashed lines) Predictions of SVNMC algorithm. (a) t ¼ 0,

(b) t ¼ 0.2, (c) t ¼ 0.6, (d) t ¼ 1, (e) t ¼ 1.5, (f) t ¼ 2, (g) t ¼ 5, (h) t ¼ 10, and (i) t ¼ 20.
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DISCUSSION, SUMMARY, AND CONCLUSIONS

The ability to reliably manipulate the genotype of biological

organisms offers unique opportunities for understanding,

designing, and controlling phenotype. However, biological

systems are, within the context of most of their applications,

cell populations, and cell populations are heterogeneous

systems in the sense that population phenotype is unevenly

distributed among the cells of the population. Therefore, to

understand and subsequently design and control an orga-

nism’s phenotype through manipulation of its genotype, we

first need to understand the implications of cell population

heterogeneity on system behavior. The fundamental biolog-

ical question under consideration is multi-scale by nature:

how do the genetic architecture as well as phenomena and

reactions occurring at the single-cell level affect the distri-

bution of phenotypes at the cell population level?

To begin addressing this general, and hence, hard ques-

tion, we concentrated on a specific network with positive

feedback architecture. Cell population heterogeneity ori-

ginates from two qualitatively different sources: unequal

partitioning of cellular material at cell division (extrinsic

heterogeneity) and stochastic fluctuations associated with

intracellular reactions (intrinsic heterogeneity or intrinsic

noise). The primary focus of this work is to quantitatively

isolate the effects of these heterogeneity sources on cell

population behavior both transiently and asymptotically.

To tackle this problem, we developed a mathematical and

computational framework, which consists of the following

three modules: a), a continuum model that predicts only the

dynamics of the average population behavior and completely

neglects population heterogeneity; b), a corresponding DCPB

model, which predicts the entire distribution of phenotypes

but accounts only for extrinsic population heterogeneity; and

c), a corresponding fully stochastic model simulated using a

novel SVNMC algorithm, which incorporates all informa-

tion included in the DCPB model but, in addition, accounts

for intrinsic noise at the single-cell level originating from

small number of molecules and slow operator fluctuations.

Comparison of the predictions of the continuum and DCPB

models enables the isolation of extrinsic population heter-

ogeneity effects, whereas comparison of the predictions of

FIGURE 10 Decomposing the effects of intrinsic and extrinsic heteroge-

neity by comparing the predictions of i), the SVNMC model (dashed line),

ii), the corresponding DCPB model (solid line), and iii), the corresponding

continuum model (solid line, open circles) for the average expression level.

Common parameter values in all three models: p ¼ 0.03, d ¼ 0.05, and r ¼
0.07. Common parameter values for DCPB and SVNMC models: m ¼ 2,

f¼ 0.3. Parameter values appearing only in SVNMCmodel:K¼ 500, y*¼ 50.

(a) Average expression levels as predicted by the three models. (b) Co-

efficients of variation for the number density function as predicted by the

SVNMC and DCPB models.

FIGURE 11 Asymptotic average expression level predicted by the DCPB

(solid line) and SVNMC (symbols) models as a function of dimensionless

parameter r for p ¼ 0.03, d ¼ 0.05, m ¼ 2, and f ¼ 0.3. Intrinsic noise

parameters: K ¼ 500, y* ¼ 50. In the case of SVNMC, the results of three

simulations are plotted for each value of r.
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the DCPB and SVNMC models allows the isolation of in-

trinsic noise effects on the behavior of the entire cell popu-

lation.

The continuum and DCPB models utilize a simple, fully

deterministic single-cell model describing the dynamics of

the positive feedback loop. On the contrary, the SVNMC

algorithm relaxes the deterministic assumption at the single-

cell level and utilizes an elegant stochastic, Langevin ap-

proximation of the chemical master equation derived by

Kepler and Elston (32). The Langevin model collapses to the

deterministic single-cell model when intrinsic noise is

negligible. Thus, comparison of the predictions of the two

models enables the assessment of the effect of intrinsic noise

at the single-cell level.

Application of the developed framework illustrates the

importance of accounting for population heterogeneity even

if prediction of the average population behavior is of primary

interest. Furthermore, our results showed that the funda-

mental sources of extrinsic population heterogeneity, namely,

high extent of partitioning asymmetry at cell division as well

as sharp division rates, have two key consequences: a),

bimodal shapes of the asymptotic number density functions,

and b), significant shrinkage of the region of the parameter

space where the population exhibits bistable behavior, a

characteristic feature of networks with positive feedback ar-

chitecture. Comparison of the predictions between the DCPB

and SVNMC models showed that slow operator fluctuations

and small numbers of molecules further shrinks the region

of the parameter space where bistability is observed. More-

over, the effect of intrinsic noise at the cell population level

was markedly different than at the single-cell level, empha-

sizing the importance of simulating entire cell populations

and not just individual cells to understand the underlying

dynamics of a specific genetic network.

Figs. 3, 4, and 11 showed that the different sources of

population heterogeneity decrease the bistability region

characterizing the asymptotic behavior of cell populations

carrying the particular positive feedback loop architecture.

From a different perspective, cell population heterogeneity

increases the region of the parameter space where the system

will evolve toward a unique, monostable number density

function irrespective of how far the initial condition is from

the asymptotic solution. This might in turn provide insight

into how phenotypic variability in systems with positive

feedback loops enhances the ability of cell populations to

adapt and survive when exposed to severe environmental

stresses. Whether the observed trends are specific to this

network with the positive feedback architecture or they also

apply to other genetic architectures remains a fascinating,

open question.

APPENDIX A: REGION OF STEADY-STATE
MULTIPLICITY FOR THE DETERMINISTIC,
SINGLE-CELL MODEL

The steady-state version of the nondimensional, deterministic single-cell

model (Eq. 12) yields the cubic equation

pr1 x
2

r1 x
2 � dx ¼ 00gðxÞ[ dx

3 � x
2 1 drx � pr ¼ 0:

(A1)

From Descartes rule of signs, we can see that Eq. A1 can admit at most three

positive real solutions. By setting (s ¼ �x) in Eq. A1 and applying the same

rule, we conclude that Eq. A1 can have no negative real solutions. Thus,

there exist only two possibilities for the solutions of Eq. A2): a), one positive

FIGURE 12 Loss of bistability at the population level due to intrinsic

noise.Dynamics of average expression level (a) and coefficient of variation of
the number density function (b) as predicted by the DCPB (solid lines) and

SVNMC (dashed lines) models for two different initial conditions: i), Æxæo¼
0.1, so¼ 0.025; and ii), Æxæo¼ 0.25, so¼ 0.05 (open symbols). (a) Average
expression level. Parameter values for both models: p ¼ 0.03, d ¼ 0.05,

r ¼ 0.1, m ¼ 2, and f ¼ 0.3. Intrinsic noise parameters, K ¼ 500, y* ¼ 50.
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real and two complex conjugate solutions, and b), three positive real solu-

tions. Here, we are interested in identifying the region of the (p,r,d) param-

eter space where the latter holds.

Notice that limx/N
pr1x2

r1x2 ¼ 1: Thus, from Eq. A1, we see that the value

of the maximum positive real root can be at most equal to (1=d). More-

over: gð0Þ ¼ �pr, 0 and gð1=dÞ ¼ rð1� pÞ.0; since, by definition,

p, 1. Thus, the three positive solutions exist in (0; ð1=dÞ). The follow-

ing two conditions need to be satisfied for three positive real solutions to

exist:

Condition 1 (C1): g(x) must have exactly one maximum x1 and one

minimum x2 in (0; ð1=dÞ).
Condition 2 (C2): There must exist exactly one solution of Eq. A1 in

(x1,x2), i.e., gðx1Þ � gðx2Þ,0:

For condition C1 to be satisfied, the equation

dgðxÞ
dx
¼ 3dx

2 � 2x1 dr ¼ 0 (A2)

needs to have exactly two positive solutions. Clearly,

x1 � x2 ¼ r

3
and x1 1 x2 ¼ 2

3d
: (A3)

Since ðr=3Þ.0 andð2=3dÞ.0; if two real solutions of Eq. A2 exist, then

they will definitely be positive. Thus, the condition for existence of two

positive real extrema of g(x) reduces to requiring that the discriminant of

Eq. A2 is always positive. Therefore, we need to have

rd
2 ,

1

3
: (A4)

For condition C2, we first express the product gðx1Þ � gðx2Þ in terms of x1 � x2
and x11x2 and then substitute Eq. A3 to obtain

gðx1Þ � gðx2Þ ¼ r rp
2 � 2

27
9r � 2

d
2

� �
p1

r

27
ð4d2

r � 1Þ
� �

:

(A5)

Since r.0; for condition C2 to be satisfied, the following inequality needs to

hold:

f ðpÞ ¼ rp
2 � 2

27
9r � 2

d
2

� �
p1

r

27
ð4d2

r � 1Þ, 0: (A6)

The left-hand side of Eq. A6 is a second order polynomial in p with

discriminant

D ¼ 4
2

27
2
d
4ð1� 3rd

2Þ3: (A7)

Since Eq. A4 needs to hold, Eq. A7 gives D.0: Thus, f(p) will always have

two real roots. By taking into account the facts that p . 0 and Eq. A4 needs

to hold, we distinguish two cases, for which Eq. A6 is satisfied and hence

Eq. A1 has three positive real solutions:

Case I: 0# rd2,ð1=4Þ: f(p) will have a positive and a negative real
root and Eq. A6 is satisfied for

0,p,
ð9rd2 � 2Þ1 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 3rd

2Þ3
q

27rd
2 :

Case II: 1
4
# rd2,ð1=3Þ: f(p) will have two positive real roots and

Eq. A6 is satisfied for

ð9rd2 � 2Þ � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 3rd

2Þ3
q

27rd
2

,p,
ð9rd2 � 2Þ1 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 3rd

2Þ3
q

27rd
2 :

APPENDIX B: DERIVATION OF THE
SVNMC ALGORITHM

The state (St) of the cell population at a given dimensionless time t is

determined by the total number of cellsMo(t) and the contents of these cells

(Xi(t)) at time t. To account for stochasticity, these time-dependent quan-

tities are treated as random variables. Thus

St [ fMoðtÞ ¼ Ns; XiðtÞ ¼ xi; i ¼ 1; 2; . . . ;Nsg:
The total number of cells changes as a result of cell division. Given that the

population exists at state St at time t, the time T required for the next

division to occur is also a random variable depending on St. To compute T,

its cumulative distribution function conditional on St (FTðzjtÞ) should be

equated to a random number Rand1 from the uniform distribution. Thus the

equation to be solved is

FTðzjtÞ[PrfT# zjStg ¼ 1� PrfT. zjStg
¼ 1� PTðzjtÞ ¼ Rand1: (B1)

Since only division disrupts quiescence, the dynamics of the probability that

division occurs at T. z given the state of the population St are given by the
equation

dPT

dt
¼ �PT +

Ns

i¼1
Gðxiðt1 zÞÞ: (B2)

Based on the definition of PTðzjtÞ, the initial condition is

PTð0jtÞ ¼ 1: (B3)

Integrating Eq. B2 subject to Eq. B3 and substituting into Eq. B1 yields the

following nonlinear equation for the time between division events T:

0 ¼
+
Ns

i¼1

R T

0
Gðxiðt1 zÞÞdz

Ln½1� Rand1� 1 1: (B4)

To compute the integral terms in Eq. B4, one needs to know the intracellular

content (expression level) of each individual cell in the population for the

time between division events. During this time, all population cells react

according to a single-cell reaction rate law R(x). Since we are modeling

genetic networks with positive feedback architecture and one of our primary

goals is to study the effect of intrinsic noise on cell population dynamics,

R(x) will be given by the Langevin Eq. 17 derived earlier, i.e.,

RðxiÞ[ dxi
dt
¼ AðxiÞ1

ffiffiffiffiffiffiffiffiffiffi
BðxiÞ

p
jiðtÞ i ¼ 1; 2; . . . ;Ns; (B5)

where A(x) and B(x) are given by Eqs. 15 and 16, respectively. Thus, Eqs. B4
and B5 are coupled. Hence, to find T, a Newton-Raphson algorithm was

used. For the evaluation of the integrals in Eq. B4, the trapezoid rule was

implemented (39). To evaluate the intracellular content of each cell at di-

mensionless time t 1 T (required by the trapezoid rule), Ns random numbers

ji are chosen from a Gaussian distribution using the joint inversion
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generating method (40), and the set of SDEs (Eq. B5) are integrated using

the one-step, explicit Euler method for SDEs (41). Higher order methods

such as the Milstein scheme were also considered. However, the increased

computational requirements of such methods rendered them unfavorable

to Euler’s method. Moreover, more complex quadrature rules than the

trapezoid rule were considered for the evaluation of the integrals in Eq. B4.

Again, the increased CPU time requirements of such methods were found to

be unfavorable compared to the classical and simpler trapezoid rule.

After computing the time between division events, the cell that had

undergone division is identified. Defining an indicator variable k such that

k ¼ j when a cell with state xj divides, the conditional distribution function

of this random variable, given the state of the entire population at that time,

is given by the expression

Prfk ¼ jjSt1Tg ¼ Gðxjðt1 TÞÞ
+
Ns

i¼1
Gðxiðt1 TÞÞ

: (B6)

Thus, by generating another random number from the uniform distribution

and finding the corresponding value of j obeying the conditional distribution

function (Eq. B6), the cell that had undergone division is identified.

The identification of the mother cell automatically gives its content. Due

to the specific choice of the partition probability density function (Eq. 25),

the content of the first daughter cell is taken to be the fraction f of the mother

cell content. Since mass is conserved at cell division, the content of the other

daughter cell is simply obtained by subtracting the content of the first

daughter cell from that of the mother cell. Moreover, each division event

leads to the ‘‘disappearance’’ of one mother cell and the ‘‘appearance’’ of

two newborn cells. Thus, after the determination of the content of each

daughter cell, the content of the mother cell is substituted with that of the first

daughter cell.

This MC algorithm functions as a hybrid between a constant-volume and

a constant-number MC method. Although the sample size is less than a

prespecified maximum, it acts as a constant-volumeMCwith the sample size

increasing after each division event and following the dynamics of cell

density. However, after the sample size reaches its maximum, it is kept

constant for the remainder of the simulation (31). By experimenting with

different values of the maximum sample size Ns,max, above which the sample

size is kept constant, it was found that for the particular genetic network,

25,000 cells suffice to give accurate simulation results. Therefore, unlike

constant-number MC methods, this fully SVNMC algorithm can simulate

the process starting from a single cell and until any desirable final time

without having the typical CPU time restrictions that constant-volume MC

methods have (24,25). Moreover, the ability to simulate very small cell

populations allows the assessment of stochastic division effects on cell

population dynamics at early growth stages. More importantly, the use of the

stochastic single-cell model (Eq. B5) to predict the intracellular dynamics of

each cell in the population allows the assessment of single-cell intrinsic

noise effects on population-level behavior, as opposed to the simple VNMC

algorithm that used a deterministic expression for the single-cell reaction rate

(31). In all simulations, a Gaussian distribution was taken as the initial

condition using the joint inversion generating method (40).
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